mariadb/sql/sql_partition.cc
gluh@eagle.intranet.mysql.r18.ru be4ebd9038 WL#2506: Information Schema tables for PARTITIONing
added I_S 'PARTITIONS' table
2006-01-10 19:44:04 +04:00

3528 lines
114 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (C) 2005 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
This file was introduced as a container for general functionality related
to partitioning introduced in MySQL version 5.1. It contains functionality
used by all handlers that support partitioning, which in the first version
is the partitioning handler itself and the NDB handler.
The first version was written by Mikael Ronstrom.
This version supports RANGE partitioning, LIST partitioning, HASH
partitioning and composite partitioning (hereafter called subpartitioning)
where each RANGE/LIST partitioning is HASH partitioned. The hash function
can either be supplied by the user or by only a list of fields (also
called KEY partitioning, where the MySQL server will use an internal
hash function.
There are quite a few defaults that can be used as well.
*/
/* Some general useful functions */
#include "mysql_priv.h"
#include <errno.h>
#include <m_ctype.h>
#include "md5.h"
#ifdef WITH_PARTITION_STORAGE_ENGINE
#include "ha_partition.h"
/*
Partition related functions declarations and some static constants;
*/
const LEX_STRING partition_keywords[]=
{
{ (char *) STRING_WITH_LEN("HASH") },
{ (char *) STRING_WITH_LEN("RANGE") },
{ (char *) STRING_WITH_LEN("LIST") },
{ (char *) STRING_WITH_LEN("KEY") },
{ (char *) STRING_WITH_LEN("MAXVALUE") },
{ (char *) STRING_WITH_LEN("LINEAR ") }
};
static const char *part_str= "PARTITION";
static const char *sub_str= "SUB";
static const char *by_str= "BY";
static const char *space_str= " ";
static const char *equal_str= "=";
static const char *end_paren_str= ")";
static const char *begin_paren_str= "(";
static const char *comma_str= ",";
static char buff[22];
bool get_partition_id_list(partition_info *part_info,
uint32 *part_id);
bool get_partition_id_range(partition_info *part_info,
uint32 *part_id);
bool get_partition_id_hash_nosub(partition_info *part_info,
uint32 *part_id);
bool get_partition_id_key_nosub(partition_info *part_info,
uint32 *part_id);
bool get_partition_id_linear_hash_nosub(partition_info *part_info,
uint32 *part_id);
bool get_partition_id_linear_key_nosub(partition_info *part_info,
uint32 *part_id);
bool get_partition_id_range_sub_hash(partition_info *part_info,
uint32 *part_id);
bool get_partition_id_range_sub_key(partition_info *part_info,
uint32 *part_id);
bool get_partition_id_range_sub_linear_hash(partition_info *part_info,
uint32 *part_id);
bool get_partition_id_range_sub_linear_key(partition_info *part_info,
uint32 *part_id);
bool get_partition_id_list_sub_hash(partition_info *part_info,
uint32 *part_id);
bool get_partition_id_list_sub_key(partition_info *part_info,
uint32 *part_id);
bool get_partition_id_list_sub_linear_hash(partition_info *part_info,
uint32 *part_id);
bool get_partition_id_list_sub_linear_key(partition_info *part_info,
uint32 *part_id);
uint32 get_partition_id_hash_sub(partition_info *part_info);
uint32 get_partition_id_key_sub(partition_info *part_info);
uint32 get_partition_id_linear_hash_sub(partition_info *part_info);
uint32 get_partition_id_linear_key_sub(partition_info *part_info);
#endif
/*
A routine used by the parser to decide whether we are specifying a full
partitioning or if only partitions to add or to split.
SYNOPSIS
is_partition_management()
lex Reference to the lex object
RETURN VALUE
TRUE Yes, it is part of a management partition command
FALSE No, not a management partition command
DESCRIPTION
This needs to be outside of WITH_PARTITION_STORAGE_ENGINE since it is
used from the sql parser that doesn't have any #ifdef's
*/
my_bool is_partition_management(LEX *lex)
{
return (lex->sql_command == SQLCOM_ALTER_TABLE &&
(lex->alter_info.flags == ALTER_ADD_PARTITION ||
lex->alter_info.flags == ALTER_REORGANISE_PARTITION));
}
#ifdef WITH_PARTITION_STORAGE_ENGINE
/*
A support function to check if a partition name is in a list of strings
SYNOPSIS
is_partition_in_list()
part_name String searched for
list_part_names A list of names searched in
RETURN VALUES
TRUE String found
FALSE String not found
*/
bool is_partition_in_list(char *part_name,
List<char> list_part_names)
{
List_iterator<char> part_names_it(list_part_names);
uint no_names= list_part_names.elements;
uint i= 0;
do
{
char *list_name= part_names_it++;
if (!(my_strcasecmp(system_charset_info, part_name, list_name)))
return TRUE;
} while (++i < no_names);
return FALSE;
}
/*
A support function to check partition names for duplication in a
partitioned table
SYNOPSIS
is_partitions_in_table()
new_part_info New partition info
old_part_info Old partition info
RETURN VALUES
TRUE Duplicate names found
FALSE Duplicate names not found
DESCRIPTION
Can handle that the new and old parts are the same in which case it
checks that the list of names in the partitions doesn't contain any
duplicated names.
*/
bool is_partitions_in_table(partition_info *new_part_info,
partition_info *old_part_info)
{
uint no_new_parts= new_part_info->partitions.elements, new_count;
uint no_old_parts= old_part_info->partitions.elements, old_count;
List_iterator<partition_element> new_parts_it(new_part_info->partitions);
bool same_part_info= (new_part_info == old_part_info);
DBUG_ENTER("is_partitions_in_table");
new_count= 0;
do
{
List_iterator<partition_element> old_parts_it(old_part_info->partitions);
char *new_name= (new_parts_it++)->partition_name;
new_count++;
old_count= 0;
do
{
char *old_name= (old_parts_it++)->partition_name;
old_count++;
if (same_part_info && old_count == new_count)
break;
if (!(my_strcasecmp(system_charset_info, old_name, new_name)))
{
DBUG_RETURN(TRUE);
}
} while (old_count < no_old_parts);
} while (new_count < no_new_parts);
DBUG_RETURN(FALSE);
}
/*
Check that the reorganized table will not have duplicate partitions.
SYNOPSIS
check_reorganise_list()
new_part_info New partition info
old_part_info Old partition info
list_part_names The list of partition names that will go away and can be reused in the
new table.
RETURN VALUES
TRUE Inacceptable name conflict detected.
FALSE New names are OK.
DESCRIPTION
Can handle that the 'new_part_info' and 'old_part_info' the same
in which case it checks that the list of names in the partitions
doesn't contain any duplicated names.
*/
bool check_reorganise_list(partition_info *new_part_info,
partition_info *old_part_info,
List<char> list_part_names)
{
uint new_count, old_count;
uint no_new_parts= new_part_info->partitions.elements;
uint no_old_parts= old_part_info->partitions.elements;
List_iterator<partition_element> new_parts_it(new_part_info->partitions);
bool same_part_info= (new_part_info == old_part_info);
DBUG_ENTER("check_reorganise_list");
new_count= 0;
do
{
List_iterator<partition_element> old_parts_it(old_part_info->partitions);
char *new_name= (new_parts_it++)->partition_name;
new_count++;
old_count= 0;
do
{
char *old_name= (old_parts_it++)->partition_name;
old_count++;
if (same_part_info && old_count == new_count)
break;
if (!(my_strcasecmp(system_charset_info, old_name, new_name)))
{
if (!is_partition_in_list(old_name, list_part_names))
DBUG_RETURN(TRUE);
}
} while (old_count < no_old_parts);
} while (new_count < no_new_parts);
DBUG_RETURN(FALSE);
}
/*
A useful routine used by update_row for partition handlers to calculate
the partition ids of the old and the new record.
SYNOPSIS
get_part_for_update()
old_data Buffer of old record
new_data Buffer of new record
rec0 Reference to table->record[0]
part_info Reference to partition information
part_field_array A NULL-terminated array of fields for partition
function
old_part_id The returned partition id of old record
new_part_id The returned partition id of new record
RETURN VALUE
0 Success
> 0 Error code
DESCRIPTION
Dependent on whether buf is not record[0] we need to prepare the
fields. Then we call the function pointer get_partition_id to
calculate the partition ids.
*/
int get_parts_for_update(const byte *old_data, byte *new_data,
const byte *rec0, partition_info *part_info,
uint32 *old_part_id, uint32 *new_part_id)
{
Field **part_field_array= part_info->full_part_field_array;
int error;
DBUG_ENTER("get_parts_for_update");
DBUG_ASSERT(new_data == rec0);
set_field_ptr(part_field_array, old_data, rec0);
error= part_info->get_partition_id(part_info, old_part_id);
set_field_ptr(part_field_array, rec0, old_data);
if (unlikely(error)) // Should never happen
{
DBUG_ASSERT(0);
DBUG_RETURN(error);
}
#ifdef NOT_NEEDED
if (new_data == rec0)
#endif
{
if (unlikely(error= part_info->get_partition_id(part_info,new_part_id)))
{
DBUG_RETURN(error);
}
}
#ifdef NOT_NEEDED
else
{
/*
This branch should never execute but it is written anyways for
future use. It will be tested by ensuring that the above
condition is false in one test situation before pushing the code.
*/
set_field_ptr(part_field_array, new_data, rec0);
error= part_info->get_partition_id(part_info, new_part_id);
set_field_ptr(part_field_array, rec0, new_data);
if (unlikely(error))
{
DBUG_RETURN(error);
}
}
#endif
DBUG_RETURN(0);
}
/*
A useful routine used by delete_row for partition handlers to calculate
the partition id.
SYNOPSIS
get_part_for_delete()
buf Buffer of old record
rec0 Reference to table->record[0]
part_info Reference to partition information
part_field_array A NULL-terminated array of fields for partition
function
part_id The returned partition id to delete from
RETURN VALUE
0 Success
> 0 Error code
DESCRIPTION
Dependent on whether buf is not record[0] we need to prepare the
fields. Then we call the function pointer get_partition_id to
calculate the partition id.
*/
int get_part_for_delete(const byte *buf, const byte *rec0,
partition_info *part_info, uint32 *part_id)
{
int error;
DBUG_ENTER("get_part_for_delete");
if (likely(buf == rec0))
{
if (unlikely((error= part_info->get_partition_id(part_info, part_id))))
{
DBUG_RETURN(error);
}
DBUG_PRINT("info", ("Delete from partition %d", *part_id));
}
else
{
Field **part_field_array= part_info->full_part_field_array;
set_field_ptr(part_field_array, buf, rec0);
error= part_info->get_partition_id(part_info, part_id);
set_field_ptr(part_field_array, rec0, buf);
if (unlikely(error))
{
DBUG_RETURN(error);
}
DBUG_PRINT("info", ("Delete from partition %d (path2)", *part_id));
}
DBUG_RETURN(0);
}
/*
This routine allocates an array for all range constants to achieve a fast
check what partition a certain value belongs to. At the same time it does
also check that the range constants are defined in increasing order and
that the expressions are constant integer expressions.
SYNOPSIS
check_range_constants()
part_info
RETURN VALUE
TRUE An error occurred during creation of range constants
FALSE Successful creation of range constant mapping
DESCRIPTION
This routine is called from check_partition_info to get a quick error
before we came too far into the CREATE TABLE process. It is also called
from fix_partition_func every time we open the .frm file. It is only
called for RANGE PARTITIONed tables.
*/
static bool check_range_constants(partition_info *part_info)
{
partition_element* part_def;
longlong current_largest_int= LONGLONG_MIN, part_range_value_int;
uint no_parts= part_info->no_parts, i;
List_iterator<partition_element> it(part_info->partitions);
bool result= TRUE;
DBUG_ENTER("check_range_constants");
DBUG_PRINT("enter", ("INT_RESULT with %d parts", no_parts));
part_info->part_result_type= INT_RESULT;
part_info->range_int_array=
(longlong*)sql_alloc(no_parts * sizeof(longlong));
if (unlikely(part_info->range_int_array == NULL))
{
my_error(ER_OUTOFMEMORY, MYF(0), no_parts*sizeof(longlong));
goto end;
}
i= 0;
do
{
part_def= it++;
if ((i != (no_parts - 1)) || !part_info->defined_max_value)
part_range_value_int= part_def->range_value;
else
part_range_value_int= LONGLONG_MAX;
if (likely(current_largest_int < part_range_value_int))
{
current_largest_int= part_range_value_int;
part_info->range_int_array[i]= part_range_value_int;
}
else
{
my_error(ER_RANGE_NOT_INCREASING_ERROR, MYF(0));
goto end;
}
} while (++i < no_parts);
result= FALSE;
end:
DBUG_RETURN(result);
}
/*
A support routine for check_list_constants used by qsort to sort the
constant list expressions.
SYNOPSIS
list_part_cmp()
a First list constant to compare with
b Second list constant to compare with
RETURN VALUE
+1 a > b
0 a == b
-1 a < b
*/
static int list_part_cmp(const void* a, const void* b)
{
longlong a1, b1;
a1= ((LIST_PART_ENTRY*)a)->list_value;
b1= ((LIST_PART_ENTRY*)b)->list_value;
if (a1 < b1)
return -1;
else if (a1 > b1)
return +1;
else
return 0;
}
/*
This routine allocates an array for all list constants to achieve a fast
check what partition a certain value belongs to. At the same time it does
also check that there are no duplicates among the list constants and that
that the list expressions are constant integer expressions.
SYNOPSIS
check_list_constants()
part_info
RETURN VALUE
TRUE An error occurred during creation of list constants
FALSE Successful creation of list constant mapping
DESCRIPTION
This routine is called from check_partition_info to get a quick error
before we came too far into the CREATE TABLE process. It is also called
from fix_partition_func every time we open the .frm file. It is only
called for LIST PARTITIONed tables.
*/
static bool check_list_constants(partition_info *part_info)
{
uint i, no_list_values= 0, no_parts, list_index= 0;
longlong *list_value;
bool not_first, result= TRUE;
longlong curr_value, prev_value;
partition_element* part_def;
List_iterator<partition_element> list_func_it(part_info->partitions);
DBUG_ENTER("check_list_constants");
part_info->part_result_type= INT_RESULT;
/*
We begin by calculating the number of list values that have been
defined in the first step.
We use this number to allocate a properly sized array of structs
to keep the partition id and the value to use in that partition.
In the second traversal we assign them values in the struct array.
Finally we sort the array of structs in order of values to enable
a quick binary search for the proper value to discover the
partition id.
After sorting the array we check that there are no duplicates in the
list.
*/
no_parts= part_info->no_parts;
i= 0;
do
{
part_def= list_func_it++;
List_iterator<longlong> list_val_it1(part_def->list_val_list);
while (list_val_it1++)
no_list_values++;
} while (++i < no_parts);
list_func_it.rewind();
part_info->no_list_values= no_list_values;
part_info->list_array=
(LIST_PART_ENTRY*)sql_alloc(no_list_values*sizeof(LIST_PART_ENTRY));
if (unlikely(part_info->list_array == NULL))
{
my_error(ER_OUTOFMEMORY, MYF(0), no_list_values*sizeof(LIST_PART_ENTRY));
goto end;
}
i= 0;
do
{
part_def= list_func_it++;
List_iterator<longlong> list_val_it2(part_def->list_val_list);
while ((list_value= list_val_it2++))
{
part_info->list_array[list_index].list_value= *list_value;
part_info->list_array[list_index++].partition_id= i;
}
} while (++i < no_parts);
qsort((void*)part_info->list_array, no_list_values,
sizeof(LIST_PART_ENTRY), &list_part_cmp);
not_first= FALSE;
i= prev_value= 0; //prev_value initialised to quiet compiler
do
{
curr_value= part_info->list_array[i].list_value;
if (likely(!not_first || prev_value != curr_value))
{
prev_value= curr_value;
not_first= TRUE;
}
else
{
my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0));
goto end;
}
} while (++i < no_list_values);
result= FALSE;
end:
DBUG_RETURN(result);
}
/*
Create a memory area where default partition names are stored and fill it
up with the names.
SYNOPSIS
create_default_partition_names()
no_parts Number of partitions
subpart Is it subpartitions
RETURN VALUE
A pointer to the memory area of the default partition names
DESCRIPTION
A support routine for the partition code where default values are
generated.
The external routine needing this code is check_partition_info
*/
#define MAX_PART_NAME_SIZE 8
static char *create_default_partition_names(uint no_parts, uint start_no,
bool subpart)
{
char *ptr= sql_calloc(no_parts*MAX_PART_NAME_SIZE);
char *move_ptr= ptr;
uint i= 0;
DBUG_ENTER("create_default_partition_names");
if (likely(ptr != 0))
{
do
{
if (subpart)
my_sprintf(move_ptr, (move_ptr,"sp%u", (start_no + i)));
else
my_sprintf(move_ptr, (move_ptr,"p%u", (start_no + i)));
move_ptr+=MAX_PART_NAME_SIZE;
} while (++i < no_parts);
}
else
{
my_error(ER_OUTOFMEMORY, MYF(0), no_parts*MAX_PART_NAME_SIZE);
}
DBUG_RETURN(ptr);
}
/*
Set up all the default partitions not set-up by the user in the SQL
statement. Also perform a number of checks that the user hasn't tried
to use default values where no defaults exists.
SYNOPSIS
set_up_default_partitions()
part_info The reference to all partition information
file A reference to a handler of the table
max_rows Maximum number of rows stored in the table
RETURN VALUE
TRUE Error, attempted default values not possible
FALSE Ok, default partitions set-up
DESCRIPTION
The routine uses the underlying handler of the partitioning to define
the default number of partitions. For some handlers this requires
knowledge of the maximum number of rows to be stored in the table.
This routine only accepts HASH and KEY partitioning and thus there is
no subpartitioning if this routine is successful.
The external routine needing this code is check_partition_info
*/
static bool set_up_default_partitions(partition_info *part_info,
handler *file, ulonglong max_rows,
uint start_no)
{
uint no_parts, i;
char *default_name;
bool result= TRUE;
DBUG_ENTER("set_up_default_partitions");
if (part_info->part_type != HASH_PARTITION)
{
const char *error_string;
if (part_info->part_type == RANGE_PARTITION)
error_string= partition_keywords[PKW_RANGE].str;
else
error_string= partition_keywords[PKW_LIST].str;
my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_string);
goto end;
}
if (part_info->no_parts == 0)
part_info->no_parts= file->get_default_no_partitions(max_rows);
no_parts= part_info->no_parts;
part_info->use_default_partitions= FALSE;
if (unlikely(no_parts > MAX_PARTITIONS))
{
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
goto end;
}
if (unlikely((!(default_name= create_default_partition_names(no_parts,
start_no,
FALSE)))))
goto end;
i= 0;
do
{
partition_element *part_elem= new partition_element();
if (likely(part_elem != 0))
{
part_elem->engine_type= NULL;
part_elem->partition_name= default_name;
default_name+=MAX_PART_NAME_SIZE;
part_info->partitions.push_back(part_elem);
}
else
{
my_error(ER_OUTOFMEMORY, MYF(0), sizeof(partition_element));
goto end;
}
} while (++i < no_parts);
result= FALSE;
end:
DBUG_RETURN(result);
}
/*
Set up all the default subpartitions not set-up by the user in the SQL
statement. Also perform a number of checks that the default partitioning
becomes an allowed partitioning scheme.
SYNOPSIS
set_up_default_subpartitions()
part_info The reference to all partition information
file A reference to a handler of the table
max_rows Maximum number of rows stored in the table
RETURN VALUE
TRUE Error, attempted default values not possible
FALSE Ok, default partitions set-up
DESCRIPTION
The routine uses the underlying handler of the partitioning to define
the default number of partitions. For some handlers this requires
knowledge of the maximum number of rows to be stored in the table.
This routine is only called for RANGE or LIST partitioning and those
need to be specified so only subpartitions are specified.
The external routine needing this code is check_partition_info
*/
static bool set_up_default_subpartitions(partition_info *part_info,
handler *file, ulonglong max_rows)
{
uint i, j, no_parts, no_subparts;
char *default_name, *name_ptr;
bool result= TRUE;
partition_element *part_elem;
List_iterator<partition_element> part_it(part_info->partitions);
DBUG_ENTER("set_up_default_subpartitions");
if (part_info->no_subparts == 0)
part_info->no_subparts= file->get_default_no_partitions(max_rows);
no_parts= part_info->no_parts;
no_subparts= part_info->no_subparts;
part_info->use_default_subpartitions= FALSE;
if (unlikely((no_parts * no_subparts) > MAX_PARTITIONS))
{
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
goto end;
}
if (unlikely((!(default_name=
create_default_partition_names(no_subparts, (uint)0, TRUE)))))
goto end;
i= 0;
do
{
part_elem= part_it++;
j= 0;
name_ptr= default_name;
do
{
partition_element *subpart_elem= new partition_element();
if (likely(subpart_elem != 0))
{
subpart_elem->engine_type= NULL;
subpart_elem->partition_name= name_ptr;
name_ptr+= MAX_PART_NAME_SIZE;
part_elem->subpartitions.push_back(subpart_elem);
}
else
{
my_error(ER_OUTOFMEMORY, MYF(0), sizeof(partition_element));
goto end;
}
} while (++j < no_subparts);
} while (++i < no_parts);
result= FALSE;
end:
DBUG_RETURN(result);
}
/*
Set up defaults for partition or subpartition (cannot set-up for both,
this will return an error.
SYNOPSIS
set_up_defaults_for_partitioning()
part_info The reference to all partition information
file A reference to a handler of the table
max_rows Maximum number of rows stored in the table
RETURN VALUE
TRUE Error, attempted default values not possible
FALSE Ok, default partitions set-up
DESCRIPTION
Support routine for check_partition_info
*/
bool set_up_defaults_for_partitioning(partition_info *part_info,
handler *file,
ulonglong max_rows, uint start_no)
{
DBUG_ENTER("set_up_defaults_for_partitioning");
if (part_info->use_default_partitions)
DBUG_RETURN(set_up_default_partitions(part_info, file, max_rows,
start_no));
if (is_sub_partitioned(part_info) && part_info->use_default_subpartitions)
DBUG_RETURN(set_up_default_subpartitions(part_info, file, max_rows));
DBUG_RETURN(FALSE);
}
/*
Check that all partitions use the same storage engine.
This is currently a limitation in this version.
SYNOPSIS
check_engine_mix()
engine_array An array of engine identifiers
no_parts Total number of partitions
RETURN VALUE
TRUE Error, mixed engines
FALSE Ok, no mixed engines
*/
static bool check_engine_mix(handlerton **engine_array, uint no_parts)
{
/*
Current check verifies only that all handlers are the same.
Later this check will be more sophisticated.
*/
uint i= 0;
bool result= FALSE;
DBUG_ENTER("check_engine_mix");
do
{
if (engine_array[i] != engine_array[0])
{
result= TRUE;
break;
}
} while (++i < no_parts);
DBUG_RETURN(result);
}
/*
We will check that the partition info requested is possible to set-up in
this version. This routine is an extension of the parser one could say.
If defaults were used we will generate default data structures for all
partitions.
SYNOPSIS
check_partition_info()
part_info The reference to all partition information
db_type Default storage engine if no engine specified per
partition.
file A reference to a handler of the table
max_rows Maximum number of rows stored in the table
RETURN VALUE
TRUE Error, something went wrong
FALSE Ok, full partition data structures are now generated
DESCRIPTION
This code is used early in the CREATE TABLE and ALTER TABLE process.
*/
bool check_partition_info(partition_info *part_info,handlerton *eng_type,
handler *file, ulonglong max_rows)
{
handlerton **engine_array= NULL;
uint part_count= 0, i, no_parts, tot_partitions;
bool result= TRUE;
List_iterator<partition_element> part_it(part_info->partitions);
DBUG_ENTER("check_partition_info");
if (unlikely(is_sub_partitioned(part_info) &&
(!(part_info->part_type == RANGE_PARTITION ||
part_info->part_type == LIST_PARTITION))))
{
/* Only RANGE and LIST partitioning can be subpartitioned */
my_error(ER_SUBPARTITION_ERROR, MYF(0));
goto end;
}
if (unlikely(set_up_defaults_for_partitioning(part_info, file,
max_rows, (uint)0)))
goto end;
tot_partitions= get_tot_partitions(part_info);
if (unlikely(tot_partitions > MAX_PARTITIONS))
{
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
goto end;
}
if (unlikely(is_partitions_in_table(part_info, part_info)))
{
my_error(ER_SAME_NAME_PARTITION, MYF(0));
goto end;
}
engine_array= (handlerton**)my_malloc(tot_partitions * sizeof(handlerton *),
MYF(MY_WME));
if (unlikely(!engine_array))
goto end;
i= 0;
no_parts= part_info->no_parts;
do
{
partition_element *part_elem= part_it++;
if (!is_sub_partitioned(part_info))
{
if (part_elem->engine_type == NULL)
part_elem->engine_type= eng_type;
DBUG_PRINT("info", ("engine = %s", part_elem->engine_type->name));
engine_array[part_count++]= part_elem->engine_type;
}
else
{
uint j= 0, no_subparts= part_info->no_subparts;;
List_iterator<partition_element> sub_it(part_elem->subpartitions);
do
{
part_elem= sub_it++;
if (part_elem->engine_type == NULL)
part_elem->engine_type= eng_type;
DBUG_PRINT("info", ("engine = %s", part_elem->engine_type->name));
engine_array[part_count++]= part_elem->engine_type;
} while (++j < no_subparts);
}
} while (++i < part_info->no_parts);
if (unlikely(check_engine_mix(engine_array, part_count)))
{
my_error(ER_MIX_HANDLER_ERROR, MYF(0));
goto end;
}
/*
We need to check all constant expressions that they are of the correct
type and that they are increasing for ranges and not overlapping for
list constants.
*/
if (unlikely((part_info->part_type == RANGE_PARTITION &&
check_range_constants(part_info)) ||
(part_info->part_type == LIST_PARTITION &&
check_list_constants(part_info))))
goto end;
result= FALSE;
end:
my_free((char*)engine_array,MYF(MY_ALLOW_ZERO_PTR));
DBUG_RETURN(result);
}
/*
A great number of functions below here is part of the fix_partition_func
method. It is used to set up the partition structures for execution from
openfrm. It is called at the end of the openfrm when the table struct has
been set-up apart from the partition information.
It involves:
1) Setting arrays of fields for the partition functions.
2) Setting up binary search array for LIST partitioning
3) Setting up array for binary search for RANGE partitioning
4) Setting up key_map's to assist in quick evaluation whether one
can deduce anything from a given index of what partition to use
5) Checking whether a set of partitions can be derived from a range on
a field in the partition function.
As part of doing this there is also a great number of error controls.
This is actually the place where most of the things are checked for
partition information when creating a table.
Things that are checked includes
1) No NULLable fields in partition function
2) All fields of partition function in Primary keys and unique indexes
(if not supported)
3) No fields in partition function that are BLOB's or VARCHAR with a
collation other than the binary collation.
Create an array of partition fields (NULL terminated). Before this method
is called fix_fields or find_table_in_sef has been called to set
GET_FIXED_FIELDS_FLAG on all fields that are part of the partition
function.
SYNOPSIS
set_up_field_array()
table TABLE object for which partition fields are set-up
sub_part Is the table subpartitioned as well
RETURN VALUE
TRUE Error, some field didn't meet requirements
FALSE Ok, partition field array set-up
DESCRIPTION
This method is used to set-up both partition and subpartitioning
field array and used for all types of partitioning.
It is part of the logic around fix_partition_func.
*/
static bool set_up_field_array(TABLE *table,
bool sub_part)
{
Field **ptr, *field, **field_array;
uint no_fields= 0, size_field_array, i= 0;
partition_info *part_info= table->part_info;
int result= FALSE;
DBUG_ENTER("set_up_field_array");
ptr= table->field;
while ((field= *(ptr++)))
{
if (field->flags & GET_FIXED_FIELDS_FLAG)
no_fields++;
}
size_field_array= (no_fields+1)*sizeof(Field*);
field_array= (Field**)sql_alloc(size_field_array);
if (unlikely(!field_array))
{
my_error(ER_OUTOFMEMORY, MYF(0), size_field_array);
result= TRUE;
}
ptr= table->field;
while ((field= *(ptr++)))
{
if (field->flags & GET_FIXED_FIELDS_FLAG)
{
field->flags&= ~GET_FIXED_FIELDS_FLAG;
field->flags|= FIELD_IN_PART_FUNC_FLAG;
if (likely(!result))
{
field_array[i++]= field;
/*
We check that the fields are proper. It is required for each
field in a partition function to:
1) Not be a BLOB of any type
A BLOB takes too long time to evaluate so we don't want it for
performance reasons.
2) Not be a VARCHAR other than VARCHAR with a binary collation
A VARCHAR with character sets can have several values being
equal with different number of spaces or NULL's. This is not a
good ground for a safe and exact partition function. Thus it is
not allowed in partition functions.
*/
if (unlikely(field->flags & BLOB_FLAG))
{
my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0));
result= TRUE;
}
else if (unlikely((!field->flags & BINARY_FLAG) &&
field->real_type() == MYSQL_TYPE_VARCHAR))
{
my_error(ER_CHAR_SET_IN_PART_FIELD_ERROR, MYF(0));
result= TRUE;
}
}
}
}
field_array[no_fields]= 0;
if (!sub_part)
{
part_info->part_field_array= field_array;
part_info->no_part_fields= no_fields;
}
else
{
part_info->subpart_field_array= field_array;
part_info->no_subpart_fields= no_fields;
}
DBUG_RETURN(result);
}
/*
Create a field array including all fields of both the partitioning and the
subpartitioning functions.
SYNOPSIS
create_full_part_field_array()
table TABLE object for which partition fields are set-up
part_info Reference to partitioning data structure
RETURN VALUE
TRUE Memory allocation of field array failed
FALSE Ok
DESCRIPTION
If there is no subpartitioning then the same array is used as for the
partitioning. Otherwise a new array is built up using the flag
FIELD_IN_PART_FUNC in the field object.
This function is called from fix_partition_func
*/
static bool create_full_part_field_array(TABLE *table,
partition_info *part_info)
{
bool result= FALSE;
DBUG_ENTER("create_full_part_field_array");
if (!is_sub_partitioned(part_info))
{
part_info->full_part_field_array= part_info->part_field_array;
part_info->no_full_part_fields= part_info->no_part_fields;
}
else
{
Field **ptr, *field, **field_array;
uint no_part_fields=0, size_field_array;
ptr= table->field;
while ((field= *(ptr++)))
{
if (field->flags & FIELD_IN_PART_FUNC_FLAG)
no_part_fields++;
}
size_field_array= (no_part_fields+1)*sizeof(Field*);
field_array= (Field**)sql_alloc(size_field_array);
if (unlikely(!field_array))
{
my_error(ER_OUTOFMEMORY, MYF(0), size_field_array);
result= TRUE;
goto end;
}
no_part_fields= 0;
ptr= table->field;
while ((field= *(ptr++)))
{
if (field->flags & FIELD_IN_PART_FUNC_FLAG)
field_array[no_part_fields++]= field;
}
field_array[no_part_fields]=0;
part_info->full_part_field_array= field_array;
part_info->no_full_part_fields= no_part_fields;
}
end:
DBUG_RETURN(result);
}
/*
These support routines is used to set/reset an indicator of all fields
in a certain key. It is used in conjunction with another support routine
that traverse all fields in the PF to find if all or some fields in the
PF is part of the key. This is used to check primary keys and unique
keys involve all fields in PF (unless supported) and to derive the
key_map's used to quickly decide whether the index can be used to
derive which partitions are needed to scan.
Clear flag GET_FIXED_FIELDS_FLAG in all fields of a key previously set by
set_indicator_in_key_fields (always used in pairs).
SYNOPSIS
clear_indicator_in_key_fields()
key_info Reference to find the key fields
*/
static void clear_indicator_in_key_fields(KEY *key_info)
{
KEY_PART_INFO *key_part;
uint key_parts= key_info->key_parts, i;
for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
key_part->field->flags&= (~GET_FIXED_FIELDS_FLAG);
}
/*
Set flag GET_FIXED_FIELDS_FLAG in all fields of a key.
SYNOPSIS
set_indicator_in_key_fields
key_info Reference to find the key fields
*/
static void set_indicator_in_key_fields(KEY *key_info)
{
KEY_PART_INFO *key_part;
uint key_parts= key_info->key_parts, i;
for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
}
/*
Check if all or some fields in partition field array is part of a key
previously used to tag key fields.
SYNOPSIS
check_fields_in_PF()
ptr Partition field array
all_fields Is all fields of partition field array used in key
some_fields Is some fields of partition field array used in key
RETURN VALUE
all_fields, some_fields
*/
static void check_fields_in_PF(Field **ptr, bool *all_fields,
bool *some_fields)
{
DBUG_ENTER("check_fields_in_PF");
*all_fields= TRUE;
*some_fields= FALSE;
do
{
/* Check if the field of the PF is part of the current key investigated */
if ((*ptr)->flags & GET_FIXED_FIELDS_FLAG)
*some_fields= TRUE;
else
*all_fields= FALSE;
} while (*(++ptr));
DBUG_VOID_RETURN;
}
/*
Clear flag GET_FIXED_FIELDS_FLAG in all fields of the table.
This routine is used for error handling purposes.
SYNOPSIS
clear_field_flag()
table TABLE object for which partition fields are set-up
*/
static void clear_field_flag(TABLE *table)
{
Field **ptr;
DBUG_ENTER("clear_field_flag");
for (ptr= table->field; *ptr; ptr++)
(*ptr)->flags&= (~GET_FIXED_FIELDS_FLAG);
DBUG_VOID_RETURN;
}
/*
This routine sets-up the partition field array for KEY partitioning, it
also verifies that all fields in the list of fields is actually a part of
the table.
SYNOPSIS
handle_list_of_fields()
it A list of field names for the partition function
table TABLE object for which partition fields are set-up
part_info Reference to partitioning data structure
sub_part Is the table subpartitioned as well
RETURN VALUE
TRUE Fields in list of fields not part of table
FALSE All fields ok and array created
DESCRIPTION
find_field_in_table_sef finds the field given its name. All fields get
GET_FIXED_FIELDS_FLAG set.
*/
static bool handle_list_of_fields(List_iterator<char> it,
TABLE *table,
partition_info *part_info,
bool sub_part)
{
Field *field;
bool result;
char *field_name;
DBUG_ENTER("handle_list_of_fields");
while ((field_name= it++))
{
field= find_field_in_table_sef(table, field_name);
if (likely(field != 0))
field->flags|= GET_FIXED_FIELDS_FLAG;
else
{
my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
clear_field_flag(table);
result= TRUE;
goto end;
}
}
result= set_up_field_array(table, sub_part);
end:
DBUG_RETURN(result);
}
/*
This function is used to build an array of partition fields for the
partitioning function and subpartitioning function. The partitioning
function is an item tree that must reference at least one field in the
table. This is checked first in the parser that the function doesn't
contain non-cacheable parts (like a random function) and by checking
here that the function isn't a constant function.
SYNOPSIS
fix_fields_part_func()
thd The thread object
tables A list of one table, the partitioned table
func_expr The item tree reference of the partition function
part_info Reference to partitioning data structure
sub_part Is the table subpartitioned as well
RETURN VALUE
TRUE An error occurred, something was wrong with the
partition function.
FALSE Ok, a partition field array was created
DESCRIPTION
The function uses a new feature in fix_fields where the flag
GET_FIXED_FIELDS_FLAG is set for all fields in the item tree.
This field must always be reset before returning from the function
since it is used for other purposes as well.
*/
static bool fix_fields_part_func(THD *thd, TABLE_LIST *tables,
Item* func_expr, partition_info *part_info,
bool sub_part)
{
/*
Calculate the number of fields in the partition function.
Use it allocate memory for array of Field pointers.
Initialise array of field pointers. Use information set when
calling fix_fields and reset it immediately after.
The get_fields_in_item_tree activates setting of bit in flags
on the field object.
*/
bool result= TRUE;
TABLE *table= tables->table;
TABLE_LIST *save_table_list, *save_first_table, *save_last_table;
int error;
Name_resolution_context *context;
DBUG_ENTER("fix_fields_part_func");
context= thd->lex->current_context();
table->map= 1; //To ensure correct calculation of const item
table->get_fields_in_item_tree= TRUE;
save_table_list= context->table_list;
save_first_table= context->first_name_resolution_table;
save_last_table= context->last_name_resolution_table;
context->table_list= tables;
context->first_name_resolution_table= tables;
context->last_name_resolution_table= NULL;
func_expr->walk(&Item::change_context_processor, (byte*) context);
thd->where= "partition function";
error= func_expr->fix_fields(thd, (Item**)0);
context->table_list= save_table_list;
context->first_name_resolution_table= save_first_table;
context->last_name_resolution_table= save_last_table;
if (unlikely(error))
{
DBUG_PRINT("info", ("Field in partition function not part of table"));
clear_field_flag(table);
goto end;
}
if (unlikely(func_expr->const_item()))
{
my_error(ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0));
clear_field_flag(table);
goto end;
}
result= set_up_field_array(table, sub_part);
end:
table->get_fields_in_item_tree= FALSE;
table->map= 0; //Restore old value
DBUG_RETURN(result);
}
/*
This function verifies that if there is a primary key that it contains
all the fields of the partition function.
This is a temporary limitation that will hopefully be removed after a
while.
SYNOPSIS
check_primary_key()
table TABLE object for which partition fields are set-up
RETURN VALUES
TRUE Not all fields in partitioning function was part
of primary key
FALSE Ok, all fields of partitioning function were part
of primary key
*/
static bool check_primary_key(TABLE *table)
{
uint primary_key= table->s->primary_key;
bool all_fields, some_fields, result= FALSE;
DBUG_ENTER("check_primary_key");
if (primary_key < MAX_KEY)
{
set_indicator_in_key_fields(table->key_info+primary_key);
check_fields_in_PF(table->part_info->full_part_field_array,
&all_fields, &some_fields);
clear_indicator_in_key_fields(table->key_info+primary_key);
if (unlikely(!all_fields))
{
my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"PRIMARY KEY");
result= TRUE;
}
}
DBUG_RETURN(result);
}
/*
This function verifies that if there is a unique index that it contains
all the fields of the partition function.
This is a temporary limitation that will hopefully be removed after a
while.
SYNOPSIS
check_unique_keys()
table TABLE object for which partition fields are set-up
RETURN VALUES
TRUE Not all fields in partitioning function was part
of all unique keys
FALSE Ok, all fields of partitioning function were part
of unique keys
*/
static bool check_unique_keys(TABLE *table)
{
bool all_fields, some_fields, result= FALSE;
uint keys= table->s->keys, i;
DBUG_ENTER("check_unique_keys");
for (i= 0; i < keys; i++)
{
if (table->key_info[i].flags & HA_NOSAME) //Unique index
{
set_indicator_in_key_fields(table->key_info+i);
check_fields_in_PF(table->part_info->full_part_field_array,
&all_fields, &some_fields);
clear_indicator_in_key_fields(table->key_info+i);
if (unlikely(!all_fields))
{
my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"UNIQUE INDEX");
result= TRUE;
break;
}
}
}
DBUG_RETURN(result);
}
/*
An important optimisation is whether a range on a field can select a subset
of the partitions.
A prerequisite for this to happen is that the PF is a growing function OR
a shrinking function.
This can never happen for a multi-dimensional PF. Thus this can only happen
with PF with at most one field involved in the PF.
The idea is that if the function is a growing function and you know that
the field of the PF is 4 <= A <= 6 then we can convert this to a range
in the PF instead by setting the range to PF(4) <= PF(A) <= PF(6). In the
case of RANGE PARTITIONING and LIST PARTITIONING this can be used to
calculate a set of partitions rather than scanning all of them.
Thus the following prerequisites are there to check if sets of partitions
can be found.
1) Only possible for RANGE and LIST partitioning (not for subpartitioning)
2) Only possible if PF only contains 1 field
3) Possible if PF is a growing function of the field
4) Possible if PF is a shrinking function of the field
OBSERVATION:
1) IF f1(A) is a growing function AND f2(A) is a growing function THEN
f1(A) + f2(A) is a growing function
f1(A) * f2(A) is a growing function if f1(A) >= 0 and f2(A) >= 0
2) IF f1(A) is a growing function and f2(A) is a shrinking function THEN
f1(A) / f2(A) is a growing function if f1(A) >= 0 and f2(A) > 0
3) IF A is a growing function then a function f(A) that removes the
least significant portion of A is a growing function
E.g. DATE(datetime) is a growing function
MONTH(datetime) is not a growing/shrinking function
4) IF f1(A) is a growing function and f2(A) is a growing function THEN
f1(f2(A)) and f2(f1(A)) are also growing functions
5) IF f1(A) is a shrinking function and f2(A) is a growing function THEN
f1(f2(A)) is a shrinking function and f2(f1(A)) is a shrinking function
6) f1(A) = A is a growing function
7) f1(A) = A*a + b (where a and b are constants) is a growing function
By analysing the item tree of the PF we can use these deducements and
derive whether the PF is a growing function or a shrinking function or
neither of it.
If the PF is range capable then a flag is set on the table object
indicating this to notify that we can use also ranges on the field
of the PF to deduce a set of partitions if the fields of the PF were
not all fully bound.
SYNOPSIS
check_range_capable_PF()
table TABLE object for which partition fields are set-up
DESCRIPTION
Support for this is not implemented yet.
*/
void check_range_capable_PF(TABLE *table)
{
DBUG_ENTER("check_range_capable_PF");
DBUG_VOID_RETURN;
}
/*
Set up partition key maps
SYNOPSIS
set_up_partition_key_maps()
table TABLE object for which partition fields are set-up
part_info Reference to partitioning data structure
RETURN VALUES
None
DESCRIPTION
This function sets up a couple of key maps to be able to quickly check
if an index ever can be used to deduce the partition fields or even
a part of the fields of the partition function.
We set up the following key_map's.
PF = Partition Function
1) All fields of the PF is set even by equal on the first fields in the
key
2) All fields of the PF is set if all fields of the key is set
3) At least one field in the PF is set if all fields is set
4) At least one field in the PF is part of the key
*/
static void set_up_partition_key_maps(TABLE *table,
partition_info *part_info)
{
uint keys= table->s->keys, i;
bool all_fields, some_fields;
DBUG_ENTER("set_up_partition_key_maps");
part_info->all_fields_in_PF.clear_all();
part_info->all_fields_in_PPF.clear_all();
part_info->all_fields_in_SPF.clear_all();
part_info->some_fields_in_PF.clear_all();
for (i= 0; i < keys; i++)
{
set_indicator_in_key_fields(table->key_info+i);
check_fields_in_PF(part_info->full_part_field_array,
&all_fields, &some_fields);
if (all_fields)
part_info->all_fields_in_PF.set_bit(i);
if (some_fields)
part_info->some_fields_in_PF.set_bit(i);
if (is_sub_partitioned(part_info))
{
check_fields_in_PF(part_info->part_field_array,
&all_fields, &some_fields);
if (all_fields)
part_info->all_fields_in_PPF.set_bit(i);
check_fields_in_PF(part_info->subpart_field_array,
&all_fields, &some_fields);
if (all_fields)
part_info->all_fields_in_SPF.set_bit(i);
}
clear_indicator_in_key_fields(table->key_info+i);
}
DBUG_VOID_RETURN;
}
/*
Set-up all function pointers for calculation of partition id,
subpartition id and the upper part in subpartitioning. This is to speed up
execution of get_partition_id which is executed once every record to be
written and deleted and twice for updates.
SYNOPSIS
set_up_partition_function_pointers()
part_info Reference to partitioning data structure
*/
static void set_up_partition_func_pointers(partition_info *part_info)
{
if (is_sub_partitioned(part_info))
{
if (part_info->part_type == RANGE_PARTITION)
{
part_info->get_part_partition_id= get_partition_id_range;
if (part_info->list_of_subpart_fields)
{
if (part_info->linear_hash_ind)
{
part_info->get_partition_id= get_partition_id_range_sub_linear_key;
part_info->get_subpartition_id= get_partition_id_linear_key_sub;
}
else
{
part_info->get_partition_id= get_partition_id_range_sub_key;
part_info->get_subpartition_id= get_partition_id_key_sub;
}
}
else
{
if (part_info->linear_hash_ind)
{
part_info->get_partition_id= get_partition_id_range_sub_linear_hash;
part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
}
else
{
part_info->get_partition_id= get_partition_id_range_sub_hash;
part_info->get_subpartition_id= get_partition_id_hash_sub;
}
}
}
else //LIST Partitioning
{
part_info->get_part_partition_id= get_partition_id_list;
if (part_info->list_of_subpart_fields)
{
if (part_info->linear_hash_ind)
{
part_info->get_partition_id= get_partition_id_list_sub_linear_key;
part_info->get_subpartition_id= get_partition_id_linear_key_sub;
}
else
{
part_info->get_partition_id= get_partition_id_list_sub_key;
part_info->get_subpartition_id= get_partition_id_key_sub;
}
}
else
{
if (part_info->linear_hash_ind)
{
part_info->get_partition_id= get_partition_id_list_sub_linear_hash;
part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
}
else
{
part_info->get_partition_id= get_partition_id_list_sub_hash;
part_info->get_subpartition_id= get_partition_id_hash_sub;
}
}
}
}
else //No subpartitioning
{
part_info->get_part_partition_id= NULL;
part_info->get_subpartition_id= NULL;
if (part_info->part_type == RANGE_PARTITION)
part_info->get_partition_id= get_partition_id_range;
else if (part_info->part_type == LIST_PARTITION)
part_info->get_partition_id= get_partition_id_list;
else //HASH partitioning
{
if (part_info->list_of_part_fields)
{
if (part_info->linear_hash_ind)
part_info->get_partition_id= get_partition_id_linear_key_nosub;
else
part_info->get_partition_id= get_partition_id_key_nosub;
}
else
{
if (part_info->linear_hash_ind)
part_info->get_partition_id= get_partition_id_linear_hash_nosub;
else
part_info->get_partition_id= get_partition_id_hash_nosub;
}
}
}
}
/*
For linear hashing we need a mask which is on the form 2**n - 1 where
2**n >= no_parts. Thus if no_parts is 6 then mask is 2**3 - 1 = 8 - 1 = 7.
SYNOPSIS
set_linear_hash_mask()
part_info Reference to partitioning data structure
no_parts Number of parts in linear hash partitioning
*/
static void set_linear_hash_mask(partition_info *part_info, uint no_parts)
{
uint mask;
for (mask= 1; mask < no_parts; mask<<=1)
;
part_info->linear_hash_mask= mask - 1;
}
/*
This function calculates the partition id provided the result of the hash
function using linear hashing parameters, mask and number of partitions.
SYNOPSIS
get_part_id_from_linear_hash()
hash_value Hash value calculated by HASH function or KEY function
mask Mask calculated previously by set_linear_hash_mask
no_parts Number of partitions in HASH partitioned part
RETURN VALUE
part_id The calculated partition identity (starting at 0)
DESCRIPTION
The partition is calculated according to the theory of linear hashing.
See e.g. Linear hashing: a new tool for file and table addressing,
Reprinted from VLDB-80 in Readings Database Systems, 2nd ed, M. Stonebraker
(ed.), Morgan Kaufmann 1994.
*/
static uint32 get_part_id_from_linear_hash(longlong hash_value, uint mask,
uint no_parts)
{
uint32 part_id= (uint32)(hash_value & mask);
if (part_id >= no_parts)
{
uint new_mask= ((mask + 1) >> 1) - 1;
part_id= hash_value & new_mask;
}
return part_id;
}
/*
fix partition functions
SYNOPSIS
fix_partition_func()
thd The thread object
name The name of the partitioned table
table TABLE object for which partition fields are set-up
RETURN VALUE
TRUE
FALSE
DESCRIPTION
The name parameter contains the full table name and is used to get the
database name of the table which is used to set-up a correct
TABLE_LIST object for use in fix_fields.
NOTES
This function is called as part of opening the table by opening the .frm
file. It is a part of CREATE TABLE to do this so it is quite permissible
that errors due to erroneus syntax isn't found until we come here.
If the user has used a non-existing field in the table is one such example
of an error that is not discovered until here.
*/
bool fix_partition_func(THD *thd, const char *name, TABLE *table)
{
bool result= TRUE;
uint dir_length, home_dir_length;
TABLE_LIST tables;
TABLE_SHARE *share= table->s;
char db_name_string[FN_REFLEN];
char* db_name;
partition_info *part_info= table->part_info;
ulong save_set_query_id= thd->set_query_id;
DBUG_ENTER("fix_partition_func");
thd->set_query_id= 0;
/*
Set-up the TABLE_LIST object to be a list with a single table
Set the object to zero to create NULL pointers and set alias
and real name to table name and get database name from file name.
*/
bzero((void*)&tables, sizeof(TABLE_LIST));
tables.alias= tables.table_name= (char*) share->table_name.str;
tables.table= table;
tables.next_local= 0;
tables.next_name_resolution_table= 0;
strmov(db_name_string, name);
dir_length= dirname_length(db_name_string);
db_name_string[dir_length - 1]= 0;
home_dir_length= dirname_length(db_name_string);
db_name= &db_name_string[home_dir_length];
tables.db= db_name;
if (is_sub_partitioned(part_info))
{
DBUG_ASSERT(part_info->subpart_type == HASH_PARTITION);
/*
Subpartition is defined. We need to verify that subpartitioning
function is correct.
*/
if (part_info->linear_hash_ind)
set_linear_hash_mask(part_info, part_info->no_subparts);
if (part_info->list_of_subpart_fields)
{
List_iterator<char> it(part_info->subpart_field_list);
if (unlikely(handle_list_of_fields(it, table, part_info, TRUE)))
goto end;
}
else
{
if (unlikely(fix_fields_part_func(thd, &tables,
part_info->subpart_expr, part_info,
TRUE)))
goto end;
if (unlikely(part_info->subpart_expr->result_type() != INT_RESULT))
{
my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0),
"SUBPARTITION");
goto end;
}
}
}
DBUG_ASSERT(part_info->part_type != NOT_A_PARTITION);
/*
Partition is defined. We need to verify that partitioning
function is correct.
*/
if (part_info->part_type == HASH_PARTITION)
{
if (part_info->linear_hash_ind)
set_linear_hash_mask(part_info, part_info->no_parts);
if (part_info->list_of_part_fields)
{
List_iterator<char> it(part_info->part_field_list);
if (unlikely(handle_list_of_fields(it, table, part_info, FALSE)))
goto end;
}
else
{
if (unlikely(fix_fields_part_func(thd, &tables, part_info->part_expr,
part_info, FALSE)))
goto end;
if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
{
my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
goto end;
}
part_info->part_result_type= INT_RESULT;
}
}
else
{
const char *error_str;
if (part_info->part_type == RANGE_PARTITION)
{
error_str= partition_keywords[PKW_RANGE].str;
if (unlikely(check_range_constants(part_info)))
goto end;
}
else if (part_info->part_type == LIST_PARTITION)
{
error_str= partition_keywords[PKW_LIST].str;
if (unlikely(check_list_constants(part_info)))
goto end;
}
else
{
DBUG_ASSERT(0);
my_error(ER_INCONSISTENT_PARTITION_INFO_ERROR, MYF(0));
goto end;
}
if (unlikely(part_info->no_parts < 1))
{
my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_str);
goto end;
}
if (unlikely(fix_fields_part_func(thd, &tables, part_info->part_expr,
part_info, FALSE)))
goto end;
if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
{
my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
goto end;
}
}
if (unlikely(create_full_part_field_array(table, part_info)))
goto end;
if (unlikely(check_primary_key(table)))
goto end;
if (unlikely((!table->file->partition_flags() & HA_CAN_PARTITION_UNIQUE) &&
check_unique_keys(table)))
goto end;
check_range_capable_PF(table);
set_up_partition_key_maps(table, part_info);
set_up_partition_func_pointers(part_info);
result= FALSE;
end:
thd->set_query_id= save_set_query_id;
DBUG_RETURN(result);
}
/*
The code below is support routines for the reverse parsing of the
partitioning syntax. This feature is very useful to generate syntax for
all default values to avoid all default checking when opening the frm
file. It is also used when altering the partitioning by use of various
ALTER TABLE commands. Finally it is used for SHOW CREATE TABLES.
*/
static int add_write(File fptr, const char *buf, uint len)
{
uint len_written= my_write(fptr, (const byte*)buf, len, MYF(0));
if (likely(len == len_written))
return 0;
else
return 1;
}
static int add_string(File fptr, const char *string)
{
return add_write(fptr, string, strlen(string));
}
static int add_string_len(File fptr, const char *string, uint len)
{
return add_write(fptr, string, len);
}
static int add_space(File fptr)
{
return add_string(fptr, space_str);
}
static int add_comma(File fptr)
{
return add_string(fptr, comma_str);
}
static int add_equal(File fptr)
{
return add_string(fptr, equal_str);
}
static int add_end_parenthesis(File fptr)
{
return add_string(fptr, end_paren_str);
}
static int add_begin_parenthesis(File fptr)
{
return add_string(fptr, begin_paren_str);
}
static int add_part_key_word(File fptr, const char *key_string)
{
int err= add_string(fptr, key_string);
err+= add_space(fptr);
return err + add_begin_parenthesis(fptr);
}
static int add_hash(File fptr)
{
return add_part_key_word(fptr, partition_keywords[PKW_HASH].str);
}
static int add_partition(File fptr)
{
strxmov(buff, part_str, space_str, NullS);
return add_string(fptr, buff);
}
static int add_subpartition(File fptr)
{
int err= add_string(fptr, sub_str);
return err + add_partition(fptr);
}
static int add_partition_by(File fptr)
{
strxmov(buff, part_str, space_str, by_str, space_str, NullS);
return add_string(fptr, buff);
}
static int add_subpartition_by(File fptr)
{
int err= add_string(fptr, sub_str);
return err + add_partition_by(fptr);
}
static int add_key_partition(File fptr, List<char> field_list)
{
uint i, no_fields;
int err;
List_iterator<char> part_it(field_list);
err= add_part_key_word(fptr, partition_keywords[PKW_KEY].str);
no_fields= field_list.elements;
i= 0;
do
{
const char *field_str= part_it++;
err+= add_string(fptr, field_str);
if (i != (no_fields-1))
err+= add_comma(fptr);
} while (++i < no_fields);
return err;
}
static int add_int(File fptr, longlong number)
{
llstr(number, buff);
return add_string(fptr, buff);
}
static int add_keyword_string(File fptr, const char *keyword,
const char *keystr)
{
int err= add_string(fptr, keyword);
err+= add_space(fptr);
err+= add_equal(fptr);
err+= add_space(fptr);
err+= add_string(fptr, keystr);
return err + add_space(fptr);
}
static int add_keyword_int(File fptr, const char *keyword, longlong num)
{
int err= add_string(fptr, keyword);
err+= add_space(fptr);
err+= add_equal(fptr);
err+= add_space(fptr);
err+= add_int(fptr, num);
return err + add_space(fptr);
}
static int add_engine(File fptr, handlerton *engine_type)
{
const char *engine_str= engine_type->name;
int err= add_string(fptr, "ENGINE = ");
return err + add_string(fptr, engine_str);
return err;
}
static int add_partition_options(File fptr, partition_element *p_elem)
{
int err= 0;
if (p_elem->tablespace_name)
err+= add_keyword_string(fptr,"TABLESPACE",p_elem->tablespace_name);
if (p_elem->nodegroup_id != UNDEF_NODEGROUP)
err+= add_keyword_int(fptr,"NODEGROUP",(longlong)p_elem->nodegroup_id);
if (p_elem->part_max_rows)
err+= add_keyword_int(fptr,"MAX_ROWS",(longlong)p_elem->part_max_rows);
if (p_elem->part_min_rows)
err+= add_keyword_int(fptr,"MIN_ROWS",(longlong)p_elem->part_min_rows);
if (p_elem->data_file_name)
err+= add_keyword_string(fptr,"DATA DIRECTORY",p_elem->data_file_name);
if (p_elem->index_file_name)
err+= add_keyword_string(fptr,"INDEX DIRECTORY",p_elem->index_file_name);
if (p_elem->part_comment)
err+= add_keyword_string(fptr, "COMMENT",p_elem->part_comment);
return err + add_engine(fptr,p_elem->engine_type);
}
static int add_partition_values(File fptr, partition_info *part_info,
partition_element *p_elem)
{
int err= 0;
if (part_info->part_type == RANGE_PARTITION)
{
err+= add_string(fptr, "VALUES LESS THAN ");
if (p_elem->range_value != LONGLONG_MAX)
{
err+= add_begin_parenthesis(fptr);
err+= add_int(fptr, p_elem->range_value);
err+= add_end_parenthesis(fptr);
}
else
err+= add_string(fptr, partition_keywords[PKW_MAXVALUE].str);
}
else if (part_info->part_type == LIST_PARTITION)
{
uint i;
List_iterator<longlong> list_val_it(p_elem->list_val_list);
err+= add_string(fptr, "VALUES IN ");
uint no_items= p_elem->list_val_list.elements;
err+= add_begin_parenthesis(fptr);
i= 0;
do
{
longlong *list_value= list_val_it++;
err+= add_int(fptr, *list_value);
if (i != (no_items-1))
err+= add_comma(fptr);
} while (++i < no_items);
err+= add_end_parenthesis(fptr);
}
return err + add_space(fptr);
}
/*
Generate the partition syntax from the partition data structure.
Useful for support of generating defaults, SHOW CREATE TABLES
and easy partition management.
SYNOPSIS
generate_partition_syntax()
part_info The partitioning data structure
buf_length A pointer to the returned buffer length
use_sql_alloc Allocate buffer from sql_alloc if true
otherwise use my_malloc
add_default_info Add info generated by default
RETURN VALUES
NULL error
buf, buf_length Buffer and its length
DESCRIPTION
Here we will generate the full syntax for the given command where all
defaults have been expanded. By so doing the it is also possible to
make lots of checks of correctness while at it.
This could will also be reused for SHOW CREATE TABLES and also for all
type ALTER TABLE commands focusing on changing the PARTITION structure
in any fashion.
The implementation writes the syntax to a temporary file (essentially
an abstraction of a dynamic array) and if all writes goes well it
allocates a buffer and writes the syntax into this one and returns it.
As a security precaution the file is deleted before writing into it. This
means that no other processes on the machine can open and read the file
while this processing is ongoing.
The code is optimised for minimal code size since it is not used in any
common queries.
*/
char *generate_partition_syntax(partition_info *part_info,
uint *buf_length,
bool use_sql_alloc,
bool add_default_info)
{
uint i,j, no_parts, no_subparts;
partition_element *part_elem;
ulonglong buffer_length;
char path[FN_REFLEN];
int err= 0;
DBUG_ENTER("generate_partition_syntax");
File fptr;
char *buf= NULL; //Return buffer
const char *file_name;
sprintf(path, "%s_%lx_%lx", "part_syntax", current_pid,
current_thd->thread_id);
fn_format(path,path,mysql_tmpdir,".psy", MY_REPLACE_EXT);
file_name= &path[0];
DBUG_PRINT("info", ("File name = %s", file_name));
if (unlikely(((fptr= my_open(file_name,O_CREAT|O_RDWR, MYF(MY_WME))) == -1)))
DBUG_RETURN(NULL);
#if defined(MSDOS) || defined(__WIN__) || defined(__EMX__) || defined(OS2)
#else
my_delete(file_name, MYF(0));
#endif
err+= add_space(fptr);
err+= add_partition_by(fptr);
switch (part_info->part_type)
{
case RANGE_PARTITION:
add_default_info= TRUE;
err+= add_part_key_word(fptr, partition_keywords[PKW_RANGE].str);
break;
case LIST_PARTITION:
add_default_info= TRUE;
err+= add_part_key_word(fptr, partition_keywords[PKW_LIST].str);
break;
case HASH_PARTITION:
if (part_info->linear_hash_ind)
err+= add_string(fptr, partition_keywords[PKW_LINEAR].str);
if (part_info->list_of_part_fields)
err+= add_key_partition(fptr, part_info->part_field_list);
else
err+= add_hash(fptr);
break;
default:
DBUG_ASSERT(0);
/* We really shouldn't get here, no use in continuing from here */
current_thd->fatal_error();
DBUG_RETURN(NULL);
}
if (part_info->part_expr)
err+= add_string_len(fptr, part_info->part_func_string,
part_info->part_func_len);
err+= add_end_parenthesis(fptr);
err+= add_space(fptr);
if (is_sub_partitioned(part_info))
{
err+= add_subpartition_by(fptr);
/* Must be hash partitioning for subpartitioning */
if (part_info->list_of_subpart_fields)
err+= add_key_partition(fptr, part_info->subpart_field_list);
else
err+= add_hash(fptr);
if (part_info->subpart_expr)
err+= add_string_len(fptr, part_info->subpart_func_string,
part_info->subpart_func_len);
err+= add_end_parenthesis(fptr);
err+= add_space(fptr);
}
if (add_default_info)
{
err+= add_begin_parenthesis(fptr);
List_iterator<partition_element> part_it(part_info->partitions);
no_parts= part_info->no_parts;
no_subparts= part_info->no_subparts;
i= 0;
do
{
part_elem= part_it++;
err+= add_partition(fptr);
err+= add_string(fptr, part_elem->partition_name);
err+= add_space(fptr);
err+= add_partition_values(fptr, part_info, part_elem);
if (!is_sub_partitioned(part_info))
err+= add_partition_options(fptr, part_elem);
if (is_sub_partitioned(part_info))
{
err+= add_space(fptr);
err+= add_begin_parenthesis(fptr);
List_iterator<partition_element> sub_it(part_elem->subpartitions);
j= 0;
do
{
part_elem= sub_it++;
err+= add_subpartition(fptr);
err+= add_string(fptr, part_elem->partition_name);
err+= add_space(fptr);
err+= add_partition_options(fptr, part_elem);
if (j != (no_subparts-1))
{
err+= add_comma(fptr);
err+= add_space(fptr);
}
else
err+= add_end_parenthesis(fptr);
} while (++j < no_subparts);
}
if (i != (no_parts-1))
{
err+= add_comma(fptr);
err+= add_space(fptr);
}
else
err+= add_end_parenthesis(fptr);
} while (++i < no_parts);
}
if (err)
goto close_file;
buffer_length= my_seek(fptr, 0L,MY_SEEK_END,MYF(0));
if (unlikely(buffer_length == MY_FILEPOS_ERROR))
goto close_file;
if (unlikely(my_seek(fptr, 0L, MY_SEEK_SET, MYF(0)) == MY_FILEPOS_ERROR))
goto close_file;
*buf_length= (uint)buffer_length;
if (use_sql_alloc)
buf= sql_alloc(*buf_length+1);
else
buf= my_malloc(*buf_length+1, MYF(MY_WME));
if (!buf)
goto close_file;
if (unlikely(my_read(fptr, (byte*)buf, *buf_length, MYF(MY_FNABP))))
{
if (!use_sql_alloc)
my_free(buf, MYF(0));
else
buf= NULL;
}
else
buf[*buf_length]= 0;
close_file:
/*
Delete the file before closing to ensure the file doesn't get synched
to disk unnecessary. We only used the file system as a dynamic array
implementation so we are not really interested in getting the file
present on disk.
This is not possible on Windows so here it has to be done after closing
the file. Also on Unix we delete immediately after opening to ensure no
other process can read the information written into the file.
*/
my_close(fptr, MYF(0));
#if defined(MSDOS) || defined(__WIN__) || defined(__EMX__) || defined(OS2)
my_delete(file_name, MYF(0));
#endif
DBUG_RETURN(buf);
}
/*
Check if partition key fields are modified and if it can be handled by the
underlying storage engine.
SYNOPSIS
partition_key_modified
table TABLE object for which partition fields are set-up
fields A list of the to be modifed
RETURN VALUES
TRUE Need special handling of UPDATE
FALSE Normal UPDATE handling is ok
*/
bool partition_key_modified(TABLE *table, List<Item> &fields)
{
List_iterator_fast<Item> f(fields);
partition_info *part_info= table->part_info;
Item_field *item_field;
DBUG_ENTER("partition_key_modified");
if (!part_info)
DBUG_RETURN(FALSE);
if (table->file->partition_flags() & HA_CAN_UPDATE_PARTITION_KEY)
DBUG_RETURN(FALSE);
f.rewind();
while ((item_field=(Item_field*) f++))
if (item_field->field->flags & FIELD_IN_PART_FUNC_FLAG)
DBUG_RETURN(TRUE);
DBUG_RETURN(FALSE);
}
/*
The next set of functions are used to calculate the partition identity.
A handler sets up a variable that corresponds to one of these functions
to be able to quickly call it whenever the partition id needs to calculated
based on the record in table->record[0] (or set up to fake that).
There are 4 functions for hash partitioning and 2 for RANGE/LIST partitions.
In addition there are 4 variants for RANGE subpartitioning and 4 variants
for LIST subpartitioning thus in total there are 14 variants of this
function.
We have a set of support functions for these 14 variants. There are 4
variants of hash functions and there is a function for each. The KEY
partitioning uses the function calculate_key_value to calculate the hash
value based on an array of fields. The linear hash variants uses the
method get_part_id_from_linear_hash to get the partition id using the
hash value and some parameters calculated from the number of partitions.
*/
/*
Calculate hash value for KEY partitioning using an array of fields.
SYNOPSIS
calculate_key_value()
field_array An array of the fields in KEY partitioning
RETURN VALUE
hash_value calculated
DESCRIPTION
Uses the hash function on the character set of the field. Integer and
floating point fields use the binary character set by default.
*/
static uint32 calculate_key_value(Field **field_array)
{
uint32 hashnr= 0;
ulong nr2= 4;
do
{
Field *field= *field_array;
if (field->is_null())
{
hashnr^= (hashnr << 1) | 1;
}
else
{
uint len= field->pack_length();
ulong nr1= 1;
CHARSET_INFO *cs= field->charset();
cs->coll->hash_sort(cs, (uchar*)field->ptr, len, &nr1, &nr2);
hashnr^= (uint32)nr1;
}
} while (*(++field_array));
return hashnr;
}
/*
A simple support function to calculate part_id given local part and
sub part.
SYNOPSIS
get_part_id_for_sub()
loc_part_id Local partition id
sub_part_id Subpartition id
no_subparts Number of subparts
*/
inline
static uint32 get_part_id_for_sub(uint32 loc_part_id, uint32 sub_part_id,
uint no_subparts)
{
return (uint32)((loc_part_id * no_subparts) + sub_part_id);
}
/*
Calculate part_id for (SUB)PARTITION BY HASH
SYNOPSIS
get_part_id_hash()
no_parts Number of hash partitions
part_expr Item tree of hash function
RETURN VALUE
Calculated partition id
*/
inline
static uint32 get_part_id_hash(uint no_parts,
Item *part_expr)
{
DBUG_ENTER("get_part_id_hash");
DBUG_RETURN((uint32)(part_expr->val_int() % no_parts));
}
/*
Calculate part_id for (SUB)PARTITION BY LINEAR HASH
SYNOPSIS
get_part_id_linear_hash()
part_info A reference to the partition_info struct where all the
desired information is given
no_parts Number of hash partitions
part_expr Item tree of hash function
RETURN VALUE
Calculated partition id
*/
inline
static uint32 get_part_id_linear_hash(partition_info *part_info,
uint no_parts,
Item *part_expr)
{
DBUG_ENTER("get_part_id_linear_hash");
DBUG_RETURN(get_part_id_from_linear_hash(part_expr->val_int(),
part_info->linear_hash_mask,
no_parts));
}
/*
Calculate part_id for (SUB)PARTITION BY KEY
SYNOPSIS
get_part_id_key()
field_array Array of fields for PARTTION KEY
no_parts Number of KEY partitions
RETURN VALUE
Calculated partition id
*/
inline
static uint32 get_part_id_key(Field **field_array,
uint no_parts)
{
DBUG_ENTER("get_part_id_key");
DBUG_RETURN(calculate_key_value(field_array) % no_parts);
}
/*
Calculate part_id for (SUB)PARTITION BY LINEAR KEY
SYNOPSIS
get_part_id_linear_key()
part_info A reference to the partition_info struct where all the
desired information is given
field_array Array of fields for PARTTION KEY
no_parts Number of KEY partitions
RETURN VALUE
Calculated partition id
*/
inline
static uint32 get_part_id_linear_key(partition_info *part_info,
Field **field_array,
uint no_parts)
{
DBUG_ENTER("get_partition_id_linear_key");
DBUG_RETURN(get_part_id_from_linear_hash(calculate_key_value(field_array),
part_info->linear_hash_mask,
no_parts));
}
/*
This function is used to calculate the partition id where all partition
fields have been prepared to point to a record where the partition field
values are bound.
SYNOPSIS
get_partition_id()
part_info A reference to the partition_info struct where all the
desired information is given
part_id The partition id is returned through this pointer
RETURN VALUE
part_id
return TRUE means that the fields of the partition function didn't fit
into any partition and thus the values of the PF-fields are not allowed.
DESCRIPTION
A routine used from write_row, update_row and delete_row from any
handler supporting partitioning. It is also a support routine for
get_partition_set used to find the set of partitions needed to scan
for a certain index scan or full table scan.
It is actually 14 different variants of this function which are called
through a function pointer.
get_partition_id_list
get_partition_id_range
get_partition_id_hash_nosub
get_partition_id_key_nosub
get_partition_id_linear_hash_nosub
get_partition_id_linear_key_nosub
get_partition_id_range_sub_hash
get_partition_id_range_sub_key
get_partition_id_range_sub_linear_hash
get_partition_id_range_sub_linear_key
get_partition_id_list_sub_hash
get_partition_id_list_sub_key
get_partition_id_list_sub_linear_hash
get_partition_id_list_sub_linear_key
*/
/*
This function is used to calculate the main partition to use in the case of
subpartitioning and we don't know enough to get the partition identity in
total.
SYNOPSIS
get_part_partition_id()
part_info A reference to the partition_info struct where all the
desired information is given
part_id The partition id is returned through this pointer
RETURN VALUE
part_id
return TRUE means that the fields of the partition function didn't fit
into any partition and thus the values of the PF-fields are not allowed.
DESCRIPTION
It is actually 6 different variants of this function which are called
through a function pointer.
get_partition_id_list
get_partition_id_range
get_partition_id_hash_nosub
get_partition_id_key_nosub
get_partition_id_linear_hash_nosub
get_partition_id_linear_key_nosub
*/
bool get_partition_id_list(partition_info *part_info,
uint32 *part_id)
{
DBUG_ENTER("get_partition_id_list");
LIST_PART_ENTRY *list_array= part_info->list_array;
uint list_index;
longlong list_value;
uint min_list_index= 0, max_list_index= part_info->no_list_values - 1;
longlong part_func_value= part_info->part_expr->val_int();
while (max_list_index >= min_list_index)
{
list_index= (max_list_index + min_list_index) >> 1;
list_value= list_array[list_index].list_value;
if (list_value < part_func_value)
min_list_index= list_index + 1;
else if (list_value > part_func_value)
{
if (!list_index)
goto notfound;
max_list_index= list_index - 1;
}
else
{
*part_id= (uint32)list_array[list_index].partition_id;
DBUG_RETURN(FALSE);
}
}
notfound:
*part_id= 0;
DBUG_RETURN(TRUE);
}
/*
Find the sub-array part_info->list_array that corresponds to given interval
SYNOPSIS
get_list_array_idx_for_endpoint()
part_info Partitioning info (partitioning type must be LIST)
left_endpoint TRUE - the interval is [a; +inf) or (a; +inf)
FALSE - the interval is (-inf; a] or (-inf; a)
include_endpoint TRUE iff the interval includes the endpoint
DESCRIPTION
This function finds the sub-array of part_info->list_array where values of
list_array[idx].list_value are contained within the specifed interval.
list_array is ordered by list_value, so
1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the
sought sub-array starts at some index idx and continues till array end.
The function returns first number idx, such that
list_array[idx].list_value is contained within the passed interval.
2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the
sought sub-array starts at array start and continues till some last
index idx.
The function returns first number idx, such that
list_array[idx].list_value is NOT contained within the passed interval.
If all array elements are contained, part_info->no_list_values is
returned.
NOTE
The caller will call this function and then will run along the sub-array of
list_array to collect partition ids. If the number of list values is
significantly higher then number of partitions, this could be slow and
we could invent some other approach. The "run over list array" part is
already wrapped in a get_next()-like function.
RETURN
The edge of corresponding sub-array of part_info->list_array
*/
uint32 get_list_array_idx_for_endpoint(partition_info *part_info,
bool left_endpoint,
bool include_endpoint)
{
DBUG_ENTER("get_list_array_idx_for_endpoint");
LIST_PART_ENTRY *list_array= part_info->list_array;
uint list_index;
longlong list_value;
uint min_list_index= 0, max_list_index= part_info->no_list_values - 1;
/* Get the partitioning function value for the endpoint */
longlong part_func_value= part_info->part_expr->val_int();
while (max_list_index >= min_list_index)
{
list_index= (max_list_index + min_list_index) >> 1;
list_value= list_array[list_index].list_value;
if (list_value < part_func_value)
min_list_index= list_index + 1;
else if (list_value > part_func_value)
{
if (!list_index)
goto notfound;
max_list_index= list_index - 1;
}
else
{
DBUG_RETURN(list_index + test(left_endpoint ^ include_endpoint));
}
}
notfound:
if (list_value < part_func_value)
list_index++;
DBUG_RETURN(list_index);
}
bool get_partition_id_range(partition_info *part_info,
uint32 *part_id)
{
DBUG_ENTER("get_partition_id_int_range");
longlong *range_array= part_info->range_int_array;
uint max_partition= part_info->no_parts - 1;
uint min_part_id= 0, max_part_id= max_partition, loc_part_id;
longlong part_func_value= part_info->part_expr->val_int();
while (max_part_id > min_part_id)
{
loc_part_id= (max_part_id + min_part_id + 1) >> 1;
if (range_array[loc_part_id] < part_func_value)
min_part_id= loc_part_id + 1;
else
max_part_id= loc_part_id - 1;
}
loc_part_id= max_part_id;
if (part_func_value >= range_array[loc_part_id])
if (loc_part_id != max_partition)
loc_part_id++;
*part_id= (uint32)loc_part_id;
if (loc_part_id == max_partition)
if (range_array[loc_part_id] != LONGLONG_MAX)
if (part_func_value >= range_array[loc_part_id])
DBUG_RETURN(TRUE);
DBUG_RETURN(FALSE);
}
/*
Find the sub-array of part_info->range_int_array that covers given interval
SYNOPSIS
get_partition_id_range_for_endpoint()
part_info Partitioning info (partitioning type must be RANGE)
left_endpoint TRUE - the interval is [a; +inf) or (a; +inf)
FALSE - the interval is (-inf; a] or (-inf; a).
include_endpoint TRUE <=> the endpoint itself is included in the
interval
DESCRIPTION
This function finds the sub-array of part_info->range_int_array where the
elements have non-empty intersections with the given interval.
A range_int_array element at index idx represents the interval
[range_int_array[idx-1], range_int_array[idx]),
intervals are disjoint and ordered by their right bound, so
1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the
sought sub-array starts at some index idx and continues till array end.
The function returns first number idx, such that the interval
represented by range_int_array[idx] has non empty intersection with
the passed interval.
2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the
sought sub-array starts at array start and continues till some last
index idx.
The function returns first number idx, such that the interval
represented by range_int_array[idx] has EMPTY intersection with the
passed interval.
If the interval represented by the last array element has non-empty
intersection with the passed interval, part_info->no_parts is
returned.
RETURN
The edge of corresponding part_info->range_int_array sub-array.
*/
uint32 get_partition_id_range_for_endpoint(partition_info *part_info,
bool left_endpoint,
bool include_endpoint)
{
DBUG_ENTER("get_partition_id_range_for_endpoint");
longlong *range_array= part_info->range_int_array;
uint max_partition= part_info->no_parts - 1;
uint min_part_id= 0, max_part_id= max_partition, loc_part_id;
/* Get the partitioning function value for the endpoint */
longlong part_func_value= part_info->part_expr->val_int();
while (max_part_id > min_part_id)
{
loc_part_id= (max_part_id + min_part_id + 1) >> 1;
if (range_array[loc_part_id] < part_func_value)
min_part_id= loc_part_id + 1;
else
max_part_id= loc_part_id - 1;
}
loc_part_id= max_part_id;
if (loc_part_id < max_partition &&
part_func_value >= range_array[loc_part_id+1])
{
loc_part_id++;
}
if (left_endpoint)
{
if (part_func_value >= range_array[loc_part_id])
loc_part_id++;
}
else
{
if (part_func_value == range_array[loc_part_id])
loc_part_id += test(include_endpoint);
else if (part_func_value > range_array[loc_part_id])
loc_part_id++;
loc_part_id++;
}
DBUG_RETURN(loc_part_id);
}
bool get_partition_id_hash_nosub(partition_info *part_info,
uint32 *part_id)
{
*part_id= get_part_id_hash(part_info->no_parts, part_info->part_expr);
return FALSE;
}
bool get_partition_id_linear_hash_nosub(partition_info *part_info,
uint32 *part_id)
{
*part_id= get_part_id_linear_hash(part_info, part_info->no_parts,
part_info->part_expr);
return FALSE;
}
bool get_partition_id_key_nosub(partition_info *part_info,
uint32 *part_id)
{
*part_id= get_part_id_key(part_info->part_field_array, part_info->no_parts);
return FALSE;
}
bool get_partition_id_linear_key_nosub(partition_info *part_info,
uint32 *part_id)
{
*part_id= get_part_id_linear_key(part_info,
part_info->part_field_array,
part_info->no_parts);
return FALSE;
}
bool get_partition_id_range_sub_hash(partition_info *part_info,
uint32 *part_id)
{
uint32 loc_part_id, sub_part_id;
uint no_subparts;
DBUG_ENTER("get_partition_id_range_sub_hash");
if (unlikely(get_partition_id_range(part_info, &loc_part_id)))
{
DBUG_RETURN(TRUE);
}
no_subparts= part_info->no_subparts;
sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr);
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
DBUG_RETURN(FALSE);
}
bool get_partition_id_range_sub_linear_hash(partition_info *part_info,
uint32 *part_id)
{
uint32 loc_part_id, sub_part_id;
uint no_subparts;
DBUG_ENTER("get_partition_id_range_sub_linear_hash");
if (unlikely(get_partition_id_range(part_info, &loc_part_id)))
{
DBUG_RETURN(TRUE);
}
no_subparts= part_info->no_subparts;
sub_part_id= get_part_id_linear_hash(part_info, no_subparts,
part_info->subpart_expr);
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
DBUG_RETURN(FALSE);
}
bool get_partition_id_range_sub_key(partition_info *part_info,
uint32 *part_id)
{
uint32 loc_part_id, sub_part_id;
uint no_subparts;
DBUG_ENTER("get_partition_id_range_sub_key");
if (unlikely(get_partition_id_range(part_info, &loc_part_id)))
{
DBUG_RETURN(TRUE);
}
no_subparts= part_info->no_subparts;
sub_part_id= get_part_id_key(part_info->subpart_field_array, no_subparts);
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
DBUG_RETURN(FALSE);
}
bool get_partition_id_range_sub_linear_key(partition_info *part_info,
uint32 *part_id)
{
uint32 loc_part_id, sub_part_id;
uint no_subparts;
DBUG_ENTER("get_partition_id_range_sub_linear_key");
if (unlikely(get_partition_id_range(part_info, &loc_part_id)))
{
DBUG_RETURN(TRUE);
}
no_subparts= part_info->no_subparts;
sub_part_id= get_part_id_linear_key(part_info,
part_info->subpart_field_array,
no_subparts);
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
DBUG_RETURN(FALSE);
}
bool get_partition_id_list_sub_hash(partition_info *part_info,
uint32 *part_id)
{
uint32 loc_part_id, sub_part_id;
uint no_subparts;
DBUG_ENTER("get_partition_id_list_sub_hash");
if (unlikely(get_partition_id_list(part_info, &loc_part_id)))
{
DBUG_RETURN(TRUE);
}
no_subparts= part_info->no_subparts;
sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr);
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
DBUG_RETURN(FALSE);
}
bool get_partition_id_list_sub_linear_hash(partition_info *part_info,
uint32 *part_id)
{
uint32 loc_part_id, sub_part_id;
uint no_subparts;
DBUG_ENTER("get_partition_id_list_sub_linear_hash");
if (unlikely(get_partition_id_list(part_info, &loc_part_id)))
{
DBUG_RETURN(TRUE);
}
no_subparts= part_info->no_subparts;
sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr);
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
DBUG_RETURN(FALSE);
}
bool get_partition_id_list_sub_key(partition_info *part_info,
uint32 *part_id)
{
uint32 loc_part_id, sub_part_id;
uint no_subparts;
DBUG_ENTER("get_partition_id_range_sub_key");
if (unlikely(get_partition_id_list(part_info, &loc_part_id)))
{
DBUG_RETURN(TRUE);
}
no_subparts= part_info->no_subparts;
sub_part_id= get_part_id_key(part_info->subpart_field_array, no_subparts);
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
DBUG_RETURN(FALSE);
}
bool get_partition_id_list_sub_linear_key(partition_info *part_info,
uint32 *part_id)
{
uint32 loc_part_id, sub_part_id;
uint no_subparts;
DBUG_ENTER("get_partition_id_list_sub_linear_key");
if (unlikely(get_partition_id_list(part_info, &loc_part_id)))
{
DBUG_RETURN(TRUE);
}
no_subparts= part_info->no_subparts;
sub_part_id= get_part_id_linear_key(part_info,
part_info->subpart_field_array,
no_subparts);
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
DBUG_RETURN(FALSE);
}
/*
This function is used to calculate the subpartition id
SYNOPSIS
get_subpartition_id()
part_info A reference to the partition_info struct where all the
desired information is given
RETURN VALUE
part_id
The subpartition identity
DESCRIPTION
A routine used in some SELECT's when only partial knowledge of the
partitions is known.
It is actually 4 different variants of this function which are called
through a function pointer.
get_partition_id_hash_sub
get_partition_id_key_sub
get_partition_id_linear_hash_sub
get_partition_id_linear_key_sub
*/
uint32 get_partition_id_hash_sub(partition_info *part_info)
{
return get_part_id_hash(part_info->no_subparts, part_info->subpart_expr);
}
uint32 get_partition_id_linear_hash_sub(partition_info *part_info)
{
return get_part_id_linear_hash(part_info, part_info->no_subparts,
part_info->subpart_expr);
}
uint32 get_partition_id_key_sub(partition_info *part_info)
{
return get_part_id_key(part_info->subpart_field_array,
part_info->no_subparts);
}
uint32 get_partition_id_linear_key_sub(partition_info *part_info)
{
return get_part_id_linear_key(part_info,
part_info->subpart_field_array,
part_info->no_subparts);
}
/*
Set an indicator on all partition fields that are set by the key
SYNOPSIS
set_PF_fields_in_key()
key_info Information about the index
key_length Length of key
RETURN VALUE
TRUE Found partition field set by key
FALSE No partition field set by key
*/
static bool set_PF_fields_in_key(KEY *key_info, uint key_length)
{
KEY_PART_INFO *key_part;
bool found_part_field= FALSE;
DBUG_ENTER("set_PF_fields_in_key");
for (key_part= key_info->key_part; (int)key_length > 0; key_part++)
{
if (key_part->null_bit)
key_length--;
if (key_part->type == HA_KEYTYPE_BIT)
{
if (((Field_bit*)key_part->field)->bit_len)
key_length--;
}
if (key_part->key_part_flag & (HA_BLOB_PART + HA_VAR_LENGTH_PART))
{
key_length-= HA_KEY_BLOB_LENGTH;
}
if (key_length < key_part->length)
break;
key_length-= key_part->length;
if (key_part->field->flags & FIELD_IN_PART_FUNC_FLAG)
{
found_part_field= TRUE;
key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
}
}
DBUG_RETURN(found_part_field);
}
/*
We have found that at least one partition field was set by a key, now
check if a partition function has all its fields bound or not.
SYNOPSIS
check_part_func_bound()
ptr Array of fields NULL terminated (partition fields)
RETURN VALUE
TRUE All fields in partition function are set
FALSE Not all fields in partition function are set
*/
static bool check_part_func_bound(Field **ptr)
{
bool result= TRUE;
DBUG_ENTER("check_part_func_bound");
for (; *ptr; ptr++)
{
if (!((*ptr)->flags & GET_FIXED_FIELDS_FLAG))
{
result= FALSE;
break;
}
}
DBUG_RETURN(result);
}
/*
Get the id of the subpartitioning part by using the key buffer of the
index scan.
SYNOPSIS
get_sub_part_id_from_key()
table The table object
buf A buffer that can be used to evaluate the partition function
key_info The index object
key_spec A key_range containing key and key length
RETURN VALUES
part_id Subpartition id to use
DESCRIPTION
Use key buffer to set-up record in buf, move field pointers and
get the partition identity and restore field pointers afterwards.
*/
static uint32 get_sub_part_id_from_key(const TABLE *table,byte *buf,
KEY *key_info,
const key_range *key_spec)
{
byte *rec0= table->record[0];
partition_info *part_info= table->part_info;
uint32 part_id;
DBUG_ENTER("get_sub_part_id_from_key");
key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
if (likely(rec0 == buf))
part_id= part_info->get_subpartition_id(part_info);
else
{
Field **part_field_array= part_info->subpart_field_array;
set_field_ptr(part_field_array, buf, rec0);
part_id= part_info->get_subpartition_id(part_info);
set_field_ptr(part_field_array, rec0, buf);
}
DBUG_RETURN(part_id);
}
/*
Get the id of the partitioning part by using the key buffer of the
index scan.
SYNOPSIS
get_part_id_from_key()
table The table object
buf A buffer that can be used to evaluate the partition function
key_info The index object
key_spec A key_range containing key and key length
part_id Partition to use
RETURN VALUES
TRUE Partition to use not found
FALSE Ok, part_id indicates partition to use
DESCRIPTION
Use key buffer to set-up record in buf, move field pointers and
get the partition identity and restore field pointers afterwards.
*/
bool get_part_id_from_key(const TABLE *table, byte *buf, KEY *key_info,
const key_range *key_spec, uint32 *part_id)
{
bool result;
byte *rec0= table->record[0];
partition_info *part_info= table->part_info;
DBUG_ENTER("get_part_id_from_key");
key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
if (likely(rec0 == buf))
result= part_info->get_part_partition_id(part_info, part_id);
else
{
Field **part_field_array= part_info->part_field_array;
set_field_ptr(part_field_array, buf, rec0);
result= part_info->get_part_partition_id(part_info, part_id);
set_field_ptr(part_field_array, rec0, buf);
}
DBUG_RETURN(result);
}
/*
Get the partitioning id of the full PF by using the key buffer of the
index scan.
SYNOPSIS
get_full_part_id_from_key()
table The table object
buf A buffer that is used to evaluate the partition function
key_info The index object
key_spec A key_range containing key and key length
part_spec A partition id containing start part and end part
RETURN VALUES
part_spec
No partitions to scan is indicated by end_part > start_part when returning
DESCRIPTION
Use key buffer to set-up record in buf, move field pointers if needed and
get the partition identity and restore field pointers afterwards.
*/
void get_full_part_id_from_key(const TABLE *table, byte *buf,
KEY *key_info,
const key_range *key_spec,
part_id_range *part_spec)
{
bool result;
partition_info *part_info= table->part_info;
byte *rec0= table->record[0];
DBUG_ENTER("get_full_part_id_from_key");
key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
if (likely(rec0 == buf))
result= part_info->get_partition_id(part_info, &part_spec->start_part);
else
{
Field **part_field_array= part_info->full_part_field_array;
set_field_ptr(part_field_array, buf, rec0);
result= part_info->get_partition_id(part_info, &part_spec->start_part);
set_field_ptr(part_field_array, rec0, buf);
}
part_spec->end_part= part_spec->start_part;
if (unlikely(result))
part_spec->start_part++;
DBUG_VOID_RETURN;
}
/*
Get the set of partitions to use in query.
SYNOPSIS
get_partition_set()
table The table object
buf A buffer that can be used to evaluate the partition function
index The index of the key used, if MAX_KEY no index used
key_spec A key_range containing key and key length
part_spec Contains start part, end part and indicator if bitmap is
used for which partitions to scan
DESCRIPTION
This function is called to discover which partitions to use in an index
scan or a full table scan.
It returns a range of partitions to scan. If there are holes in this
range with partitions that are not needed to scan a bit array is used
to signal which partitions to use and which not to use.
If start_part > end_part at return it means no partition needs to be
scanned. If start_part == end_part it always means a single partition
needs to be scanned.
RETURN VALUE
part_spec
*/
void get_partition_set(const TABLE *table, byte *buf, const uint index,
const key_range *key_spec, part_id_range *part_spec)
{
partition_info *part_info= table->part_info;
uint no_parts= get_tot_partitions(part_info), i, part_id;
uint sub_part= no_parts;
uint32 part_part= no_parts;
KEY *key_info= NULL;
bool found_part_field= FALSE;
DBUG_ENTER("get_partition_set");
part_spec->use_bit_array= FALSE;
part_spec->start_part= 0;
part_spec->end_part= no_parts - 1;
if ((index < MAX_KEY) &&
key_spec->flag == (uint)HA_READ_KEY_EXACT &&
part_info->some_fields_in_PF.is_set(index))
{
key_info= table->key_info+index;
/*
The index can potentially provide at least one PF-field (field in the
partition function). Thus it is interesting to continue our probe.
*/
if (key_spec->length == key_info->key_length)
{
/*
The entire key is set so we can check whether we can immediately
derive either the complete PF or if we can derive either
the top PF or the subpartitioning PF. This can be established by
checking precalculated bits on each index.
*/
if (part_info->all_fields_in_PF.is_set(index))
{
/*
We can derive the exact partition to use, no more than this one
is needed.
*/
get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
DBUG_VOID_RETURN;
}
else if (is_sub_partitioned(part_info))
{
if (part_info->all_fields_in_SPF.is_set(index))
sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec);
else if (part_info->all_fields_in_PPF.is_set(index))
{
if (get_part_id_from_key(table,buf,key_info,key_spec,(uint32*)&part_part))
{
/*
The value of the RANGE or LIST partitioning was outside of
allowed values. Thus it is certain that the result of this
scan will be empty.
*/
part_spec->start_part= no_parts;
DBUG_VOID_RETURN;
}
}
}
}
else
{
/*
Set an indicator on all partition fields that are bound.
If at least one PF-field was bound it pays off to check whether
the PF or PPF or SPF has been bound.
(PF = Partition Function, SPF = Subpartition Function and
PPF = Partition Function part of subpartitioning)
*/
if ((found_part_field= set_PF_fields_in_key(key_info,
key_spec->length)))
{
if (check_part_func_bound(part_info->full_part_field_array))
{
/*
We were able to bind all fields in the partition function even
by using only a part of the key. Calculate the partition to use.
*/
get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
clear_indicator_in_key_fields(key_info);
DBUG_VOID_RETURN;
}
else if (check_part_func_bound(part_info->part_field_array))
sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec);
else if (check_part_func_bound(part_info->subpart_field_array))
{
if (get_part_id_from_key(table,buf,key_info,key_spec,(uint32*)&part_part))
{
part_spec->start_part= no_parts;
clear_indicator_in_key_fields(key_info);
DBUG_VOID_RETURN;
}
}
}
}
}
{
/*
The next step is to analyse the table condition to see whether any
information about which partitions to scan can be derived from there.
Currently not implemented.
*/
}
/*
If we come here we have found a range of sorts we have either discovered
nothing or we have discovered a range of partitions with possible holes
in it. We need a bitvector to further the work here.
*/
if (!(part_part == no_parts && sub_part == no_parts))
{
/*
We can only arrive here if we are using subpartitioning.
*/
if (part_part != no_parts)
{
/*
We know the top partition and need to scan all underlying
subpartitions. This is a range without holes.
*/
DBUG_ASSERT(sub_part == no_parts);
part_spec->start_part= part_part * part_info->no_parts;
part_spec->end_part= part_spec->start_part+part_info->no_subparts - 1;
}
else
{
DBUG_ASSERT(sub_part != no_parts);
part_spec->use_bit_array= TRUE;
part_spec->start_part= sub_part;
part_spec->end_part=sub_part+
(part_info->no_subparts*(part_info->no_parts-1));
for (i= 0, part_id= sub_part; i < part_info->no_parts;
i++, part_id+= part_info->no_subparts)
; //Set bit part_id in bit array
}
}
if (found_part_field)
clear_indicator_in_key_fields(key_info);
DBUG_VOID_RETURN;
}
/*
If the table is partitioned we will read the partition info into the
.frm file here.
-------------------------------
| Fileinfo 64 bytes |
-------------------------------
| Formnames 7 bytes |
-------------------------------
| Not used 4021 bytes |
-------------------------------
| Keyinfo + record |
-------------------------------
| Padded to next multiple |
| of IO_SIZE |
-------------------------------
| Forminfo 288 bytes |
-------------------------------
| Screen buffer, to make |
| field names readable |
-------------------------------
| Packed field info |
| 17 + 1 + strlen(field_name) |
| + 1 end of file character |
-------------------------------
| Partition info |
-------------------------------
We provide the length of partition length in Fileinfo[55-58].
Read the partition syntax from the frm file and parse it to get the
data structures of the partitioning.
SYNOPSIS
mysql_unpack_partition()
file File reference of frm file
thd Thread object
part_info_len Length of partition syntax
table Table object of partitioned table
RETURN VALUE
TRUE Error
FALSE Sucess
DESCRIPTION
Read the partition syntax from the current position in the frm file.
Initiate a LEX object, save the list of item tree objects to free after
the query is done. Set-up partition info object such that parser knows
it is called from internally. Call parser to create data structures
(best possible recreation of item trees and so forth since there is no
serialisation of these objects other than in parseable text format).
We need to save the text of the partition functions since it is not
possible to retrace this given an item tree.
*/
bool mysql_unpack_partition(THD *thd, const uchar *part_buf,
uint part_info_len, TABLE* table,
handlerton *default_db_type)
{
Item *thd_free_list= thd->free_list;
bool result= TRUE;
partition_info *part_info;
LEX *old_lex= thd->lex, lex;
DBUG_ENTER("mysql_unpack_partition");
thd->lex= &lex;
lex_start(thd, part_buf, part_info_len);
/*
We need to use the current SELECT_LEX since I need to keep the
Name_resolution_context object which is referenced from the
Item_field objects.
This is not a nice solution since if the parser uses current_select
for anything else it will corrupt the current LEX object.
*/
thd->lex->current_select= old_lex->current_select;
/*
All Items created is put into a free list on the THD object. This list
is used to free all Item objects after completing a query. We don't
want that to happen with the Item tree created as part of the partition
info. This should be attached to the table object and remain so until
the table object is released.
Thus we move away the current list temporarily and start a new list that
we then save in the partition info structure.
*/
thd->free_list= NULL;
lex.part_info= (partition_info*)1; //Indicate yyparse from this place
if (yyparse((void*)thd) || thd->is_fatal_error)
{
free_items(thd->free_list);
goto end;
}
part_info= lex.part_info;
table->part_info= part_info;
table->file->set_part_info(part_info);
if (part_info->default_engine_type == NULL)
part_info->default_engine_type= default_db_type;
else
{
DBUG_ASSERT(part_info->default_engine_type == default_db_type);
}
part_info->item_free_list= thd->free_list;
{
/*
This code part allocates memory for the serialised item information for
the partition functions. In most cases this is not needed but if the
table is used for SHOW CREATE TABLES or ALTER TABLE that modifies
partition information it is needed and the info is lost if we don't
save it here so unfortunately we have to do it here even if in most
cases it is not needed. This is a consequence of that item trees are
not serialisable.
*/
uint part_func_len= part_info->part_func_len;
uint subpart_func_len= part_info->subpart_func_len;
uint bitmap_bits= part_info->no_subparts?
(part_info->no_subparts* part_info->no_parts):
part_info->no_parts;
uint bitmap_bytes= bitmap_buffer_size(bitmap_bits);
uint32 *bitmap_buf;
char *part_func_string, *subpart_func_string= NULL;
if (!((part_func_string= thd->alloc(part_func_len))) ||
(subpart_func_len &&
!((subpart_func_string= thd->alloc(subpart_func_len)))) ||
!((bitmap_buf= (uint32*)thd->alloc(bitmap_bytes))))
{
my_error(ER_OUTOFMEMORY, MYF(0), part_func_len);
free_items(thd->free_list);
part_info->item_free_list= 0;
goto end;
}
memcpy(part_func_string, part_info->part_func_string, part_func_len);
if (subpart_func_len)
memcpy(subpart_func_string, part_info->subpart_func_string,
subpart_func_len);
part_info->part_func_string= part_func_string;
part_info->subpart_func_string= subpart_func_string;
bitmap_init(&part_info->used_partitions, bitmap_buf, bitmap_bytes*8, FALSE);
}
result= FALSE;
end:
thd->free_list= thd_free_list;
thd->lex= old_lex;
DBUG_RETURN(result);
}
#endif
/*
Prepare for calling val_int on partition function by setting fields to
point to the record where the values of the PF-fields are stored.
SYNOPSIS
set_field_ptr()
ptr Array of fields to change ptr
new_buf New record pointer
old_buf Old record pointer
DESCRIPTION
Set ptr in field objects of field array to refer to new_buf record
instead of previously old_buf. Used before calling val_int and after
it is used to restore pointers to table->record[0].
This routine is placed outside of partition code since it can be useful
also for other programs.
*/
void set_field_ptr(Field **ptr, const byte *new_buf,
const byte *old_buf)
{
my_ptrdiff_t diff= (new_buf - old_buf);
DBUG_ENTER("set_nullable_field_ptr");
do
{
(*ptr)->move_field_offset(diff);
} while (*(++ptr));
DBUG_VOID_RETURN;
}
/*
Prepare for calling val_int on partition function by setting fields to
point to the record where the values of the PF-fields are stored.
This variant works on a key_part reference.
It is not required that all fields are NOT NULL fields.
SYNOPSIS
set_key_field_ptr()
key_part key part with a set of fields to change ptr
new_buf New record pointer
old_buf Old record pointer
DESCRIPTION
Set ptr in field objects of field array to refer to new_buf record
instead of previously old_buf. Used before calling val_int and after
it is used to restore pointers to table->record[0].
This routine is placed outside of partition code since it can be useful
also for other programs.
*/
void set_key_field_ptr(KEY *key_info, const byte *new_buf,
const byte *old_buf)
{
KEY_PART_INFO *key_part= key_info->key_part;
uint key_parts= key_info->key_parts, i= 0;
my_ptrdiff_t diff= (new_buf - old_buf);
DBUG_ENTER("set_key_field_ptr");
do
{
key_part->field->move_field_offset(diff);
key_part++;
} while (++i < key_parts);
DBUG_VOID_RETURN;
}
/*
Fill the string comma-separated line of used partitions names
SYNOPSIS
make_used_partitions_str()
part_info IN Partitioning info
parts_str OUT The string to fill
*/
void make_used_partitions_str(partition_info *part_info, String *parts_str)
{
parts_str->length(0);
partition_element *pe;
uint partition_id= 0;
List_iterator<partition_element> it(part_info->partitions);
if (part_info->subpart_type != NOT_A_PARTITION)
{
partition_element *head_pe;
while ((head_pe= it++))
{
List_iterator<partition_element> it2(head_pe->subpartitions);
while ((pe= it2++))
{
if (bitmap_is_set(&part_info->used_partitions, partition_id))
{
if (parts_str->length())
parts_str->append(',');
parts_str->append(head_pe->partition_name,
strlen(head_pe->partition_name),
system_charset_info);
parts_str->append('_');
parts_str->append(pe->partition_name,
strlen(pe->partition_name),
system_charset_info);
}
partition_id++;
}
}
}
else
{
while ((pe= it++))
{
if (bitmap_is_set(&part_info->used_partitions, partition_id))
{
if (parts_str->length())
parts_str->append(',');
parts_str->append(pe->partition_name, strlen(pe->partition_name),
system_charset_info);
}
partition_id++;
}
}
}