mariadb/storage/tokudb/ha_tokudb.h
Zardosht Kasheff cd08c3da33 [t:3014], use del_multiple in handlerton
git-svn-id: file:///svn/mysql/tokudb-engine/tokudb-engine@25189 c7de825b-a66e-492c-adef-691d508d4ae1
2013-04-17 00:02:03 -04:00

529 lines
17 KiB
C++

#ifdef USE_PRAGMA_INTERFACE
#pragma interface /* gcc class implementation */
#endif
#define TOKU_INCLUDE_CHECKPOINT_LOCK 1
#if !defined(HA_CLUSTERING)
#define HA_CLUSTERING 0
#define HA_CLUSTERED_INDEX 0
#endif
#include <db.h>
#include "hatoku_cmp.h"
class ha_tokudb;
typedef struct loader_context {
THD* thd;
char write_status_msg[200];
ha_tokudb* ha;
} *LOADER_CONTEXT;
//
// This object stores table information that is to be shared
// among all ha_tokudb objects.
// There is one instance per table, shared among threads.
// Some of the variables here are the DB* pointers to indexes,
// and auto increment information.
//
typedef struct st_tokudb_share {
char *table_name;
uint table_name_length, use_count;
pthread_mutex_t mutex;
THR_LOCK lock;
ulonglong auto_ident;
ulonglong last_auto_increment, auto_inc_create_value;
//
// estimate on number of rows in table
//
ha_rows rows;
//
// estimate on number of rows added in the process of a locked tables
// this is so we can better estimate row count during a lock table
//
ha_rows rows_from_locked_table;
DB *status_block;
//
// DB that is indexed on the primary key
//
DB *file;
//
// array of all DB's that make up table, includes DB that
// is indexed on the primary key, add 1 in case primary
// key is hidden
//
DB *key_file[MAX_KEY +1];
uint status, version, capabilities;
uint ref_length;
//
// whether table has an auto increment column
//
bool has_auto_inc;
//
// index of auto increment column in table->field, if auto_inc exists
//
uint ai_field_index;
KEY_AND_COL_INFO kc_info;
//
// we want the following optimization for bulk loads, if the table is empty,
// attempt to grab a table lock. emptiness check can be expensive,
// so we try it once for a table. After that, we keep this variable around
// to tell us to not try it again.
//
bool try_table_lock;
bool has_unique_keys;
bool replace_into_fast;
} TOKUDB_SHARE;
#define HA_TOKU_VERSION 3
//
// no capabilities yet
//
#define HA_TOKU_CAP 0
//
// These are keys that will be used for retrieving metadata in status.tokudb
// To get the version, one looks up the value associated with key hatoku_version
// in status.tokudb
//
typedef ulonglong HA_METADATA_KEY;
#define hatoku_version 0
#define hatoku_capabilities 1
#define hatoku_max_ai 2 //maximum auto increment value found so far
#define hatoku_ai_create_value 3
#define hatoku_key_name 4
typedef struct st_filter_key_part_info {
uint offset;
uint part_index;
} FILTER_KEY_PART_INFO;
typedef enum {
lock_read = 0,
lock_write
} TABLE_LOCK_TYPE;
int create_tokudb_trx_data_instance(tokudb_trx_data** out_trx);
int generate_row_for_del(
DB *dest_db,
DB *src_db,
DBT *dest_key,
const DBT *src_key,
const DBT *src_val,
void *extra
);
int generate_row_for_put(
DB *dest_db,
DB *src_db,
DBT *dest_key,
DBT *dest_val,
const DBT *src_key,
const DBT *src_val,
void *extra
);
class ha_tokudb : public handler {
private:
THR_LOCK_DATA lock; ///< MySQL lock
TOKUDB_SHARE *share; ///< Shared lock info
//
// last key returned by ha_tokudb's cursor
//
DBT last_key;
//
// pointer used for multi_alloc of key_buff, key_buff2, primary_key_buff
//
void *alloc_ptr;
//
// buffer used to temporarily store a "packed row"
// data pointer of a DBT will end up pointing to this
// see pack_row for usage
//
uchar *rec_buff;
//
// number of bytes allocated in rec_buff
//
ulong alloced_rec_buff_length;
u_int32_t max_key_length;
//
// buffer used to temporarily store a "packed key"
// data pointer of a DBT will end up pointing to this
//
uchar *key_buff;
//
// buffer used to temporarily store a "packed key"
// data pointer of a DBT will end up pointing to this
// This is used in functions that require the packing
// of more than one key
//
uchar *key_buff2;
uchar *key_buff3;
//
// buffer used to temporarily store a "packed key"
// data pointer of a DBT will end up pointing to this
// currently this is only used for a primary key in
// the function update_row, hence the name. It
// does not carry any state throughout the class.
//
uchar *primary_key_buff;
//
// individual key buffer for each index
//
uchar* mult_key_buff[MAX_KEY];
uchar* mult_rec_buff[MAX_KEY];
DBT mult_key_dbt[MAX_KEY + 1];
DBT mult_rec_dbt[MAX_KEY + 1];
u_int32_t mult_put_flags[MAX_KEY + 1];
u_int32_t mult_del_flags[MAX_KEY + 1];
u_int32_t mult_dbt_flags[MAX_KEY + 1];
ulong alloced_mult_rec_buff_length;
//
// when unpacking blobs, we need to store it in a temporary
// buffer that will persist because MySQL just gets a pointer to the
// blob data, a pointer we need to ensure is valid until the next
// query
//
uchar* blob_buff;
u_int32_t num_blob_bytes;
bool unpack_entire_row;
//
// buffers (and their sizes) that will hold the indexes
// of fields that need to be read for a query
//
u_int32_t* fixed_cols_for_query;
u_int32_t num_fixed_cols_for_query;
u_int32_t* var_cols_for_query;
u_int32_t num_var_cols_for_query;
bool read_blobs;
bool read_key;
//
// transaction used by ha_tokudb's cursor
//
DB_TXN *transaction;
//
// instance of cursor being used for init_xxx and rnd_xxx functions
//
DBC *cursor;
u_int32_t cursor_flags; // flags for cursor
//
// flags that are returned in table_flags()
//
ulonglong int_table_flags;
//
// count on the number of rows that gets changed, such as when write_row occurs
// this is meant to help keep estimate on number of elements in DB
//
ulonglong added_rows;
ulonglong deleted_rows;
uint last_dup_key;
//
// if set to 0, then the primary key is not hidden
// if non-zero (not necessarily 1), primary key is hidden
//
uint hidden_primary_key;
bool key_read, using_ignore;
//
// After a cursor encounters an error, the cursor will be unusable
// In case MySQL attempts to do a cursor operation (such as rnd_next
// or index_prev), we will gracefully return this error instead of crashing
//
int last_cursor_error;
//
// For instances where we successfully prelock a range or a table,
// we set this to TRUE so that successive cursor calls can know
// know to limit the locking overhead in a call to the fractal tree
//
bool range_lock_grabbed;
//
// For bulk inserts, we want option of not updating auto inc
// until all inserts are done. By default, is false
//
bool delay_updating_ai_metadata; // if true, don't update auto-increment metadata until bulk load completes
bool ai_metadata_update_required; // if true, autoincrement metadata must be updated
//
// buffer for updating the status of long insert, delete, and update
// statements. Right now, the the messages are
// "[inserted|updated|deleted] about %llu rows",
// so a buffer of 200 is good enough.
//
char write_status_msg[200]; //buffer of 200 should be a good upper bound.
struct loader_context lc;
ulonglong read_lock_wait_time;
DB_LOADER* loader;
bool abort_loader;
int loader_error;
bool fix_rec_buff_for_blob(ulong length);
void fix_mult_rec_buff();
uchar current_ident[TOKUDB_HIDDEN_PRIMARY_KEY_LENGTH];
ulong max_row_length(const uchar * buf);
int pack_row(
DBT * row,
const uchar* record,
uint index
);
u_int32_t place_key_into_mysql_buff(KEY* key_info, uchar * record, uchar* data);
void unpack_key(uchar * record, DBT const *key, uint index);
u_int32_t place_key_into_dbt_buff(KEY* key_info, uchar * buff, const uchar * record, bool* has_null, int key_length);
DBT* create_dbt_key_from_key(DBT * key, KEY* key_info, uchar * buff, const uchar * record, bool* has_null, bool dont_pack_pk, int key_length = MAX_KEY_LENGTH);
DBT *create_dbt_key_from_table(DBT * key, uint keynr, uchar * buff, const uchar * record, bool* has_null, int key_length = MAX_KEY_LENGTH);
DBT* create_dbt_key_for_lookup(DBT * key, KEY* key_info, uchar * buff, const uchar * record, bool* has_null, int key_length = MAX_KEY_LENGTH);
DBT *pack_key(DBT * key, uint keynr, uchar * buff, const uchar * key_ptr, uint key_length, int8_t inf_byte);
int remove_key(DB_TXN * trans, uint keynr, const uchar * record, DBT * prim_key);
int remove_keys(DB_TXN * trans, const uchar * record, DBT * prim_key);
int key_cmp(uint keynr, const uchar * old_row, const uchar * new_row);
int handle_cursor_error(int error, int err_to_return, uint keynr);
DBT *get_pos(DBT * to, uchar * pos);
int open_main_dictionary(const char* name, bool is_read_only, DB_TXN* txn);
int open_secondary_dictionary(DB** ptr, KEY* key_info, const char* name, bool is_read_only, DB_TXN* txn);
int open_status_dictionary(DB** ptr, const char* name, DB_TXN* txn);
int acquire_table_lock (DB_TXN* trans, TABLE_LOCK_TYPE lt);
int estimate_num_rows(DB* db, u_int64_t* num_rows, DB_TXN* txn);
bool has_auto_increment_flag(uint* index);
int write_to_status(DB* db, HA_METADATA_KEY curr_key_data, void* data, uint size, DB_TXN* txn );
int write_metadata(DB* db, void* key, uint key_size, void* data, uint data_size, DB_TXN* txn );
int remove_metadata(DB* db, void* key_data, uint key_size, DB_TXN* transaction);
int update_max_auto_inc(DB* db, ulonglong val);
int remove_key_name_from_status(DB* status_block, char* key_name, DB_TXN* txn);
int write_key_name_to_status(DB* status_block, char* key_name, DB_TXN* txn);
int write_auto_inc_create(DB* db, ulonglong val, DB_TXN* txn);
void init_auto_increment();
bool can_replace_into_be_fast(TABLE_SHARE* table_share, KEY_AND_COL_INFO* kc_info, uint pk);
int initialize_share(
const char* name,
int mode
);
void set_query_columns(uint keynr);
int prelock_range ( const key_range *start_key, const key_range *end_key);
int create_txn(THD* thd, tokudb_trx_data* trx);
bool may_table_be_empty();
int delete_or_rename_table (const char* from_name, const char* to_name, bool is_delete);
int delete_or_rename_dictionary( const char* from_name, const char* to_name, const char* index_name, bool is_key, DB_TXN* txn, bool is_delete);
int truncate_dictionary( uint keynr, DB_TXN* txn );
int create_secondary_dictionary(const char* name, TABLE* form, KEY* key_info, DB_TXN* txn, KEY_AND_COL_INFO* kc_info, u_int32_t keynr);
int create_main_dictionary(const char* name, TABLE* form, DB_TXN* txn, KEY_AND_COL_INFO* kc_info);
void trace_create_table_info(const char *name, TABLE * form);
int is_index_unique(bool* is_unique, DB_TXN* txn, DB* db, KEY* key_info);
int is_val_unique(bool* is_unique, uchar* record, KEY* key_info, uint dict_index, DB_TXN* txn);
int do_uniqueness_checks(uchar* record, DB_TXN* txn, THD* thd);
void set_main_dict_put_flags(THD* thd, u_int32_t* put_flags);
int insert_row_to_main_dictionary(uchar* record, DBT* pk_key, DBT* pk_val, DB_TXN* txn);
int insert_rows_to_dictionaries_mult(DBT* pk_key, DBT* pk_val, DB_TXN* txn, THD* thd);
void test_row_packing(uchar* record, DBT* pk_key, DBT* pk_val);
public:
ha_tokudb(handlerton * hton, TABLE_SHARE * table_arg);
~ha_tokudb() {
}
const char *table_type() const {
return "TOKUDB";
}
const char *index_type(uint inx) {
return "BTREE";
}
const char **bas_ext() const;
//
// Returns a bit mask of capabilities of storage engine. Capabilities
// defined in sql/handler.h
//
ulonglong table_flags(void) const;
ulong index_flags(uint inx, uint part, bool all_parts) const;
//
// Returns limit on the number of keys imposed by tokudb.
//
uint max_supported_keys() const {
return MAX_KEY;
}
uint extra_rec_buf_length() const {
return TOKUDB_HIDDEN_PRIMARY_KEY_LENGTH;
}
ha_rows estimate_rows_upper_bound();
//
// Returns the limit on the key length imposed by tokudb.
//
uint max_supported_key_length() const {
return UINT_MAX32;
}
//
// Returns limit on key part length imposed by tokudb.
//
uint max_supported_key_part_length() const {
return UINT_MAX32;
}
const key_map *keys_to_use_for_scanning() {
return &key_map_full;
}
double scan_time();
double read_time(uint index, uint ranges, ha_rows rows);
int open(const char *name, int mode, uint test_if_locked);
int close(void);
void update_create_info(HA_CREATE_INFO* create_info);
int create(const char *name, TABLE * form, HA_CREATE_INFO * create_info);
int delete_table(const char *name);
int rename_table(const char *from, const char *to);
int optimize(THD * thd, HA_CHECK_OPT * check_opt);
#if 0
int analyze(THD * thd, HA_CHECK_OPT * check_opt);
#endif
int write_row(uchar * buf);
int update_row(const uchar * old_data, uchar * new_data);
int delete_row(const uchar * buf);
void start_bulk_insert(ha_rows rows);
int end_bulk_insert();
int end_bulk_insert(bool abort);
int prepare_index_scan();
int prepare_index_key_scan( const uchar * key, uint key_len );
int prepare_range_scan( const key_range *start_key, const key_range *end_key);
void column_bitmaps_signal();
int index_init(uint index, bool sorted);
int index_end();
int index_next_same(uchar * buf, const uchar * key, uint keylen);
int index_read(uchar * buf, const uchar * key, uint key_len, enum ha_rkey_function find_flag);
int index_read_last(uchar * buf, const uchar * key, uint key_len);
int index_next(uchar * buf);
int index_prev(uchar * buf);
int index_first(uchar * buf);
int index_last(uchar * buf);
int rnd_init(bool scan);
int rnd_end();
int rnd_next(uchar * buf);
int rnd_pos(uchar * buf, uchar * pos);
int read_range_first(const key_range *start_key,
const key_range *end_key,
bool eq_range, bool sorted);
int read_range_next();
void position(const uchar * record);
int info(uint);
int extra(enum ha_extra_function operation);
int reset(void);
int external_lock(THD * thd, int lock_type);
int start_stmt(THD * thd, thr_lock_type lock_type);
ha_rows records_in_range(uint inx, key_range * min_key, key_range * max_key);
u_int32_t get_cursor_isolation_flags(enum thr_lock_type lock_type, THD* thd);
THR_LOCK_DATA **store_lock(THD * thd, THR_LOCK_DATA ** to, enum thr_lock_type lock_type);
int get_status();
void init_hidden_prim_key_info();
inline void get_auto_primary_key(uchar * to) {
pthread_mutex_lock(&share->mutex);
share->auto_ident++;
hpk_num_to_char(to, share->auto_ident);
pthread_mutex_unlock(&share->mutex);
}
virtual void get_auto_increment(ulonglong offset, ulonglong increment, ulonglong nb_desired_values, ulonglong * first_value, ulonglong * nb_reserved_values);
bool is_auto_inc_singleton();
void print_error(int error, myf errflag);
uint8 table_cache_type() {
return HA_CACHE_TBL_TRANSACT;
}
bool primary_key_is_clustered() {
return true;
}
bool supports_clustered_keys() {
return true;
}
int cmp_ref(const uchar * ref1, const uchar * ref2);
bool check_if_incompatible_data(HA_CREATE_INFO * info, uint table_changes);
int add_index(TABLE *table_arg, KEY *key_info, uint num_of_keys);
int prepare_drop_index(TABLE *table_arg, uint *key_num, uint num_of_keys);
int final_drop_index(TABLE *table_arg);
// delete all rows from the table
// effect: all dictionaries, including the main and indexes, should be empty
int discard_or_import_tablespace(my_bool discard);
int delete_all_rows();
void extract_hidden_primary_key(uint keynr, DBT const *found_key);
void read_key_only(uchar * buf, uint keynr, DBT const *found_key);
int read_row_callback (uchar * buf, uint keynr, DBT const *row, DBT const *found_key);
int read_primary_key(uchar * buf, uint keynr, DBT const *row, DBT const *found_key);
int unpack_blobs(
uchar* record,
const uchar* from_tokudb_blob,
u_int32_t num_blob_bytes,
bool check_bitmap
);
int unpack_row(
uchar* record,
DBT const *row,
DBT const *key,
uint index
);
int prefix_cmp_dbts( uint keynr, const DBT* first_key, const DBT* second_key) {
return tokudb_prefix_cmp_dbt_key(share->key_file[keynr], first_key, second_key);
}
void track_progress(THD* thd);
void set_loader_error(int err);
void set_dup_value_for_pk(DBT* key);
//
// index into key_file that holds DB* that is indexed on
// the primary_key. this->key_file[primary_index] == this->file
//
uint primary_key;
private:
int read_full_row(uchar * buf);
int __close(int mutex_is_locked);
int read_last(uint keynr);
};
#if MYSQL_VERSION_ID >= 50506
static inline void my_free(void *p, int arg) {
my_free(p);
}
static inline void *memcpy_fixed(void *a, const void *b, size_t n) {
return memcpy(a, b, n);
}
#endif