mirror of
https://github.com/MariaDB/server.git
synced 2025-01-22 23:04:20 +01:00
28cc5d1ed9
{{{ svn merge -r 19523:19895 https://svn.tokutek.com/tokudb/toku/tokudb.2499d }}} . git-svn-id: file:///svn/toku/tokudb@19902 c7de825b-a66e-492c-adef-691d508d4ae1
929 lines
37 KiB
C
929 lines
37 KiB
C
/* -*- mode: C; c-basic-offset: 4 -*- */
|
|
#ident "$Id$"
|
|
#ident "Copyright (c) 2007-2010 Tokutek Inc. All rights reserved."
|
|
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."
|
|
|
|
#include <toku_portability.h>
|
|
#include "brt-internal.h" // ugly but pragmatic, need access to dirty bits while holding translation lock
|
|
#include "brttypes.h"
|
|
#include "block_table.h"
|
|
#include "memory.h"
|
|
#include "toku_assert.h"
|
|
#include "toku_pthread.h"
|
|
#include "block_allocator.h"
|
|
#include "rbuf.h"
|
|
#include "wbuf.h"
|
|
|
|
//When the translation (btt) is stored on disk:
|
|
// In Header:
|
|
// size_on_disk
|
|
// location_on_disk
|
|
// In block translation table (in order):
|
|
// smallest_never_used_blocknum
|
|
// blocknum_freelist_head
|
|
// array
|
|
// a checksum
|
|
struct translation { //This is the BTT (block translation table)
|
|
enum translation_type type;
|
|
int64_t length_of_array; //Number of elements in array (block_translation). always >= smallest_never_used_blocknum
|
|
BLOCKNUM smallest_never_used_blocknum;
|
|
BLOCKNUM blocknum_freelist_head; // next (previously used) unused blocknum (free list)
|
|
struct block_translation_pair *block_translation;
|
|
|
|
// Where and how big is the block translation vector stored on disk.
|
|
// size_on_disk is stored in block_translation[RESERVED_BLOCKNUM_TRANSLATION].size
|
|
// location_on is stored in block_translation[RESERVED_BLOCKNUM_TRANSLATION].u.diskoff
|
|
};
|
|
|
|
static const BLOCKNUM freelist_null = {-1}; // in a freelist, this indicates end of list
|
|
static const DISKOFF size_is_free = (DISKOFF)-1; // value of block_translation_pair.size if blocknum is unused
|
|
static const DISKOFF diskoff_unused = (DISKOFF)-2; // value of block_translation_pair.u.diskoff if blocknum is used but does not yet have a diskblock
|
|
|
|
/********
|
|
* There are three copies of the translation table (btt) in the block table:
|
|
*
|
|
* checkpointed Is initialized by deserializing from disk,
|
|
* and is the only version ever read from disk.
|
|
* It is immutable. Once read from disk it is never changed.
|
|
*
|
|
* inprogress Is only filled by copying from current,
|
|
* and is the only version ever serialized to disk.
|
|
* (It is serialized to disk on checkpoint and clean shutdown.)
|
|
* It is immutable. Once copied from current it is never changed.
|
|
*
|
|
* current Is initialized by copying from checkpointed,
|
|
* is the only version ever modified while the database is in use,
|
|
* and is the only version ever copied to inprogress.
|
|
* It is never stored on disk.
|
|
********/
|
|
|
|
|
|
struct block_table {
|
|
struct translation current; // The current translation is the one used by client threads. It is not represented on disk.
|
|
struct translation inprogress; // the translation used by the checkpoint currently in progress. If the checkpoint thread allocates a block, it must also update the current translation.
|
|
struct translation checkpointed; // the translation for the data that shall remain inviolate on disk until the next checkpoint finishes, after which any blocks used only in this translation can be freed.
|
|
|
|
// The in-memory data structure for block allocation. There is no on-disk data structure for block allocation.
|
|
// Note: This is *allocation* not *translation*. The block_allocator is unaware of which blocks are used for which translation, but simply allocates and deallocates blocks.
|
|
BLOCK_ALLOCATOR block_allocator;
|
|
toku_pthread_mutex_t mutex;
|
|
int is_locked;
|
|
BOOL checkpoint_skipped;
|
|
BOOL checkpoint_failed;
|
|
};
|
|
|
|
//forward decls
|
|
static int64_t calculate_size_on_disk (struct translation *t);
|
|
static inline BOOL translation_prevents_freeing (struct translation *t, BLOCKNUM b, struct block_translation_pair *old_pair);
|
|
static inline void lock_for_blocktable (BLOCK_TABLE bt);
|
|
static inline void unlock_for_blocktable (BLOCK_TABLE bt);
|
|
|
|
|
|
|
|
static void
|
|
brtheader_set_dirty(struct brt_header *h, BOOL for_checkpoint){
|
|
assert(h->blocktable->is_locked);
|
|
assert(h->type == BRTHEADER_CURRENT);
|
|
h->dirty = 1;
|
|
if (for_checkpoint) {
|
|
assert(h->checkpoint_header->type == BRTHEADER_CHECKPOINT_INPROGRESS);
|
|
h->checkpoint_header->dirty = 1;
|
|
}
|
|
}
|
|
|
|
//fd is protected (must be holding fdlock)
|
|
static void
|
|
maybe_truncate_cachefile(BLOCK_TABLE bt, int fd, struct brt_header *h, u_int64_t size_needed_before) {
|
|
assert(bt->is_locked);
|
|
u_int64_t new_size_needed = block_allocator_allocated_limit(bt->block_allocator);
|
|
//Save a call to toku_os_get_file_size (kernel call) if unlikely to be useful.
|
|
if (new_size_needed < size_needed_before)
|
|
toku_maybe_truncate_cachefile(h->cf, fd, new_size_needed);
|
|
}
|
|
|
|
//fd is protected (must be holding fdlock)
|
|
void
|
|
toku_maybe_truncate_cachefile_on_open(BLOCK_TABLE bt, int fd, struct brt_header *h) {
|
|
lock_for_blocktable(bt);
|
|
u_int64_t size_needed = block_allocator_allocated_limit(bt->block_allocator);
|
|
toku_maybe_truncate_cachefile(h->cf, fd, size_needed);
|
|
unlock_for_blocktable(bt);
|
|
}
|
|
|
|
|
|
static void
|
|
copy_translation(struct translation * dst, struct translation * src, enum translation_type newtype) {
|
|
assert(src->length_of_array >= src->smallest_never_used_blocknum.b); //verify invariant
|
|
assert(newtype==TRANSLATION_DEBUG ||
|
|
(src->type == TRANSLATION_CURRENT && newtype == TRANSLATION_INPROGRESS) ||
|
|
(src->type == TRANSLATION_CHECKPOINTED && newtype == TRANSLATION_CURRENT));
|
|
dst->type = newtype;
|
|
dst->smallest_never_used_blocknum = src->smallest_never_used_blocknum;
|
|
dst->blocknum_freelist_head = src->blocknum_freelist_head;
|
|
// destination btt is of fixed size. Allocate+memcpy the exact length necessary.
|
|
dst->length_of_array = dst->smallest_never_used_blocknum.b;
|
|
XMALLOC_N(dst->length_of_array, dst->block_translation);
|
|
memcpy(dst->block_translation,
|
|
src->block_translation,
|
|
dst->length_of_array * sizeof(*dst->block_translation));
|
|
//New version of btt is not yet stored on disk.
|
|
dst->block_translation[RESERVED_BLOCKNUM_TRANSLATION].size = 0;
|
|
dst->block_translation[RESERVED_BLOCKNUM_TRANSLATION].u.diskoff = diskoff_unused;
|
|
}
|
|
|
|
static void
|
|
maybe_optimize_translation(struct translation *t) {
|
|
//Reduce 'smallest_never_used_blocknum.b' (completely free blocknums instead of just
|
|
//on a free list. Doing so requires us to regenerate the free list.
|
|
//This is O(n) work, so do it only if you're already doing that.
|
|
|
|
BLOCKNUM b;
|
|
assert(t->smallest_never_used_blocknum.b >= RESERVED_BLOCKNUMS);
|
|
//Calculate how large the free suffix is.
|
|
int64_t freed;
|
|
{
|
|
for (b.b = t->smallest_never_used_blocknum.b; b.b > RESERVED_BLOCKNUMS; b.b--) {
|
|
if (t->block_translation[b.b-1].size != size_is_free) {
|
|
break;
|
|
}
|
|
}
|
|
freed = t->smallest_never_used_blocknum.b - b.b;
|
|
}
|
|
if (freed>0) {
|
|
t->smallest_never_used_blocknum.b = b.b;
|
|
if (t->length_of_array/4 > t->smallest_never_used_blocknum.b) {
|
|
//We're using more memory than necessary to represent this now. Reduce.
|
|
u_int64_t new_length = t->smallest_never_used_blocknum.b * 2;
|
|
XREALLOC_N(new_length, t->block_translation);
|
|
t->length_of_array = new_length;
|
|
//No need to zero anything out.
|
|
}
|
|
|
|
//Regenerate free list.
|
|
t->blocknum_freelist_head.b = freelist_null.b;
|
|
for (b.b = RESERVED_BLOCKNUMS; b.b < t->smallest_never_used_blocknum.b; b.b++) {
|
|
if (t->block_translation[b.b].size == size_is_free) {
|
|
t->block_translation[b.b].u.next_free_blocknum = t->blocknum_freelist_head;
|
|
t->blocknum_freelist_head = b;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// block table must be locked by caller of this function
|
|
void
|
|
toku_block_translation_note_start_checkpoint_unlocked (BLOCK_TABLE bt) {
|
|
assert(bt->is_locked);
|
|
// Copy current translation to inprogress translation.
|
|
assert(bt->inprogress.block_translation == NULL);
|
|
//We're going to do O(n) work to copy the translation, so we
|
|
//can afford to do O(n) work by optimizing the translation
|
|
maybe_optimize_translation(&bt->current);
|
|
copy_translation(&bt->inprogress, &bt->current, TRANSLATION_INPROGRESS);
|
|
|
|
bt->checkpoint_skipped = FALSE;
|
|
bt->checkpoint_failed = FALSE;
|
|
}
|
|
|
|
//#define PRNTF(str, b, siz, ad, bt) printf("%s[%d] %s %"PRId64" %"PRId64" %"PRId64"\n", __FUNCTION__, __LINE__, str, b, siz, ad); fflush(stdout); if (bt) block_allocator_validate(((BLOCK_TABLE)(bt))->block_allocator);
|
|
//Debugging function
|
|
#define PRNTF(str, b, siz, ad, bt)
|
|
|
|
void
|
|
toku_block_translation_note_failed_checkpoint (BLOCK_TABLE bt) {
|
|
lock_for_blocktable(bt);
|
|
assert(bt->inprogress.block_translation);
|
|
bt->checkpoint_failed = TRUE;
|
|
unlock_for_blocktable(bt);
|
|
}
|
|
|
|
|
|
void
|
|
toku_block_translation_note_skipped_checkpoint (BLOCK_TABLE bt) {
|
|
//Purpose, alert block translation that the checkpoint was skipped, e.x. for a non-dirty header
|
|
lock_for_blocktable(bt);
|
|
assert(bt->inprogress.block_translation);
|
|
bt->checkpoint_skipped = TRUE;
|
|
unlock_for_blocktable(bt);
|
|
}
|
|
|
|
static void
|
|
cleanup_failed_checkpoint (BLOCK_TABLE bt) {
|
|
int64_t i;
|
|
struct translation *t = &bt->inprogress;
|
|
|
|
for (i = 0; i < t->length_of_array; i++) {
|
|
struct block_translation_pair *pair = &t->block_translation[i];
|
|
if (pair->size > 0 &&
|
|
!translation_prevents_freeing(&bt->current, make_blocknum(i), pair) &&
|
|
!translation_prevents_freeing(&bt->checkpointed, make_blocknum(i), pair)) {
|
|
PRNTF("free", i, pair->size, pair->u.diskoff, bt);
|
|
block_allocator_free_block(bt->block_allocator, pair->u.diskoff);
|
|
}
|
|
}
|
|
toku_free(bt->inprogress.block_translation);
|
|
memset(&bt->inprogress, 0, sizeof(bt->inprogress));
|
|
}
|
|
|
|
// Purpose: free disk space used by previous checkpoint, unless still in use by current.
|
|
// capture inprogress as new checkpointed.
|
|
// For each entry in checkpointBTT
|
|
// if offset does not match offset in inprogress
|
|
// assert offset does not match offset in current
|
|
// free (offset,len) from checkpoint
|
|
// move inprogress to checkpoint (resetting type)
|
|
// inprogress = NULL
|
|
//fd is protected (must be holding fdlock)
|
|
void
|
|
toku_block_translation_note_end_checkpoint (BLOCK_TABLE bt, int fd, struct brt_header *h) {
|
|
// Free unused blocks
|
|
lock_for_blocktable(bt);
|
|
u_int64_t allocated_limit_at_start = block_allocator_allocated_limit(bt->block_allocator);
|
|
assert(bt->inprogress.block_translation);
|
|
if (bt->checkpoint_skipped || bt->checkpoint_failed) {
|
|
cleanup_failed_checkpoint(bt);
|
|
goto end;
|
|
}
|
|
|
|
//Make certain inprogress was allocated space on disk
|
|
assert(bt->inprogress.block_translation[RESERVED_BLOCKNUM_TRANSLATION].size > 0);
|
|
assert(bt->inprogress.block_translation[RESERVED_BLOCKNUM_TRANSLATION].u.diskoff > 0);
|
|
|
|
int64_t i;
|
|
struct translation *t = &bt->checkpointed;
|
|
|
|
for (i = 0; i < t->length_of_array; i++) {
|
|
struct block_translation_pair *pair = &t->block_translation[i];
|
|
if (pair->size > 0 && !translation_prevents_freeing(&bt->inprogress, make_blocknum(i), pair)) {
|
|
assert(!translation_prevents_freeing(&bt->current, make_blocknum(i), pair));
|
|
PRNTF("free", i, pair->size, pair->u.diskoff, bt);
|
|
block_allocator_free_block(bt->block_allocator, pair->u.diskoff);
|
|
}
|
|
}
|
|
toku_free(bt->checkpointed.block_translation);
|
|
bt->checkpointed = bt->inprogress;
|
|
bt->checkpointed.type = TRANSLATION_CHECKPOINTED;
|
|
memset(&bt->inprogress, 0, sizeof(bt->inprogress));
|
|
maybe_truncate_cachefile(bt, fd, h, allocated_limit_at_start);
|
|
end:
|
|
unlock_for_blocktable(bt);
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
|
verify_valid_blocknum (struct translation *t, BLOCKNUM b) {
|
|
assert(b.b >= 0);
|
|
assert(b.b < t->smallest_never_used_blocknum.b);
|
|
|
|
//Sanity check: Verify invariant
|
|
assert(t->length_of_array >= t->smallest_never_used_blocknum.b);
|
|
}
|
|
|
|
//Can be freed
|
|
static inline void
|
|
verify_valid_freeable_blocknum (struct translation *t, BLOCKNUM b) {
|
|
assert(t->type == TRANSLATION_CURRENT);
|
|
assert(b.b >= RESERVED_BLOCKNUMS);
|
|
assert(b.b < t->smallest_never_used_blocknum.b);
|
|
|
|
//Sanity check: Verify invariant
|
|
assert(t->length_of_array >= t->smallest_never_used_blocknum.b);
|
|
}
|
|
|
|
static void
|
|
blocktable_lock_init (BLOCK_TABLE bt) {
|
|
memset(&bt->mutex, 0, sizeof(bt->mutex));
|
|
int r = toku_pthread_mutex_init(&bt->mutex, NULL); assert(r == 0);
|
|
bt->is_locked = 0;
|
|
}
|
|
|
|
static void
|
|
blocktable_lock_destroy (BLOCK_TABLE bt) {
|
|
int r = toku_pthread_mutex_destroy(&bt->mutex); assert(r == 0);
|
|
}
|
|
|
|
static inline void
|
|
lock_for_blocktable (BLOCK_TABLE bt) {
|
|
// Locks the blocktable_mutex.
|
|
int r = toku_pthread_mutex_lock(&bt->mutex);
|
|
assert(r==0);
|
|
bt->is_locked = 1;
|
|
}
|
|
|
|
static inline void
|
|
unlock_for_blocktable (BLOCK_TABLE bt) {
|
|
bt->is_locked = 0;
|
|
int r = toku_pthread_mutex_unlock(&bt->mutex);
|
|
assert(r==0);
|
|
}
|
|
|
|
void
|
|
toku_brtheader_lock (struct brt_header *h) {
|
|
BLOCK_TABLE bt = h->blocktable;
|
|
lock_for_blocktable(bt);
|
|
}
|
|
|
|
void
|
|
toku_brtheader_unlock (struct brt_header *h) {
|
|
BLOCK_TABLE bt = h->blocktable;
|
|
assert(bt->is_locked);
|
|
unlock_for_blocktable(bt);
|
|
}
|
|
|
|
// This is a special debugging function used only in the brt-serialize-test.
|
|
void
|
|
toku_block_alloc(BLOCK_TABLE bt, u_int64_t size, u_int64_t *offset) {
|
|
lock_for_blocktable(bt);
|
|
PRNTF("allocSomethingUnknown", 0L, (int64_t)size, 0L, bt);
|
|
block_allocator_alloc_block(bt->block_allocator, size, offset);
|
|
PRNTF("allocSomethingUnknownd", 0L, (int64_t)size, (int64_t)*offset, bt);
|
|
unlock_for_blocktable(bt);
|
|
}
|
|
|
|
// Also used only in brt-serialize-test.
|
|
void
|
|
toku_block_free(BLOCK_TABLE bt, u_int64_t offset) {
|
|
lock_for_blocktable(bt);
|
|
PRNTF("freeSOMETHINGunknown", 0L, 0L, offset, bt);
|
|
block_allocator_free_block(bt->block_allocator, offset);
|
|
unlock_for_blocktable(bt);
|
|
}
|
|
|
|
static int64_t
|
|
calculate_size_on_disk (struct translation *t) {
|
|
int64_t r = (8 + // smallest_never_used_blocknum
|
|
8 + // blocknum_freelist_head
|
|
t->smallest_never_used_blocknum.b * 16 + // Array
|
|
4); // 4 for checksum
|
|
return r;
|
|
}
|
|
|
|
// We cannot free the disk space allocated to this blocknum if it is still in use by the given translation table.
|
|
static inline BOOL
|
|
translation_prevents_freeing(struct translation *t, BLOCKNUM b, struct block_translation_pair *old_pair) {
|
|
BOOL r = (BOOL)
|
|
(t->block_translation &&
|
|
b.b < t->smallest_never_used_blocknum.b &&
|
|
old_pair->u.diskoff == t->block_translation[b.b].u.diskoff);
|
|
return r;
|
|
}
|
|
|
|
static void
|
|
blocknum_realloc_on_disk_internal (BLOCK_TABLE bt, BLOCKNUM b, DISKOFF size, DISKOFF *offset, struct brt_header * h, BOOL for_checkpoint) {
|
|
assert(bt->is_locked);
|
|
brtheader_set_dirty(h, for_checkpoint);
|
|
|
|
struct translation *t = &bt->current;
|
|
struct block_translation_pair old_pair = t->block_translation[b.b];
|
|
PRNTF("old", b.b, old_pair.size, old_pair.u.diskoff, bt);
|
|
//Free the old block if it is not still in use by the checkpoint in progress or the previous checkpoint
|
|
BOOL cannot_free = (BOOL)
|
|
((!for_checkpoint && translation_prevents_freeing(&bt->inprogress, b, &old_pair)) ||
|
|
translation_prevents_freeing(&bt->checkpointed, b, &old_pair));
|
|
if (!cannot_free && old_pair.u.diskoff!=diskoff_unused) {
|
|
PRNTF("Freed", b.b, old_pair.size, old_pair.u.diskoff, bt);
|
|
block_allocator_free_block(bt->block_allocator, old_pair.u.diskoff);
|
|
}
|
|
|
|
u_int64_t allocator_offset;
|
|
//Allocate a new block
|
|
block_allocator_alloc_block(bt->block_allocator, size, &allocator_offset);
|
|
t->block_translation[b.b].u.diskoff = allocator_offset;
|
|
t->block_translation[b.b].size = size;
|
|
*offset = allocator_offset;
|
|
|
|
PRNTF("New", b.b, t->block_translation[b.b].size, t->block_translation[b.b].u.diskoff, bt);
|
|
//Update inprogress btt if appropriate (if called because Pending bit is set).
|
|
if (for_checkpoint) {
|
|
assert(b.b < bt->inprogress.length_of_array);
|
|
bt->inprogress.block_translation[b.b] = t->block_translation[b.b];
|
|
}
|
|
}
|
|
|
|
void
|
|
toku_blocknum_realloc_on_disk (BLOCK_TABLE bt, BLOCKNUM b, DISKOFF size, DISKOFF *offset, struct brt_header * h, BOOL for_checkpoint) {
|
|
lock_for_blocktable(bt);
|
|
struct translation *t = &bt->current;
|
|
verify_valid_freeable_blocknum(t, b);
|
|
blocknum_realloc_on_disk_internal(bt, b, size, offset, h, for_checkpoint);
|
|
unlock_for_blocktable(bt);
|
|
}
|
|
|
|
// Purpose of this function is to figure out where to put the inprogress btt on disk, allocate space for it there.
|
|
static void
|
|
blocknum_alloc_translation_on_disk_unlocked (BLOCK_TABLE bt) {
|
|
assert(bt->is_locked);
|
|
|
|
struct translation *t = &bt->inprogress;
|
|
assert(t->block_translation);
|
|
BLOCKNUM b = make_blocknum(RESERVED_BLOCKNUM_TRANSLATION);
|
|
struct block_translation_pair old_pair = t->block_translation[b.b];
|
|
//Each inprogress is allocated only once
|
|
assert(old_pair.size == 0 && old_pair.u.diskoff == diskoff_unused);
|
|
|
|
//Allocate a new block
|
|
int64_t size = calculate_size_on_disk(t);
|
|
u_int64_t offset;
|
|
block_allocator_alloc_block(bt->block_allocator, size, &offset);
|
|
PRNTF("blokAllokator", 1L, size, offset, bt);
|
|
t->block_translation[b.b].u.diskoff = offset;
|
|
t->block_translation[b.b].size = size;
|
|
}
|
|
|
|
//Fills wbuf with bt
|
|
//A clean shutdown runs checkpoint start so that current and inprogress are copies.
|
|
void
|
|
toku_serialize_translation_to_wbuf_unlocked(BLOCK_TABLE bt, struct wbuf *w,
|
|
int64_t *address, int64_t *size) {
|
|
assert(bt->is_locked);
|
|
struct translation *t = &bt->inprogress;
|
|
|
|
BLOCKNUM b = make_blocknum(RESERVED_BLOCKNUM_TRANSLATION);
|
|
blocknum_alloc_translation_on_disk_unlocked(bt);
|
|
{
|
|
//Init wbuf
|
|
u_int64_t size_translation = calculate_size_on_disk(t);
|
|
assert((int64_t)size_translation==t->block_translation[b.b].size);
|
|
if (0)
|
|
printf("%s:%d writing translation table of size_translation %"PRIu64" at %"PRId64"\n", __FILE__, __LINE__, size_translation, t->block_translation[b.b].u.diskoff);
|
|
wbuf_init(w, toku_malloc(size_translation), size_translation);
|
|
assert(w->size==size_translation);
|
|
}
|
|
wbuf_BLOCKNUM(w, t->smallest_never_used_blocknum);
|
|
wbuf_BLOCKNUM(w, t->blocknum_freelist_head);
|
|
int64_t i;
|
|
for (i=0; i<t->smallest_never_used_blocknum.b; i++) {
|
|
if (0)
|
|
printf("%s:%d %"PRId64",%"PRId64"\n", __FILE__, __LINE__, t->block_translation[i].u.diskoff, t->block_translation[i].size);
|
|
wbuf_DISKOFF(w, t->block_translation[i].u.diskoff);
|
|
wbuf_DISKOFF(w, t->block_translation[i].size);
|
|
}
|
|
u_int32_t checksum = x1764_finish(&w->checksum);
|
|
wbuf_int(w, checksum);
|
|
*address = t->block_translation[b.b].u.diskoff;
|
|
*size = t->block_translation[b.b].size;
|
|
}
|
|
|
|
|
|
// Perhaps rename: purpose is get disk address of a block, given its blocknum (blockid?)
|
|
static void
|
|
translate_blocknum_to_offset_size_unlocked(BLOCK_TABLE bt, BLOCKNUM b, DISKOFF *offset, DISKOFF *size) {
|
|
struct translation *t = &bt->current;
|
|
verify_valid_blocknum(t, b);
|
|
if (offset) *offset = t->block_translation[b.b].u.diskoff;
|
|
if (size) *size = t->block_translation[b.b].size;
|
|
}
|
|
|
|
// Perhaps rename: purpose is get disk address of a block, given its blocknum (blockid?)
|
|
void
|
|
toku_translate_blocknum_to_offset_size(BLOCK_TABLE bt, BLOCKNUM b, DISKOFF *offset, DISKOFF *size) {
|
|
lock_for_blocktable(bt);
|
|
translate_blocknum_to_offset_size_unlocked(bt, b, offset, size);
|
|
unlock_for_blocktable(bt);
|
|
}
|
|
|
|
//Only called by toku_allocate_blocknum
|
|
static void
|
|
maybe_expand_translation (struct translation *t) {
|
|
// Effect: expand the array to maintain size invariant
|
|
// given that one more never-used blocknum will soon be used.
|
|
if (t->length_of_array <= t->smallest_never_used_blocknum.b) {
|
|
//expansion is necessary
|
|
u_int64_t new_length = t->smallest_never_used_blocknum.b * 2;
|
|
XREALLOC_N(new_length, t->block_translation);
|
|
u_int64_t i;
|
|
for (i = t->length_of_array; i < new_length; i++) {
|
|
t->block_translation[i].u.next_free_blocknum = freelist_null;
|
|
t->block_translation[i].size = size_is_free;
|
|
}
|
|
t->length_of_array = new_length;
|
|
}
|
|
}
|
|
|
|
void
|
|
toku_allocate_blocknum_unlocked(BLOCK_TABLE bt, BLOCKNUM *res, struct brt_header * h) {
|
|
assert(bt->is_locked);
|
|
BLOCKNUM result;
|
|
struct translation * t = &bt->current;
|
|
if (t->blocknum_freelist_head.b == freelist_null.b) {
|
|
// no previously used blocknums are available
|
|
// use a never used blocknum
|
|
maybe_expand_translation(t); //Ensure a never used blocknums is available
|
|
result = t->smallest_never_used_blocknum;
|
|
t->smallest_never_used_blocknum.b++;
|
|
} else { // reuse a previously used blocknum
|
|
result = t->blocknum_freelist_head;
|
|
BLOCKNUM next = t->block_translation[result.b].u.next_free_blocknum;
|
|
t->blocknum_freelist_head = next;
|
|
}
|
|
//Verify the blocknum is free
|
|
assert(t->block_translation[result.b].size == size_is_free);
|
|
//blocknum is not free anymore
|
|
t->block_translation[result.b].u.diskoff = diskoff_unused;
|
|
t->block_translation[result.b].size = 0;
|
|
verify_valid_freeable_blocknum(t, result);
|
|
*res = result;
|
|
brtheader_set_dirty(h, FALSE);
|
|
}
|
|
|
|
void
|
|
toku_allocate_blocknum(BLOCK_TABLE bt, BLOCKNUM *res, struct brt_header * h) {
|
|
lock_for_blocktable(bt);
|
|
toku_allocate_blocknum_unlocked(bt, res, h);
|
|
unlock_for_blocktable(bt);
|
|
}
|
|
|
|
static void
|
|
free_blocknum_unlocked(BLOCK_TABLE bt, BLOCKNUM *bp, struct brt_header * h) {
|
|
// Effect: Free a blocknum.
|
|
// If the blocknum holds the only reference to a block on disk, free that block
|
|
assert(bt->is_locked);
|
|
BLOCKNUM b = *bp;
|
|
bp->b = 0; //Remove caller's reference.
|
|
struct translation *t = &bt->current;
|
|
verify_valid_freeable_blocknum(t, b);
|
|
struct block_translation_pair old_pair = t->block_translation[b.b];
|
|
assert(old_pair.size != size_is_free);
|
|
|
|
PRNTF("free_blocknum", b.b, t->block_translation[b.b].size, t->block_translation[b.b].u.diskoff, bt);
|
|
t->block_translation[b.b].size = size_is_free;
|
|
t->block_translation[b.b].u.next_free_blocknum = t->blocknum_freelist_head;
|
|
t->blocknum_freelist_head = b;
|
|
|
|
//If the size is 0, no disk block has ever been assigned to this blocknum.
|
|
if (old_pair.size > 0) {
|
|
//Free the old block if it is not still in use by the checkpoint in progress or the previous checkpoint
|
|
BOOL cannot_free = (BOOL)
|
|
(translation_prevents_freeing(&bt->inprogress, b, &old_pair) ||
|
|
translation_prevents_freeing(&bt->checkpointed, b, &old_pair));
|
|
if (!cannot_free) {
|
|
PRNTF("free_blocknum_free", b.b, old_pair.size, old_pair.u.diskoff, bt);
|
|
block_allocator_free_block(bt->block_allocator, old_pair.u.diskoff);
|
|
}
|
|
}
|
|
else assert(old_pair.size==0 && old_pair.u.diskoff == diskoff_unused);
|
|
brtheader_set_dirty(h, FALSE);
|
|
}
|
|
|
|
void
|
|
toku_free_blocknum(BLOCK_TABLE bt, BLOCKNUM *bp, struct brt_header * h) {
|
|
lock_for_blocktable(bt);
|
|
free_blocknum_unlocked(bt, bp, h);
|
|
unlock_for_blocktable(bt);
|
|
}
|
|
|
|
//fd is protected (must be holding fdlock)
|
|
void
|
|
toku_block_translation_truncate_unlocked(BLOCK_TABLE bt, int fd, struct brt_header *h) {
|
|
assert(bt->is_locked);
|
|
u_int64_t allocated_limit_at_start = block_allocator_allocated_limit(bt->block_allocator);
|
|
brtheader_set_dirty(h, FALSE);
|
|
//Free all regular/data blocks (non reserved)
|
|
//Meta data is stored in reserved blocks
|
|
struct translation *t = &bt->current;
|
|
int64_t i;
|
|
for (i=RESERVED_BLOCKNUMS; i<t->smallest_never_used_blocknum.b; i++) {
|
|
BLOCKNUM b = make_blocknum(i);
|
|
if (t->block_translation[i].size >= 0) free_blocknum_unlocked(bt, &b, h);
|
|
}
|
|
maybe_truncate_cachefile(bt, fd, h, allocated_limit_at_start);
|
|
}
|
|
|
|
//Verify there are no free blocks.
|
|
void
|
|
toku_block_verify_no_free_blocknums(BLOCK_TABLE bt) {
|
|
assert(bt->current.blocknum_freelist_head.b == freelist_null.b);
|
|
}
|
|
|
|
//Verify there are no data blocks except root.
|
|
void
|
|
toku_block_verify_no_data_blocks_except_root_unlocked(BLOCK_TABLE bt, BLOCKNUM root) {
|
|
//Relies on checkpoint having used optimize_translation
|
|
assert(root.b >= RESERVED_BLOCKNUMS);
|
|
assert(bt->current.smallest_never_used_blocknum.b == root.b + 1);
|
|
int64_t i;
|
|
for (i=RESERVED_BLOCKNUMS; i < root.b; i++) {
|
|
BLOCKNUM b = make_blocknum(i);
|
|
assert(bt->current.block_translation[b.b].size == size_is_free);
|
|
}
|
|
}
|
|
|
|
//Verify a blocknum is currently allocated.
|
|
void
|
|
toku_verify_blocknum_allocated(BLOCK_TABLE bt, BLOCKNUM b) {
|
|
lock_for_blocktable(bt);
|
|
struct translation *t = &bt->current;
|
|
verify_valid_blocknum(t, b);
|
|
assert(t->block_translation[b.b].size != size_is_free);
|
|
unlock_for_blocktable(bt);
|
|
}
|
|
|
|
//Only used by toku_dump_translation table (debug info)
|
|
static void
|
|
dump_translation(FILE *f, struct translation *t) {
|
|
if (t->block_translation) {
|
|
BLOCKNUM b = make_blocknum(RESERVED_BLOCKNUM_TRANSLATION);
|
|
fprintf(f, " length_of_array[%"PRId64"]", t->length_of_array);
|
|
fprintf(f, " smallest_never_used_blocknum[%"PRId64"]", t->smallest_never_used_blocknum.b);
|
|
fprintf(f, " blocknum_free_list_head[%"PRId64"]", t->blocknum_freelist_head.b);
|
|
fprintf(f, " size_on_disk[%"PRId64"]", t->block_translation[b.b].size);
|
|
fprintf(f, " location_on_disk[%"PRId64"]\n", t->block_translation[b.b].u.diskoff);
|
|
int64_t i;
|
|
for (i=0; i<t->length_of_array; i++) {
|
|
fprintf(f, " %"PRId64": %"PRId64" %"PRId64"\n", i, t->block_translation[i].u.diskoff, t->block_translation[i].size);
|
|
}
|
|
fprintf(f, "\n");
|
|
}
|
|
else fprintf(f, " does not exist\n");
|
|
}
|
|
|
|
//Only used by toku_brt_dump which is only for debugging purposes
|
|
void
|
|
toku_dump_translation_table(FILE *f, BLOCK_TABLE bt) {
|
|
lock_for_blocktable(bt);
|
|
fprintf(f, "Current block translation:");
|
|
dump_translation(f, &bt->current);
|
|
fprintf(f, "Checkpoint in progress block translation:");
|
|
dump_translation(f, &bt->inprogress);
|
|
fprintf(f, "Checkpointed block translation:");
|
|
dump_translation(f, &bt->checkpointed);
|
|
unlock_for_blocktable(bt);
|
|
}
|
|
|
|
//Only used by brtdump
|
|
void
|
|
toku_blocknum_dump_translation(BLOCK_TABLE bt, BLOCKNUM b) {
|
|
lock_for_blocktable(bt);
|
|
|
|
struct translation *t = &bt->current;
|
|
if (b.b < t->length_of_array) {
|
|
struct block_translation_pair *bx = &t->block_translation[b.b];
|
|
printf("%" PRId64 ": %" PRId64 " %" PRId64 "\n", b.b, bx->u.diskoff, bx->size);
|
|
}
|
|
unlock_for_blocktable(bt);
|
|
}
|
|
|
|
|
|
//Must not call this function when anything else is using the blocktable.
|
|
//No one may use the blocktable afterwards.
|
|
void
|
|
toku_blocktable_destroy(BLOCK_TABLE *btp) {
|
|
BLOCK_TABLE bt = *btp;
|
|
*btp = NULL;
|
|
if (bt->current.block_translation) toku_free(bt->current.block_translation);
|
|
if (bt->inprogress.block_translation) toku_free(bt->inprogress.block_translation);
|
|
if (bt->checkpointed.block_translation) toku_free(bt->checkpointed.block_translation);
|
|
|
|
destroy_block_allocator(&bt->block_allocator);
|
|
blocktable_lock_destroy(bt);
|
|
toku_free(bt);
|
|
}
|
|
|
|
|
|
static BLOCK_TABLE
|
|
blocktable_create_internal (void) {
|
|
// Effect: Fill it in, including the translation table, which is uninitialized
|
|
BLOCK_TABLE XMALLOC(bt);
|
|
memset(bt, 0, sizeof(*bt));
|
|
blocktable_lock_init(bt);
|
|
|
|
//There are two headers, so we reserve space for two.
|
|
u_int64_t reserve_per_header = BLOCK_ALLOCATOR_HEADER_RESERVE;
|
|
|
|
//Must reserve in multiples of BLOCK_ALLOCATOR_ALIGNMENT
|
|
//Round up the per-header usage if necessary.
|
|
//We want each header aligned.
|
|
u_int64_t remainder = BLOCK_ALLOCATOR_HEADER_RESERVE % BLOCK_ALLOCATOR_ALIGNMENT;
|
|
if (remainder!=0) {
|
|
reserve_per_header += BLOCK_ALLOCATOR_ALIGNMENT;
|
|
reserve_per_header -= remainder;
|
|
}
|
|
assert(2*reserve_per_header == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
create_block_allocator(&bt->block_allocator,
|
|
BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE,
|
|
BLOCK_ALLOCATOR_ALIGNMENT);
|
|
return bt;
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
translation_default(struct translation *t) { // destination into which to create a default translation
|
|
t->type = TRANSLATION_CHECKPOINTED;
|
|
t->smallest_never_used_blocknum = make_blocknum(RESERVED_BLOCKNUMS);
|
|
t->length_of_array = t->smallest_never_used_blocknum.b;
|
|
t->blocknum_freelist_head = freelist_null;
|
|
XMALLOC_N(t->length_of_array, t->block_translation);
|
|
int64_t i;
|
|
for (i = 0; i < t->length_of_array; i++) {
|
|
t->block_translation[i].size = 0;
|
|
t->block_translation[i].u.diskoff = diskoff_unused;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
translation_deserialize_from_buffer(struct translation *t, // destination into which to deserialize
|
|
DISKOFF location_on_disk, //Location of translation_buffer
|
|
u_int64_t size_on_disk,
|
|
unsigned char * translation_buffer) { // buffer with serialized translation
|
|
assert(location_on_disk!=0);
|
|
t->type = TRANSLATION_CHECKPOINTED;
|
|
{
|
|
// check the checksum
|
|
u_int32_t x1764 = x1764_memory(translation_buffer, size_on_disk - 4);
|
|
u_int64_t offset = size_on_disk - 4;
|
|
//printf("%s:%d read from %ld (x1764 offset=%ld) size=%ld\n", __FILE__, __LINE__, block_translation_address_on_disk, offset, block_translation_size_on_disk);
|
|
u_int32_t stored_x1764 = toku_dtoh32(*(int*)(translation_buffer + offset));
|
|
assert(x1764 == stored_x1764);
|
|
}
|
|
struct rbuf rt;
|
|
rt.buf = translation_buffer;
|
|
rt.ndone = 0;
|
|
rt.size = size_on_disk-4;//4==checksum
|
|
|
|
t->smallest_never_used_blocknum = rbuf_blocknum(&rt);
|
|
t->length_of_array = t->smallest_never_used_blocknum.b;
|
|
assert(t->smallest_never_used_blocknum.b >= RESERVED_BLOCKNUMS);
|
|
t->blocknum_freelist_head = rbuf_blocknum(&rt);
|
|
XMALLOC_N(t->length_of_array, t->block_translation);
|
|
int64_t i;
|
|
for (i=0; i < t->length_of_array; i++) {
|
|
t->block_translation[i].u.diskoff = rbuf_diskoff(&rt);
|
|
t->block_translation[i].size = rbuf_diskoff(&rt);
|
|
PRNTF("ReadIn", i, t->block_translation[i].size, t->block_translation[i].u.diskoff, NULL);
|
|
}
|
|
assert(calculate_size_on_disk(t) == (int64_t)size_on_disk);
|
|
assert(t->block_translation[RESERVED_BLOCKNUM_TRANSLATION].size == (int64_t)size_on_disk);
|
|
assert(t->block_translation[RESERVED_BLOCKNUM_TRANSLATION].u.diskoff == location_on_disk);
|
|
}
|
|
|
|
// We just initialized a translation, inform block allocator to reserve space for each blocknum in use.
|
|
static void
|
|
blocktable_note_translation (BLOCK_ALLOCATOR allocator, struct translation *t) {
|
|
//This is where the space for them will be reserved (in addition to normal blocks).
|
|
//See RESERVED_BLOCKNUMS
|
|
int64_t i;
|
|
for (i=0; i<t->smallest_never_used_blocknum.b; i++) {
|
|
struct block_translation_pair pair = t->block_translation[i];
|
|
if (pair.size > 0) {
|
|
assert(pair.u.diskoff != diskoff_unused);
|
|
block_allocator_alloc_block_at(allocator, pair.size, pair.u.diskoff);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Fill in the checkpointed translation from buffer, and copy checkpointed to current.
|
|
// The one read from disk is the last known checkpointed one, so we are keeping it in
|
|
// place and then setting current (which is never stored on disk) for current use.
|
|
// The translation_buffer has translation only, we create the rest of the block_table.
|
|
void
|
|
toku_blocktable_create_from_buffer(BLOCK_TABLE *btp,
|
|
DISKOFF location_on_disk, //Location of translation_buffer
|
|
DISKOFF size_on_disk,
|
|
unsigned char *translation_buffer) {
|
|
BLOCK_TABLE bt = blocktable_create_internal();
|
|
translation_deserialize_from_buffer(&bt->checkpointed, location_on_disk, size_on_disk, translation_buffer);
|
|
blocktable_note_translation(bt->block_allocator, &bt->checkpointed);
|
|
// we just filled in checkpointed, now copy it to current.
|
|
copy_translation(&bt->current, &bt->checkpointed, TRANSLATION_CURRENT);
|
|
*btp = bt;
|
|
}
|
|
|
|
|
|
void
|
|
toku_blocktable_create_new(BLOCK_TABLE *btp) {
|
|
BLOCK_TABLE bt = blocktable_create_internal();
|
|
translation_default(&bt->checkpointed); // create default btt (empty except for reserved blocknums)
|
|
blocktable_note_translation(bt->block_allocator, &bt->checkpointed);
|
|
// we just created a default checkpointed, now copy it to current.
|
|
copy_translation(&bt->current, &bt->checkpointed, TRANSLATION_CURRENT);
|
|
|
|
*btp = bt;
|
|
}
|
|
|
|
int
|
|
toku_blocktable_iterate (BLOCK_TABLE bt, enum translation_type type, BLOCKTABLE_CALLBACK f, void *extra, BOOL data_only, BOOL used_only) {
|
|
struct translation *src;
|
|
|
|
int r = 0;
|
|
switch (type) {
|
|
case TRANSLATION_CURRENT: src = &bt->current; break;
|
|
case TRANSLATION_INPROGRESS: src = &bt->inprogress; break;
|
|
case TRANSLATION_CHECKPOINTED: src = &bt->checkpointed; break;
|
|
default: r = EINVAL; break;
|
|
}
|
|
struct translation fakecurrent;
|
|
struct translation *t = &fakecurrent;
|
|
if (r==0) {
|
|
lock_for_blocktable(bt);
|
|
copy_translation(t, src, TRANSLATION_DEBUG);
|
|
t->block_translation[RESERVED_BLOCKNUM_TRANSLATION] =
|
|
src->block_translation[RESERVED_BLOCKNUM_TRANSLATION];
|
|
unlock_for_blocktable(bt);
|
|
int64_t i;
|
|
for (i=0; i<t->smallest_never_used_blocknum.b; i++) {
|
|
struct block_translation_pair pair = t->block_translation[i];
|
|
if (data_only && i< RESERVED_BLOCKNUMS) continue;
|
|
if (used_only && pair.size <= 0) continue;
|
|
r = f(make_blocknum(i), pair.size, pair.u.diskoff, extra);
|
|
if (r!=0) break;
|
|
}
|
|
toku_free(t->block_translation);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
typedef struct {
|
|
int64_t used_space;
|
|
int64_t total_space;
|
|
} frag_extra;
|
|
|
|
static int
|
|
frag_helper(BLOCKNUM UU(b), int64_t size, int64_t address, void *extra) {
|
|
frag_extra *info = extra;
|
|
|
|
if (size + address > info->total_space)
|
|
info->total_space = size + address;
|
|
info->used_space += size;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
toku_blocktable_internal_fragmentation (BLOCK_TABLE bt, int64_t *total_sizep, int64_t *used_sizep) {
|
|
frag_extra info = {0,0};
|
|
int r = toku_blocktable_iterate(bt, TRANSLATION_CHECKPOINTED, frag_helper, &info, FALSE, TRUE);
|
|
assert(r==0);
|
|
|
|
if (total_sizep) *total_sizep = info.total_space;
|
|
if (used_sizep) *used_sizep = info.used_space;
|
|
}
|
|
|
|
void
|
|
toku_realloc_descriptor_on_disk(BLOCK_TABLE bt, DISKOFF size, DISKOFF *offset, struct brt_header * h) {
|
|
lock_for_blocktable(bt);
|
|
BLOCKNUM b = make_blocknum(RESERVED_BLOCKNUM_DESCRIPTOR);
|
|
blocknum_realloc_on_disk_internal(bt, b, size, offset, h, FALSE);
|
|
unlock_for_blocktable(bt);
|
|
}
|
|
|
|
void
|
|
toku_get_descriptor_offset_size(BLOCK_TABLE bt, DISKOFF *offset, DISKOFF *size) {
|
|
lock_for_blocktable(bt);
|
|
BLOCKNUM b = make_blocknum(RESERVED_BLOCKNUM_DESCRIPTOR);
|
|
translate_blocknum_to_offset_size_unlocked(bt, b, offset, size);
|
|
unlock_for_blocktable(bt);
|
|
}
|
|
|
|
void
|
|
toku_block_table_get_fragmentation_unlocked(BLOCK_TABLE bt, TOKU_DB_FRAGMENTATION report) {
|
|
//Requires: blocktable lock is held.
|
|
//Requires: report->file_size_bytes is already filled in.
|
|
|
|
//Count the headers.
|
|
report->data_bytes = BLOCK_ALLOCATOR_HEADER_RESERVE;
|
|
report->data_blocks = 1;
|
|
report->checkpoint_bytes_additional = BLOCK_ALLOCATOR_HEADER_RESERVE;
|
|
report->checkpoint_blocks_additional = 1;
|
|
|
|
struct translation *current = &bt->current;
|
|
int64_t i;
|
|
for (i = 0; i < current->length_of_array; i++) {
|
|
struct block_translation_pair *pair = ¤t->block_translation[i];
|
|
if (pair->size > 0) {
|
|
report->data_bytes += pair->size;
|
|
report->data_blocks++;
|
|
}
|
|
}
|
|
struct translation *checkpointed = &bt->checkpointed;
|
|
for (i = 0; i < checkpointed->length_of_array; i++) {
|
|
struct block_translation_pair *pair = &checkpointed->block_translation[i];
|
|
if (pair->size > 0 &&
|
|
!(i < current->length_of_array &&
|
|
current->block_translation[i].size > 0 &&
|
|
current->block_translation[i].u.diskoff == pair->u.diskoff)
|
|
) {
|
|
report->checkpoint_bytes_additional += pair->size;
|
|
report->checkpoint_blocks_additional++;
|
|
}
|
|
}
|
|
struct translation *inprogress = &bt->inprogress;
|
|
for (i = 0; i < inprogress->length_of_array; i++) {
|
|
struct block_translation_pair *pair = &inprogress->block_translation[i];
|
|
if (pair->size > 0 &&
|
|
!(i < current->length_of_array &&
|
|
current->block_translation[i].size > 0 &&
|
|
current->block_translation[i].u.diskoff == pair->u.diskoff) &&
|
|
!(i < checkpointed->length_of_array &&
|
|
checkpointed->block_translation[i].size > 0 &&
|
|
checkpointed->block_translation[i].u.diskoff == pair->u.diskoff)
|
|
) {
|
|
report->checkpoint_bytes_additional += pair->size;
|
|
report->checkpoint_blocks_additional++;
|
|
}
|
|
}
|
|
|
|
block_allocator_get_unused_statistics(bt->block_allocator, report);
|
|
}
|