mariadb/storage/innobase/row/row0sel.c
Sergey Glukhov 60a66c451a Bug#38999 valgrind warnings for update statement in function compare_record()
Valgrind warning happpens because of uninitialized null bytes.
In row_sel_push_cache_row_for_mysql() function we fill fetch cache
with necessary field values, row_sel_store_mysql_rec() is called
for this and leaves null bytes untouched.
Later row_sel_pop_cached_row_for_mysql() rewrites table record
buffer with uninited null bytes. We can see the problem from the
test case:
At 'SELECT...' we call row_sel_push...->row_sel_store...->row_sel_pop_cached...
chain which rewrites table->record[0] buffer with uninitialized null bytes.
When we call 'UPDATE...' statement, compare_record uses this buffer and
valgrind warning occurs.
The fix is to init null bytes with default values.


mysql-test/suite/innodb/r/innodb_mysql.result:
  test case
mysql-test/suite/innodb/t/innodb_mysql.test:
  test case
mysql-test/t/ps_3innodb.test:
  enable valgrind testing
storage/innobase/row/row0sel.c:
  init null bytes with default values as they might be
  left uninitialized in some cases and these uninited bytes
  might be copied into mysql record buffer that leads to
  valgrind warnings on next use of the buffer.
2010-06-09 16:07:34 +04:00

4722 lines
123 KiB
C

/*******************************************************
Select
(c) 1997 Innobase Oy
Created 12/19/1997 Heikki Tuuri
*******************************************************/
#include "row0sel.h"
#ifdef UNIV_NONINL
#include "row0sel.ic"
#endif
#include "dict0dict.h"
#include "dict0boot.h"
#include "trx0undo.h"
#include "trx0trx.h"
#include "btr0btr.h"
#include "btr0cur.h"
#include "btr0sea.h"
#include "mach0data.h"
#include "que0que.h"
#include "row0upd.h"
#include "row0row.h"
#include "row0vers.h"
#include "rem0cmp.h"
#include "lock0lock.h"
#include "eval0eval.h"
#include "pars0sym.h"
#include "pars0pars.h"
#include "row0mysql.h"
#include "read0read.h"
#include "buf0lru.h"
#include "ha_prototypes.h"
/* Maximum number of rows to prefetch; MySQL interface has another parameter */
#define SEL_MAX_N_PREFETCH 16
/* Number of rows fetched, after which to start prefetching; MySQL interface
has another parameter */
#define SEL_PREFETCH_LIMIT 1
/* When a select has accessed about this many pages, it returns control back
to que_run_threads: this is to allow canceling runaway queries */
#define SEL_COST_LIMIT 100
/* Flags for search shortcut */
#define SEL_FOUND 0
#define SEL_EXHAUSTED 1
#define SEL_RETRY 2
/************************************************************************
Returns TRUE if the user-defined column values in a secondary index record
are alphabetically the same as the corresponding columns in the clustered
index record.
NOTE: the comparison is NOT done as a binary comparison, but character
fields are compared with collation! */
static
ibool
row_sel_sec_rec_is_for_clust_rec(
/*=============================*/
/* out: TRUE if the secondary
record is equal to the corresponding
fields in the clustered record,
when compared with collation */
rec_t* sec_rec, /* in: secondary index record */
dict_index_t* sec_index, /* in: secondary index */
rec_t* clust_rec, /* in: clustered index record */
dict_index_t* clust_index) /* in: clustered index */
{
byte* sec_field;
ulint sec_len;
byte* clust_field;
ulint clust_len;
ulint n;
ulint i;
mem_heap_t* heap = NULL;
ulint clust_offsets_[REC_OFFS_NORMAL_SIZE];
ulint sec_offsets_[REC_OFFS_SMALL_SIZE];
ulint* clust_offs = clust_offsets_;
ulint* sec_offs = sec_offsets_;
ibool is_equal = TRUE;
*clust_offsets_ = (sizeof clust_offsets_) / sizeof *clust_offsets_;
*sec_offsets_ = (sizeof sec_offsets_) / sizeof *sec_offsets_;
clust_offs = rec_get_offsets(clust_rec, clust_index, clust_offs,
ULINT_UNDEFINED, &heap);
sec_offs = rec_get_offsets(sec_rec, sec_index, sec_offs,
ULINT_UNDEFINED, &heap);
n = dict_index_get_n_ordering_defined_by_user(sec_index);
for (i = 0; i < n; i++) {
const dict_field_t* ifield;
const dict_col_t* col;
ifield = dict_index_get_nth_field(sec_index, i);
col = dict_field_get_col(ifield);
clust_field = rec_get_nth_field(
clust_rec, clust_offs,
dict_col_get_clust_pos(col, clust_index), &clust_len);
sec_field = rec_get_nth_field(sec_rec, sec_offs, i, &sec_len);
if (ifield->prefix_len > 0 && clust_len != UNIV_SQL_NULL) {
clust_len = dtype_get_at_most_n_mbchars(
col->prtype, col->mbminlen, col->mbmaxlen,
ifield->prefix_len,
clust_len, (char*) clust_field);
}
if (0 != cmp_data_data(col->mtype, col->prtype,
clust_field, clust_len,
sec_field, sec_len)) {
is_equal = FALSE;
goto func_exit;
}
}
func_exit:
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
return(is_equal);
}
/*************************************************************************
Creates a select node struct. */
sel_node_t*
sel_node_create(
/*============*/
/* out, own: select node struct */
mem_heap_t* heap) /* in: memory heap where created */
{
sel_node_t* node;
node = mem_heap_alloc(heap, sizeof(sel_node_t));
node->common.type = QUE_NODE_SELECT;
node->state = SEL_NODE_OPEN;
node->select_will_do_update = FALSE;
node->latch_mode = BTR_SEARCH_LEAF;
node->plans = NULL;
return(node);
}
/*************************************************************************
Frees the memory private to a select node when a query graph is freed,
does not free the heap where the node was originally created. */
void
sel_node_free_private(
/*==================*/
sel_node_t* node) /* in: select node struct */
{
ulint i;
plan_t* plan;
if (node->plans != NULL) {
for (i = 0; i < node->n_tables; i++) {
plan = sel_node_get_nth_plan(node, i);
btr_pcur_close(&(plan->pcur));
btr_pcur_close(&(plan->clust_pcur));
if (plan->old_vers_heap) {
mem_heap_free(plan->old_vers_heap);
}
}
}
}
/*************************************************************************
Evaluates the values in a select list. If there are aggregate functions,
their argument value is added to the aggregate total. */
UNIV_INLINE
void
sel_eval_select_list(
/*=================*/
sel_node_t* node) /* in: select node */
{
que_node_t* exp;
exp = node->select_list;
while (exp) {
eval_exp(exp);
exp = que_node_get_next(exp);
}
}
/*************************************************************************
Assigns the values in the select list to the possible into-variables in
SELECT ... INTO ... */
UNIV_INLINE
void
sel_assign_into_var_values(
/*=======================*/
sym_node_t* var, /* in: first variable in a list of variables */
sel_node_t* node) /* in: select node */
{
que_node_t* exp;
if (var == NULL) {
return;
}
exp = node->select_list;
while (var) {
ut_ad(exp);
eval_node_copy_val(var->alias, exp);
exp = que_node_get_next(exp);
var = que_node_get_next(var);
}
}
/*************************************************************************
Resets the aggregate value totals in the select list of an aggregate type
query. */
UNIV_INLINE
void
sel_reset_aggregate_vals(
/*=====================*/
sel_node_t* node) /* in: select node */
{
func_node_t* func_node;
ut_ad(node->is_aggregate);
func_node = node->select_list;
while (func_node) {
eval_node_set_int_val(func_node, 0);
func_node = que_node_get_next(func_node);
}
node->aggregate_already_fetched = FALSE;
}
/*************************************************************************
Copies the input variable values when an explicit cursor is opened. */
UNIV_INLINE
void
row_sel_copy_input_variable_vals(
/*=============================*/
sel_node_t* node) /* in: select node */
{
sym_node_t* var;
var = UT_LIST_GET_FIRST(node->copy_variables);
while (var) {
eval_node_copy_val(var, var->alias);
var->indirection = NULL;
var = UT_LIST_GET_NEXT(col_var_list, var);
}
}
/*************************************************************************
Fetches the column values from a record. */
static
void
row_sel_fetch_columns(
/*==================*/
dict_index_t* index, /* in: record index */
rec_t* rec, /* in: record in a clustered or non-clustered
index */
const ulint* offsets,/* in: rec_get_offsets(rec, index) */
sym_node_t* column) /* in: first column in a column list, or
NULL */
{
dfield_t* val;
ulint index_type;
ulint field_no;
byte* data;
ulint len;
ut_ad(rec_offs_validate(rec, index, offsets));
if (index->type & DICT_CLUSTERED) {
index_type = SYM_CLUST_FIELD_NO;
} else {
index_type = SYM_SEC_FIELD_NO;
}
while (column) {
mem_heap_t* heap = NULL;
ibool needs_copy;
field_no = column->field_nos[index_type];
if (field_no != ULINT_UNDEFINED) {
if (UNIV_UNLIKELY(rec_offs_nth_extern(offsets,
field_no))) {
/* Copy an externally stored field to the
temporary heap */
heap = mem_heap_create(1);
data = btr_rec_copy_externally_stored_field(
rec, offsets, field_no, &len, heap);
ut_a(len != UNIV_SQL_NULL);
needs_copy = TRUE;
} else {
data = rec_get_nth_field(rec, offsets,
field_no, &len);
needs_copy = column->copy_val;
}
if (needs_copy) {
eval_node_copy_and_alloc_val(column, data,
len);
} else {
val = que_node_get_val(column);
dfield_set_data(val, data, len);
}
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
}
column = UT_LIST_GET_NEXT(col_var_list, column);
}
}
/*************************************************************************
Allocates a prefetch buffer for a column when prefetch is first time done. */
static
void
sel_col_prefetch_buf_alloc(
/*=======================*/
sym_node_t* column) /* in: symbol table node for a column */
{
sel_buf_t* sel_buf;
ulint i;
ut_ad(que_node_get_type(column) == QUE_NODE_SYMBOL);
column->prefetch_buf = mem_alloc(SEL_MAX_N_PREFETCH
* sizeof(sel_buf_t));
for (i = 0; i < SEL_MAX_N_PREFETCH; i++) {
sel_buf = column->prefetch_buf + i;
sel_buf->data = NULL;
sel_buf->val_buf_size = 0;
}
}
/*************************************************************************
Frees a prefetch buffer for a column, including the dynamically allocated
memory for data stored there. */
void
sel_col_prefetch_buf_free(
/*======================*/
sel_buf_t* prefetch_buf) /* in, own: prefetch buffer */
{
sel_buf_t* sel_buf;
ulint i;
for (i = 0; i < SEL_MAX_N_PREFETCH; i++) {
sel_buf = prefetch_buf + i;
if (sel_buf->val_buf_size > 0) {
mem_free(sel_buf->data);
}
}
}
/*************************************************************************
Pops the column values for a prefetched, cached row from the column prefetch
buffers and places them to the val fields in the column nodes. */
static
void
sel_pop_prefetched_row(
/*===================*/
plan_t* plan) /* in: plan node for a table */
{
sym_node_t* column;
sel_buf_t* sel_buf;
dfield_t* val;
byte* data;
ulint len;
ulint val_buf_size;
ut_ad(plan->n_rows_prefetched > 0);
column = UT_LIST_GET_FIRST(plan->columns);
while (column) {
val = que_node_get_val(column);
if (!column->copy_val) {
/* We did not really push any value for the
column */
ut_ad(!column->prefetch_buf);
ut_ad(que_node_get_val_buf_size(column) == 0);
#ifdef UNIV_DEBUG
dfield_set_data(val, NULL, 0);
#endif
goto next_col;
}
ut_ad(column->prefetch_buf);
sel_buf = column->prefetch_buf + plan->first_prefetched;
data = sel_buf->data;
len = sel_buf->len;
val_buf_size = sel_buf->val_buf_size;
/* We must keep track of the allocated memory for
column values to be able to free it later: therefore
we swap the values for sel_buf and val */
sel_buf->data = dfield_get_data(val);
sel_buf->len = dfield_get_len(val);
sel_buf->val_buf_size = que_node_get_val_buf_size(column);
dfield_set_data(val, data, len);
que_node_set_val_buf_size(column, val_buf_size);
next_col:
column = UT_LIST_GET_NEXT(col_var_list, column);
}
plan->n_rows_prefetched--;
plan->first_prefetched++;
}
/*************************************************************************
Pushes the column values for a prefetched, cached row to the column prefetch
buffers from the val fields in the column nodes. */
UNIV_INLINE
void
sel_push_prefetched_row(
/*====================*/
plan_t* plan) /* in: plan node for a table */
{
sym_node_t* column;
sel_buf_t* sel_buf;
dfield_t* val;
byte* data;
ulint len;
ulint pos;
ulint val_buf_size;
if (plan->n_rows_prefetched == 0) {
pos = 0;
plan->first_prefetched = 0;
} else {
pos = plan->n_rows_prefetched;
/* We have the convention that pushing new rows starts only
after the prefetch stack has been emptied: */
ut_ad(plan->first_prefetched == 0);
}
plan->n_rows_prefetched++;
ut_ad(pos < SEL_MAX_N_PREFETCH);
column = UT_LIST_GET_FIRST(plan->columns);
while (column) {
if (!column->copy_val) {
/* There is no sense to push pointers to database
page fields when we do not keep latch on the page! */
goto next_col;
}
if (!column->prefetch_buf) {
/* Allocate a new prefetch buffer */
sel_col_prefetch_buf_alloc(column);
}
sel_buf = column->prefetch_buf + pos;
val = que_node_get_val(column);
data = dfield_get_data(val);
len = dfield_get_len(val);
val_buf_size = que_node_get_val_buf_size(column);
/* We must keep track of the allocated memory for
column values to be able to free it later: therefore
we swap the values for sel_buf and val */
dfield_set_data(val, sel_buf->data, sel_buf->len);
que_node_set_val_buf_size(column, sel_buf->val_buf_size);
sel_buf->data = data;
sel_buf->len = len;
sel_buf->val_buf_size = val_buf_size;
next_col:
column = UT_LIST_GET_NEXT(col_var_list, column);
}
}
/*************************************************************************
Builds a previous version of a clustered index record for a consistent read */
static
ulint
row_sel_build_prev_vers(
/*====================*/
/* out: DB_SUCCESS or error code */
read_view_t* read_view, /* in: read view */
dict_index_t* index, /* in: plan node for table */
rec_t* rec, /* in: record in a clustered index */
ulint** offsets, /* in/out: offsets returned by
rec_get_offsets(rec, plan->index) */
mem_heap_t** offset_heap, /* in/out: memory heap from which
the offsets are allocated */
mem_heap_t** old_vers_heap, /* out: old version heap to use */
rec_t** old_vers, /* out: old version, or NULL if the
record does not exist in the view:
i.e., it was freshly inserted
afterwards */
mtr_t* mtr) /* in: mtr */
{
ulint err;
if (*old_vers_heap) {
mem_heap_empty(*old_vers_heap);
} else {
*old_vers_heap = mem_heap_create(512);
}
err = row_vers_build_for_consistent_read(
rec, mtr, index, offsets, read_view, offset_heap,
*old_vers_heap, old_vers);
return(err);
}
/*************************************************************************
Builds the last committed version of a clustered index record for a
semi-consistent read. */
static
ulint
row_sel_build_committed_vers_for_mysql(
/*===================================*/
/* out: DB_SUCCESS or error code */
dict_index_t* clust_index, /* in: clustered index */
row_prebuilt_t* prebuilt, /* in: prebuilt struct */
rec_t* rec, /* in: record in a clustered index */
ulint** offsets, /* in/out: offsets returned by
rec_get_offsets(rec, clust_index) */
mem_heap_t** offset_heap, /* in/out: memory heap from which
the offsets are allocated */
rec_t** old_vers, /* out: old version, or NULL if the
record does not exist in the view:
i.e., it was freshly inserted
afterwards */
mtr_t* mtr) /* in: mtr */
{
ulint err;
if (prebuilt->old_vers_heap) {
mem_heap_empty(prebuilt->old_vers_heap);
} else {
prebuilt->old_vers_heap = mem_heap_create(200);
}
err = row_vers_build_for_semi_consistent_read(
rec, mtr, clust_index, offsets, offset_heap,
prebuilt->old_vers_heap, old_vers);
return(err);
}
/*************************************************************************
Tests the conditions which determine when the index segment we are searching
through has been exhausted. */
UNIV_INLINE
ibool
row_sel_test_end_conds(
/*===================*/
/* out: TRUE if row passed the tests */
plan_t* plan) /* in: plan for the table; the column values must
already have been retrieved and the right sides of
comparisons evaluated */
{
func_node_t* cond;
/* All conditions in end_conds are comparisons of a column to an
expression */
cond = UT_LIST_GET_FIRST(plan->end_conds);
while (cond) {
/* Evaluate the left side of the comparison, i.e., get the
column value if there is an indirection */
eval_sym(cond->args);
/* Do the comparison */
if (!eval_cmp(cond)) {
return(FALSE);
}
cond = UT_LIST_GET_NEXT(cond_list, cond);
}
return(TRUE);
}
/*************************************************************************
Tests the other conditions. */
UNIV_INLINE
ibool
row_sel_test_other_conds(
/*=====================*/
/* out: TRUE if row passed the tests */
plan_t* plan) /* in: plan for the table; the column values must
already have been retrieved */
{
func_node_t* cond;
cond = UT_LIST_GET_FIRST(plan->other_conds);
while (cond) {
eval_exp(cond);
if (!eval_node_get_ibool_val(cond)) {
return(FALSE);
}
cond = UT_LIST_GET_NEXT(cond_list, cond);
}
return(TRUE);
}
/*************************************************************************
Retrieves the clustered index record corresponding to a record in a
non-clustered index. Does the necessary locking. */
static
ulint
row_sel_get_clust_rec(
/*==================*/
/* out: DB_SUCCESS or error code */
sel_node_t* node, /* in: select_node */
plan_t* plan, /* in: plan node for table */
rec_t* rec, /* in: record in a non-clustered index */
que_thr_t* thr, /* in: query thread */
rec_t** out_rec,/* out: clustered record or an old version of
it, NULL if the old version did not exist
in the read view, i.e., it was a fresh
inserted version */
mtr_t* mtr) /* in: mtr used to get access to the
non-clustered record; the same mtr is used to
access the clustered index */
{
dict_index_t* index;
rec_t* clust_rec;
rec_t* old_vers;
ulint err;
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
*offsets_ = (sizeof offsets_) / sizeof *offsets_;
*out_rec = NULL;
offsets = rec_get_offsets(rec,
btr_pcur_get_btr_cur(&plan->pcur)->index,
offsets, ULINT_UNDEFINED, &heap);
row_build_row_ref_fast(plan->clust_ref, plan->clust_map, rec, offsets);
index = dict_table_get_first_index(plan->table);
btr_pcur_open_with_no_init(index, plan->clust_ref, PAGE_CUR_LE,
node->latch_mode, &(plan->clust_pcur),
0, mtr);
clust_rec = btr_pcur_get_rec(&(plan->clust_pcur));
/* Note: only if the search ends up on a non-infimum record is the
low_match value the real match to the search tuple */
if (!page_rec_is_user_rec(clust_rec)
|| btr_pcur_get_low_match(&(plan->clust_pcur))
< dict_index_get_n_unique(index)) {
ut_a(rec_get_deleted_flag(rec,
dict_table_is_comp(plan->table)));
ut_a(node->read_view);
/* In a rare case it is possible that no clust rec is found
for a delete-marked secondary index record: if in row0umod.c
in row_undo_mod_remove_clust_low() we have already removed
the clust rec, while purge is still cleaning and removing
secondary index records associated with earlier versions of
the clustered index record. In that case we know that the
clustered index record did not exist in the read view of
trx. */
goto func_exit;
}
offsets = rec_get_offsets(clust_rec, index, offsets,
ULINT_UNDEFINED, &heap);
if (!node->read_view) {
/* Try to place a lock on the index record */
/* If innodb_locks_unsafe_for_binlog option is used
or this session is using READ COMMITTED isolation level
we lock only the record, i.e., next-key locking is
not used. */
ulint lock_type;
trx_t* trx;
trx = thr_get_trx(thr);
if (srv_locks_unsafe_for_binlog
|| trx->isolation_level <= TRX_ISO_READ_COMMITTED) {
lock_type = LOCK_REC_NOT_GAP;
} else {
lock_type = LOCK_ORDINARY;
}
err = lock_clust_rec_read_check_and_lock(
0, clust_rec, index, offsets,
node->row_lock_mode, lock_type, thr);
switch (err) {
case DB_SUCCESS:
case DB_SUCCESS_LOCKED_REC:
/* Declare the variable uninitialized in Valgrind.
It should be set to DB_SUCCESS at func_exit. */
UNIV_MEM_INVALID(&err, sizeof err);
break;
default:
goto err_exit;
}
} else {
/* This is a non-locking consistent read: if necessary, fetch
a previous version of the record */
old_vers = NULL;
if (!lock_clust_rec_cons_read_sees(clust_rec, index, offsets,
node->read_view)) {
err = row_sel_build_prev_vers(
node->read_view, index, clust_rec,
&offsets, &heap, &plan->old_vers_heap,
&old_vers, mtr);
if (err != DB_SUCCESS) {
goto err_exit;
}
clust_rec = old_vers;
if (clust_rec == NULL) {
goto func_exit;
}
}
/* If we had to go to an earlier version of row or the
secondary index record is delete marked, then it may be that
the secondary index record corresponding to clust_rec
(or old_vers) is not rec; in that case we must ignore
such row because in our snapshot rec would not have existed.
Remember that from rec we cannot see directly which transaction
id corresponds to it: we have to go to the clustered index
record. A query where we want to fetch all rows where
the secondary index value is in some interval would return
a wrong result if we would not drop rows which we come to
visit through secondary index records that would not really
exist in our snapshot. */
if ((old_vers
|| rec_get_deleted_flag(rec, dict_table_is_comp(
plan->table)))
&& !row_sel_sec_rec_is_for_clust_rec(rec, plan->index,
clust_rec, index)) {
goto func_exit;
}
}
/* Fetch the columns needed in test conditions */
row_sel_fetch_columns(index, clust_rec, offsets,
UT_LIST_GET_FIRST(plan->columns));
*out_rec = clust_rec;
func_exit:
err = DB_SUCCESS;
err_exit:
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
return(err);
}
/*************************************************************************
Sets a lock on a record. */
UNIV_INLINE
ulint
sel_set_rec_lock(
/*=============*/
/* out: DB_SUCCESS, DB_SUCCESS_LOCKED_REC,
or error code */
rec_t* rec, /* in: record */
dict_index_t* index, /* in: index */
const ulint* offsets,/* in: rec_get_offsets(rec, index) */
ulint mode, /* in: lock mode */
ulint type, /* in: LOCK_ORDINARY, LOCK_GAP, or
LOC_REC_NOT_GAP */
que_thr_t* thr) /* in: query thread */
{
trx_t* trx;
ulint err;
trx = thr_get_trx(thr);
if (UT_LIST_GET_LEN(trx->trx_locks) > 10000) {
if (buf_LRU_buf_pool_running_out()) {
return(DB_LOCK_TABLE_FULL);
}
}
if (index->type & DICT_CLUSTERED) {
err = lock_clust_rec_read_check_and_lock(
0, rec, index, offsets, mode, type, thr);
} else {
err = lock_sec_rec_read_check_and_lock(
0, rec, index, offsets, mode, type, thr);
}
return(err);
}
/*************************************************************************
Opens a pcur to a table index. */
static
void
row_sel_open_pcur(
/*==============*/
sel_node_t* node, /* in: select node */
plan_t* plan, /* in: table plan */
ibool search_latch_locked,
/* in: TRUE if the thread currently
has the search latch locked in
s-mode */
mtr_t* mtr) /* in: mtr */
{
dict_index_t* index;
func_node_t* cond;
que_node_t* exp;
ulint n_fields;
ulint has_search_latch = 0; /* RW_S_LATCH or 0 */
ulint i;
if (search_latch_locked) {
has_search_latch = RW_S_LATCH;
}
index = plan->index;
/* Calculate the value of the search tuple: the exact match columns
get their expressions evaluated when we evaluate the right sides of
end_conds */
cond = UT_LIST_GET_FIRST(plan->end_conds);
while (cond) {
eval_exp(que_node_get_next(cond->args));
cond = UT_LIST_GET_NEXT(cond_list, cond);
}
if (plan->tuple) {
n_fields = dtuple_get_n_fields(plan->tuple);
if (plan->n_exact_match < n_fields) {
/* There is a non-exact match field which must be
evaluated separately */
eval_exp(plan->tuple_exps[n_fields - 1]);
}
for (i = 0; i < n_fields; i++) {
exp = plan->tuple_exps[i];
dfield_copy_data(dtuple_get_nth_field(plan->tuple, i),
que_node_get_val(exp));
}
/* Open pcur to the index */
btr_pcur_open_with_no_init(index, plan->tuple, plan->mode,
node->latch_mode, &(plan->pcur),
has_search_latch, mtr);
} else {
/* Open the cursor to the start or the end of the index
(FALSE: no init) */
btr_pcur_open_at_index_side(plan->asc, index, node->latch_mode,
&(plan->pcur), FALSE, mtr);
}
ut_ad(plan->n_rows_prefetched == 0);
ut_ad(plan->n_rows_fetched == 0);
ut_ad(plan->cursor_at_end == FALSE);
plan->pcur_is_open = TRUE;
}
/*************************************************************************
Restores a stored pcur position to a table index. */
static
ibool
row_sel_restore_pcur_pos(
/*=====================*/
/* out: TRUE if the cursor should be moved to
the next record after we return from this
function (moved to the previous, in the case
of a descending cursor) without processing
again the current cursor record */
sel_node_t* node, /* in: select node */
plan_t* plan, /* in: table plan */
mtr_t* mtr) /* in: mtr */
{
ibool equal_position;
ulint relative_position;
ut_ad(!plan->cursor_at_end);
relative_position = btr_pcur_get_rel_pos(&(plan->pcur));
equal_position = btr_pcur_restore_position(node->latch_mode,
&(plan->pcur), mtr);
/* If the cursor is traveling upwards, and relative_position is
(1) BTR_PCUR_BEFORE: this is not allowed, as we did not have a lock
yet on the successor of the page infimum;
(2) BTR_PCUR_AFTER: btr_pcur_restore_position placed the cursor on the
first record GREATER than the predecessor of a page supremum; we have
not yet processed the cursor record: no need to move the cursor to the
next record;
(3) BTR_PCUR_ON: btr_pcur_restore_position placed the cursor on the
last record LESS or EQUAL to the old stored user record; (a) if
equal_position is FALSE, this means that the cursor is now on a record
less than the old user record, and we must move to the next record;
(b) if equal_position is TRUE, then if
plan->stored_cursor_rec_processed is TRUE, we must move to the next
record, else there is no need to move the cursor. */
if (plan->asc) {
if (relative_position == BTR_PCUR_ON) {
if (equal_position) {
return(plan->stored_cursor_rec_processed);
}
return(TRUE);
}
ut_ad(relative_position == BTR_PCUR_AFTER
|| relative_position == BTR_PCUR_AFTER_LAST_IN_TREE);
return(FALSE);
}
/* If the cursor is traveling downwards, and relative_position is
(1) BTR_PCUR_BEFORE: btr_pcur_restore_position placed the cursor on
the last record LESS than the successor of a page infimum; we have not
processed the cursor record: no need to move the cursor;
(2) BTR_PCUR_AFTER: btr_pcur_restore_position placed the cursor on the
first record GREATER than the predecessor of a page supremum; we have
processed the cursor record: we should move the cursor to the previous
record;
(3) BTR_PCUR_ON: btr_pcur_restore_position placed the cursor on the
last record LESS or EQUAL to the old stored user record; (a) if
equal_position is FALSE, this means that the cursor is now on a record
less than the old user record, and we need not move to the previous
record; (b) if equal_position is TRUE, then if
plan->stored_cursor_rec_processed is TRUE, we must move to the previous
record, else there is no need to move the cursor. */
if (relative_position == BTR_PCUR_BEFORE
|| relative_position == BTR_PCUR_BEFORE_FIRST_IN_TREE) {
return(FALSE);
}
if (relative_position == BTR_PCUR_ON) {
if (equal_position) {
return(plan->stored_cursor_rec_processed);
}
return(FALSE);
}
ut_ad(relative_position == BTR_PCUR_AFTER
|| relative_position == BTR_PCUR_AFTER_LAST_IN_TREE);
return(TRUE);
}
/*************************************************************************
Resets a plan cursor to a closed state. */
UNIV_INLINE
void
plan_reset_cursor(
/*==============*/
plan_t* plan) /* in: plan */
{
plan->pcur_is_open = FALSE;
plan->cursor_at_end = FALSE;
plan->n_rows_fetched = 0;
plan->n_rows_prefetched = 0;
}
/*************************************************************************
Tries to do a shortcut to fetch a clustered index record with a unique key,
using the hash index if possible (not always). */
static
ulint
row_sel_try_search_shortcut(
/*========================*/
/* out: SEL_FOUND, SEL_EXHAUSTED, SEL_RETRY */
sel_node_t* node, /* in: select node for a consistent read */
plan_t* plan, /* in: plan for a unique search in clustered
index */
mtr_t* mtr) /* in: mtr */
{
dict_index_t* index;
rec_t* rec;
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
ulint ret;
*offsets_ = (sizeof offsets_) / sizeof *offsets_;
index = plan->index;
ut_ad(node->read_view);
ut_ad(plan->unique_search);
ut_ad(!plan->must_get_clust);
#ifdef UNIV_SYNC_DEBUG
ut_ad(rw_lock_own(&btr_search_latch, RW_LOCK_SHARED));
#endif /* UNIV_SYNC_DEBUG */
row_sel_open_pcur(node, plan, TRUE, mtr);
rec = btr_pcur_get_rec(&(plan->pcur));
if (!page_rec_is_user_rec(rec)) {
return(SEL_RETRY);
}
ut_ad(plan->mode == PAGE_CUR_GE);
/* As the cursor is now placed on a user record after a search with
the mode PAGE_CUR_GE, the up_match field in the cursor tells how many
fields in the user record matched to the search tuple */
if (btr_pcur_get_up_match(&(plan->pcur)) < plan->n_exact_match) {
return(SEL_EXHAUSTED);
}
/* This is a non-locking consistent read: if necessary, fetch
a previous version of the record */
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap);
if (index->type & DICT_CLUSTERED) {
if (!lock_clust_rec_cons_read_sees(rec, index, offsets,
node->read_view)) {
ret = SEL_RETRY;
goto func_exit;
}
} else if (!lock_sec_rec_cons_read_sees(rec, index, node->read_view)) {
ret = SEL_RETRY;
goto func_exit;
}
/* Test deleted flag. Fetch the columns needed in test conditions. */
row_sel_fetch_columns(index, rec, offsets,
UT_LIST_GET_FIRST(plan->columns));
if (rec_get_deleted_flag(rec, dict_table_is_comp(plan->table))) {
ret = SEL_EXHAUSTED;
goto func_exit;
}
/* Test the rest of search conditions */
if (!row_sel_test_other_conds(plan)) {
ret = SEL_EXHAUSTED;
goto func_exit;
}
ut_ad(plan->pcur.latch_mode == node->latch_mode);
plan->n_rows_fetched++;
ret = SEL_FOUND;
func_exit:
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
return(ret);
}
/*************************************************************************
Performs a select step. */
static
ulint
row_sel(
/*====*/
/* out: DB_SUCCESS or error code */
sel_node_t* node, /* in: select node */
que_thr_t* thr) /* in: query thread */
{
dict_index_t* index;
plan_t* plan;
mtr_t mtr;
ibool moved;
rec_t* rec;
rec_t* old_vers;
rec_t* clust_rec;
ibool search_latch_locked;
ibool consistent_read;
/* The following flag becomes TRUE when we are doing a
consistent read from a non-clustered index and we must look
at the clustered index to find out the previous delete mark
state of the non-clustered record: */
ibool cons_read_requires_clust_rec = FALSE;
ulint cost_counter = 0;
ibool cursor_just_opened;
ibool must_go_to_next;
ibool leaf_contains_updates = FALSE;
/* TRUE if select_will_do_update is
TRUE and the current clustered index
leaf page has been updated during
the current mtr: mtr must be committed
at the same time as the leaf x-latch
is released */
ibool mtr_has_extra_clust_latch = FALSE;
/* TRUE if the search was made using
a non-clustered index, and we had to
access the clustered record: now &mtr
contains a clustered index latch, and
&mtr must be committed before we move
to the next non-clustered record */
ulint found_flag;
ulint err;
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
*offsets_ = (sizeof offsets_) / sizeof *offsets_;
ut_ad(thr->run_node == node);
search_latch_locked = FALSE;
if (node->read_view) {
/* In consistent reads, we try to do with the hash index and
not to use the buffer page get. This is to reduce memory bus
load resulting from semaphore operations. The search latch
will be s-locked when we access an index with a unique search
condition, but not locked when we access an index with a
less selective search condition. */
consistent_read = TRUE;
} else {
consistent_read = FALSE;
}
table_loop:
/* TABLE LOOP
----------
This is the outer major loop in calculating a join. We come here when
node->fetch_table changes, and after adding a row to aggregate totals
and, of course, when this function is called. */
ut_ad(leaf_contains_updates == FALSE);
ut_ad(mtr_has_extra_clust_latch == FALSE);
plan = sel_node_get_nth_plan(node, node->fetch_table);
index = plan->index;
if (plan->n_rows_prefetched > 0) {
sel_pop_prefetched_row(plan);
goto next_table_no_mtr;
}
if (plan->cursor_at_end) {
/* The cursor has already reached the result set end: no more
rows to process for this table cursor, as also the prefetch
stack was empty */
ut_ad(plan->pcur_is_open);
goto table_exhausted_no_mtr;
}
/* Open a cursor to index, or restore an open cursor position */
mtr_start(&mtr);
if (consistent_read && plan->unique_search && !plan->pcur_is_open
&& !plan->must_get_clust
&& !plan->table->big_rows) {
if (!search_latch_locked) {
rw_lock_s_lock(&btr_search_latch);
search_latch_locked = TRUE;
} else if (btr_search_latch.writer_is_wait_ex) {
/* There is an x-latch request waiting: release the
s-latch for a moment; as an s-latch here is often
kept for some 10 searches before being released,
a waiting x-latch request would block other threads
from acquiring an s-latch for a long time, lowering
performance significantly in multiprocessors. */
rw_lock_s_unlock(&btr_search_latch);
rw_lock_s_lock(&btr_search_latch);
}
found_flag = row_sel_try_search_shortcut(node, plan, &mtr);
if (found_flag == SEL_FOUND) {
goto next_table;
} else if (found_flag == SEL_EXHAUSTED) {
goto table_exhausted;
}
ut_ad(found_flag == SEL_RETRY);
plan_reset_cursor(plan);
mtr_commit(&mtr);
mtr_start(&mtr);
}
if (search_latch_locked) {
rw_lock_s_unlock(&btr_search_latch);
search_latch_locked = FALSE;
}
if (!plan->pcur_is_open) {
/* Evaluate the expressions to build the search tuple and
open the cursor */
row_sel_open_pcur(node, plan, search_latch_locked, &mtr);
cursor_just_opened = TRUE;
/* A new search was made: increment the cost counter */
cost_counter++;
} else {
/* Restore pcur position to the index */
must_go_to_next = row_sel_restore_pcur_pos(node, plan, &mtr);
cursor_just_opened = FALSE;
if (must_go_to_next) {
/* We have already processed the cursor record: move
to the next */
goto next_rec;
}
}
rec_loop:
/* RECORD LOOP
-----------
In this loop we use pcur and try to fetch a qualifying row, and
also fill the prefetch buffer for this table if n_rows_fetched has
exceeded a threshold. While we are inside this loop, the following
holds:
(1) &mtr is started,
(2) pcur is positioned and open.
NOTE that if cursor_just_opened is TRUE here, it means that we came
to this point right after row_sel_open_pcur. */
ut_ad(mtr_has_extra_clust_latch == FALSE);
rec = btr_pcur_get_rec(&(plan->pcur));
/* PHASE 1: Set a lock if specified */
if (!node->asc && cursor_just_opened
&& !page_rec_is_supremum(rec)) {
/* When we open a cursor for a descending search, we must set
a next-key lock on the successor record: otherwise it would
be possible to insert new records next to the cursor position,
and it might be that these new records should appear in the
search result set, resulting in the phantom problem. */
if (!consistent_read) {
/* If innodb_locks_unsafe_for_binlog option is used
or this session is using READ COMMITTED isolation
level, we lock only the record, i.e., next-key
locking is not used. */
rec_t* next_rec = page_rec_get_next(rec);
ulint lock_type;
trx_t* trx;
trx = thr_get_trx(thr);
offsets = rec_get_offsets(next_rec, index, offsets,
ULINT_UNDEFINED, &heap);
if (srv_locks_unsafe_for_binlog
|| trx->isolation_level
<= TRX_ISO_READ_COMMITTED) {
if (page_rec_is_supremum(next_rec)) {
goto skip_lock;
}
lock_type = LOCK_REC_NOT_GAP;
} else {
lock_type = LOCK_ORDINARY;
}
err = sel_set_rec_lock(next_rec, index, offsets,
node->row_lock_mode,
lock_type, thr);
switch (err) {
case DB_SUCCESS_LOCKED_REC:
err = DB_SUCCESS;
case DB_SUCCESS:
break;
default:
/* Note that in this case we will store in pcur
the PREDECESSOR of the record we are waiting
the lock for */
goto lock_wait_or_error;
}
}
}
skip_lock:
if (page_rec_is_infimum(rec)) {
/* The infimum record on a page cannot be in the result set,
and neither can a record lock be placed on it: we skip such
a record. We also increment the cost counter as we may have
processed yet another page of index. */
cost_counter++;
goto next_rec;
}
if (!consistent_read) {
/* Try to place a lock on the index record */
/* If innodb_locks_unsafe_for_binlog option is used
or this session is using READ COMMITTED isolation level,
we lock only the record, i.e., next-key locking is
not used. */
ulint lock_type;
trx_t* trx;
offsets = rec_get_offsets(rec, index, offsets,
ULINT_UNDEFINED, &heap);
trx = thr_get_trx(thr);
if (srv_locks_unsafe_for_binlog
|| trx->isolation_level <= TRX_ISO_READ_COMMITTED) {
if (page_rec_is_supremum(rec)) {
goto next_rec;
}
lock_type = LOCK_REC_NOT_GAP;
} else {
lock_type = LOCK_ORDINARY;
}
err = sel_set_rec_lock(rec, index, offsets,
node->row_lock_mode, lock_type, thr);
switch (err) {
case DB_SUCCESS_LOCKED_REC:
err = DB_SUCCESS;
case DB_SUCCESS:
break;
default:
goto lock_wait_or_error;
}
}
if (page_rec_is_supremum(rec)) {
/* A page supremum record cannot be in the result set: skip
it now when we have placed a possible lock on it */
goto next_rec;
}
ut_ad(page_rec_is_user_rec(rec));
if (cost_counter > SEL_COST_LIMIT) {
/* Now that we have placed the necessary locks, we can stop
for a while and store the cursor position; NOTE that if we
would store the cursor position BEFORE placing a record lock,
it might happen that the cursor would jump over some records
that another transaction could meanwhile insert adjacent to
the cursor: this would result in the phantom problem. */
goto stop_for_a_while;
}
/* PHASE 2: Check a mixed index mix id if needed */
if (plan->unique_search && cursor_just_opened) {
ut_ad(plan->mode == PAGE_CUR_GE);
/* As the cursor is now placed on a user record after a search
with the mode PAGE_CUR_GE, the up_match field in the cursor
tells how many fields in the user record matched to the search
tuple */
if (btr_pcur_get_up_match(&(plan->pcur))
< plan->n_exact_match) {
goto table_exhausted;
}
/* Ok, no need to test end_conds or mix id */
}
/* We are ready to look at a possible new index entry in the result
set: the cursor is now placed on a user record */
/* PHASE 3: Get previous version in a consistent read */
cons_read_requires_clust_rec = FALSE;
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap);
if (consistent_read) {
/* This is a non-locking consistent read: if necessary, fetch
a previous version of the record */
if (index->type & DICT_CLUSTERED) {
if (!lock_clust_rec_cons_read_sees(rec, index, offsets,
node->read_view)) {
err = row_sel_build_prev_vers(
node->read_view, index, rec,
&offsets, &heap, &plan->old_vers_heap,
&old_vers, &mtr);
if (err != DB_SUCCESS) {
goto lock_wait_or_error;
}
if (old_vers == NULL) {
offsets = rec_get_offsets(
rec, index, offsets,
ULINT_UNDEFINED, &heap);
row_sel_fetch_columns(
index, rec, offsets,
UT_LIST_GET_FIRST(
plan->columns));
if (!row_sel_test_end_conds(plan)) {
goto table_exhausted;
}
goto next_rec;
}
rec = old_vers;
}
} else if (!lock_sec_rec_cons_read_sees(rec, index,
node->read_view)) {
cons_read_requires_clust_rec = TRUE;
}
}
/* PHASE 4: Test search end conditions and deleted flag */
/* Fetch the columns needed in test conditions */
row_sel_fetch_columns(index, rec, offsets,
UT_LIST_GET_FIRST(plan->columns));
/* Test the selection end conditions: these can only contain columns
which already are found in the index, even though the index might be
non-clustered */
if (plan->unique_search && cursor_just_opened) {
/* No test necessary: the test was already made above */
} else if (!row_sel_test_end_conds(plan)) {
goto table_exhausted;
}
if (rec_get_deleted_flag(rec, dict_table_is_comp(plan->table))
&& !cons_read_requires_clust_rec) {
/* The record is delete marked: we can skip it if this is
not a consistent read which might see an earlier version
of a non-clustered index record */
if (plan->unique_search) {
goto table_exhausted;
}
goto next_rec;
}
/* PHASE 5: Get the clustered index record, if needed and if we did
not do the search using the clustered index */
if (plan->must_get_clust || cons_read_requires_clust_rec) {
/* It was a non-clustered index and we must fetch also the
clustered index record */
err = row_sel_get_clust_rec(node, plan, rec, thr, &clust_rec,
&mtr);
mtr_has_extra_clust_latch = TRUE;
if (err != DB_SUCCESS) {
goto lock_wait_or_error;
}
/* Retrieving the clustered record required a search:
increment the cost counter */
cost_counter++;
if (clust_rec == NULL) {
/* The record did not exist in the read view */
ut_ad(consistent_read);
goto next_rec;
}
if (rec_get_deleted_flag(clust_rec,
dict_table_is_comp(plan->table))) {
/* The record is delete marked: we can skip it */
goto next_rec;
}
if (node->can_get_updated) {
btr_pcur_store_position(&(plan->clust_pcur), &mtr);
}
}
/* PHASE 6: Test the rest of search conditions */
if (!row_sel_test_other_conds(plan)) {
if (plan->unique_search) {
goto table_exhausted;
}
goto next_rec;
}
/* PHASE 7: We found a new qualifying row for the current table; push
the row if prefetch is on, or move to the next table in the join */
plan->n_rows_fetched++;
ut_ad(plan->pcur.latch_mode == node->latch_mode);
if (node->select_will_do_update) {
/* This is a searched update and we can do the update in-place,
saving CPU time */
row_upd_in_place_in_select(node, thr, &mtr);
leaf_contains_updates = TRUE;
/* When the database is in the online backup mode, the number
of log records for a single mtr should be small: increment the
cost counter to ensure it */
cost_counter += 1 + (SEL_COST_LIMIT / 8);
if (plan->unique_search) {
goto table_exhausted;
}
goto next_rec;
}
if ((plan->n_rows_fetched <= SEL_PREFETCH_LIMIT)
|| plan->unique_search || plan->no_prefetch
|| plan->table->big_rows) {
/* No prefetch in operation: go to the next table */
goto next_table;
}
sel_push_prefetched_row(plan);
if (plan->n_rows_prefetched == SEL_MAX_N_PREFETCH) {
/* The prefetch buffer is now full */
sel_pop_prefetched_row(plan);
goto next_table;
}
next_rec:
ut_ad(!search_latch_locked);
if (mtr_has_extra_clust_latch) {
/* We must commit &mtr if we are moving to the next
non-clustered index record, because we could break the
latching order if we would access a different clustered
index page right away without releasing the previous. */
goto commit_mtr_for_a_while;
}
if (leaf_contains_updates
&& btr_pcur_is_after_last_on_page(&(plan->pcur), &mtr)) {
/* We must commit &mtr if we are moving to a different page,
because we have done updates to the x-latched leaf page, and
the latch would be released in btr_pcur_move_to_next, without
&mtr getting committed there */
ut_ad(node->asc);
goto commit_mtr_for_a_while;
}
if (node->asc) {
moved = btr_pcur_move_to_next(&(plan->pcur), &mtr);
} else {
moved = btr_pcur_move_to_prev(&(plan->pcur), &mtr);
}
if (!moved) {
goto table_exhausted;
}
cursor_just_opened = FALSE;
/* END OF RECORD LOOP
------------------ */
goto rec_loop;
next_table:
/* We found a record which satisfies the conditions: we can move to
the next table or return a row in the result set */
ut_ad(btr_pcur_is_on_user_rec(&(plan->pcur), &mtr));
if (plan->unique_search && !node->can_get_updated) {
plan->cursor_at_end = TRUE;
} else {
ut_ad(!search_latch_locked);
plan->stored_cursor_rec_processed = TRUE;
btr_pcur_store_position(&(plan->pcur), &mtr);
}
mtr_commit(&mtr);
leaf_contains_updates = FALSE;
mtr_has_extra_clust_latch = FALSE;
next_table_no_mtr:
/* If we use 'goto' to this label, it means that the row was popped
from the prefetched rows stack, and &mtr is already committed */
if (node->fetch_table + 1 == node->n_tables) {
sel_eval_select_list(node);
if (node->is_aggregate) {
goto table_loop;
}
sel_assign_into_var_values(node->into_list, node);
thr->run_node = que_node_get_parent(node);
if (search_latch_locked) {
rw_lock_s_unlock(&btr_search_latch);
}
err = DB_SUCCESS;
goto func_exit;
}
node->fetch_table++;
/* When we move to the next table, we first reset the plan cursor:
we do not care about resetting it when we backtrack from a table */
plan_reset_cursor(sel_node_get_nth_plan(node, node->fetch_table));
goto table_loop;
table_exhausted:
/* The table cursor pcur reached the result set end: backtrack to the
previous table in the join if we do not have cached prefetched rows */
plan->cursor_at_end = TRUE;
mtr_commit(&mtr);
leaf_contains_updates = FALSE;
mtr_has_extra_clust_latch = FALSE;
if (plan->n_rows_prefetched > 0) {
/* The table became exhausted during a prefetch */
sel_pop_prefetched_row(plan);
goto next_table_no_mtr;
}
table_exhausted_no_mtr:
if (node->fetch_table == 0) {
err = DB_SUCCESS;
if (node->is_aggregate && !node->aggregate_already_fetched) {
node->aggregate_already_fetched = TRUE;
sel_assign_into_var_values(node->into_list, node);
thr->run_node = que_node_get_parent(node);
if (search_latch_locked) {
rw_lock_s_unlock(&btr_search_latch);
}
goto func_exit;
}
node->state = SEL_NODE_NO_MORE_ROWS;
thr->run_node = que_node_get_parent(node);
if (search_latch_locked) {
rw_lock_s_unlock(&btr_search_latch);
}
goto func_exit;
}
node->fetch_table--;
goto table_loop;
stop_for_a_while:
/* Return control for a while to que_run_threads, so that runaway
queries can be canceled. NOTE that when we come here, we must, in a
locking read, have placed the necessary (possibly waiting request)
record lock on the cursor record or its successor: when we reposition
the cursor, this record lock guarantees that nobody can meanwhile have
inserted new records which should have appeared in the result set,
which would result in the phantom problem. */
ut_ad(!search_latch_locked);
plan->stored_cursor_rec_processed = FALSE;
btr_pcur_store_position(&(plan->pcur), &mtr);
mtr_commit(&mtr);
#ifdef UNIV_SYNC_DEBUG
ut_ad(sync_thread_levels_empty_gen(TRUE));
#endif /* UNIV_SYNC_DEBUG */
err = DB_SUCCESS;
goto func_exit;
commit_mtr_for_a_while:
/* Stores the cursor position and commits &mtr; this is used if
&mtr may contain latches which would break the latching order if
&mtr would not be committed and the latches released. */
plan->stored_cursor_rec_processed = TRUE;
ut_ad(!search_latch_locked);
btr_pcur_store_position(&(plan->pcur), &mtr);
mtr_commit(&mtr);
leaf_contains_updates = FALSE;
mtr_has_extra_clust_latch = FALSE;
#ifdef UNIV_SYNC_DEBUG
ut_ad(sync_thread_levels_empty_gen(TRUE));
#endif /* UNIV_SYNC_DEBUG */
goto table_loop;
lock_wait_or_error:
/* See the note at stop_for_a_while: the same holds for this case */
ut_ad(!btr_pcur_is_before_first_on_page(&(plan->pcur), &mtr)
|| !node->asc);
ut_ad(!search_latch_locked);
plan->stored_cursor_rec_processed = FALSE;
btr_pcur_store_position(&(plan->pcur), &mtr);
mtr_commit(&mtr);
#ifdef UNIV_SYNC_DEBUG
ut_ad(sync_thread_levels_empty_gen(TRUE));
#endif /* UNIV_SYNC_DEBUG */
func_exit:
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
return(err);
}
/**************************************************************************
Performs a select step. This is a high-level function used in SQL execution
graphs. */
que_thr_t*
row_sel_step(
/*=========*/
/* out: query thread to run next or NULL */
que_thr_t* thr) /* in: query thread */
{
ulint i_lock_mode;
sym_node_t* table_node;
sel_node_t* node;
ulint err;
ut_ad(thr);
node = thr->run_node;
ut_ad(que_node_get_type(node) == QUE_NODE_SELECT);
/* If this is a new time this node is executed (or when execution
resumes after wait for a table intention lock), set intention locks
on the tables, or assign a read view */
if (node->into_list && (thr->prev_node == que_node_get_parent(node))) {
node->state = SEL_NODE_OPEN;
}
if (node->state == SEL_NODE_OPEN) {
/* It may be that the current session has not yet started
its transaction, or it has been committed: */
trx_start_if_not_started(thr_get_trx(thr));
plan_reset_cursor(sel_node_get_nth_plan(node, 0));
if (node->consistent_read) {
/* Assign a read view for the query */
node->read_view = trx_assign_read_view(
thr_get_trx(thr));
} else {
if (node->set_x_locks) {
i_lock_mode = LOCK_IX;
} else {
i_lock_mode = LOCK_IS;
}
table_node = node->table_list;
while (table_node) {
err = lock_table(0, table_node->table,
i_lock_mode, thr);
if (err != DB_SUCCESS) {
thr_get_trx(thr)->error_state = err;
return(NULL);
}
table_node = que_node_get_next(table_node);
}
}
/* If this is an explicit cursor, copy stored procedure
variable values, so that the values cannot change between
fetches (currently, we copy them also for non-explicit
cursors) */
if (node->explicit_cursor
&& UT_LIST_GET_FIRST(node->copy_variables)) {
row_sel_copy_input_variable_vals(node);
}
node->state = SEL_NODE_FETCH;
node->fetch_table = 0;
if (node->is_aggregate) {
/* Reset the aggregate total values */
sel_reset_aggregate_vals(node);
}
}
err = row_sel(node, thr);
/* NOTE! if queries are parallelized, the following assignment may
have problems; the assignment should be made only if thr is the
only top-level thr in the graph: */
thr->graph->last_sel_node = node;
if (err != DB_SUCCESS) {
thr_get_trx(thr)->error_state = err;
return(NULL);
}
return(thr);
}
/**************************************************************************
Performs a fetch for a cursor. */
que_thr_t*
fetch_step(
/*=======*/
/* out: query thread to run next or NULL */
que_thr_t* thr) /* in: query thread */
{
sel_node_t* sel_node;
fetch_node_t* node;
ut_ad(thr);
node = thr->run_node;
sel_node = node->cursor_def;
ut_ad(que_node_get_type(node) == QUE_NODE_FETCH);
if (thr->prev_node != que_node_get_parent(node)) {
if (sel_node->state != SEL_NODE_NO_MORE_ROWS) {
if (node->into_list) {
sel_assign_into_var_values(node->into_list,
sel_node);
} else {
void* ret = (*node->func->func)(
sel_node, node->func->arg);
if (!ret) {
sel_node->state
= SEL_NODE_NO_MORE_ROWS;
}
}
}
thr->run_node = que_node_get_parent(node);
return(thr);
}
/* Make the fetch node the parent of the cursor definition for
the time of the fetch, so that execution knows to return to this
fetch node after a row has been selected or we know that there is
no row left */
sel_node->common.parent = node;
if (sel_node->state == SEL_NODE_CLOSED) {
fprintf(stderr,
"InnoDB: Error: fetch called on a closed cursor\n");
thr_get_trx(thr)->error_state = DB_ERROR;
return(NULL);
}
thr->run_node = sel_node;
return(thr);
}
/********************************************************************
Sample callback function for fetch that prints each row.*/
void*
row_fetch_print(
/*============*/
/* out: always returns non-NULL */
void* row, /* in: sel_node_t* */
void* user_arg) /* in: not used */
{
sel_node_t* node = row;
que_node_t* exp;
ulint i = 0;
UT_NOT_USED(user_arg);
fprintf(stderr, "row_fetch_print: row %p\n", row);
exp = node->select_list;
while (exp) {
dfield_t* dfield = que_node_get_val(exp);
dtype_t* type = dfield_get_type(dfield);
fprintf(stderr, " column %lu:\n", (ulong)i);
dtype_print(type);
fprintf(stderr, "\n");
if (dfield_get_len(dfield) != UNIV_SQL_NULL) {
ut_print_buf(stderr, dfield_get_data(dfield),
dfield_get_len(dfield));
} else {
fprintf(stderr, " <NULL>;");
}
fprintf(stderr, "\n");
exp = que_node_get_next(exp);
i++;
}
return((void*)42);
}
/********************************************************************
Callback function for fetch that stores an unsigned 4 byte integer to the
location pointed. The column's type must be DATA_INT, DATA_UNSIGNED, length
= 4. */
void*
row_fetch_store_uint4(
/*==================*/
/* out: always returns NULL */
void* row, /* in: sel_node_t* */
void* user_arg) /* in: data pointer */
{
sel_node_t* node = row;
ib_uint32_t* val = user_arg;
ulint tmp;
dfield_t* dfield = que_node_get_val(node->select_list);
dtype_t* type = dfield_get_type(dfield);
ulint len = dfield_get_len(dfield);
ut_a(dtype_get_mtype(type) == DATA_INT);
ut_a(dtype_get_prtype(type) & DATA_UNSIGNED);
ut_a(len == 4);
tmp = mach_read_from_4(dfield_get_data(dfield));
*val = (ib_uint32_t) tmp;
return(NULL);
}
/***************************************************************
Prints a row in a select result. */
que_thr_t*
row_printf_step(
/*============*/
/* out: query thread to run next or NULL */
que_thr_t* thr) /* in: query thread */
{
row_printf_node_t* node;
sel_node_t* sel_node;
que_node_t* arg;
ut_ad(thr);
node = thr->run_node;
sel_node = node->sel_node;
ut_ad(que_node_get_type(node) == QUE_NODE_ROW_PRINTF);
if (thr->prev_node == que_node_get_parent(node)) {
/* Reset the cursor */
sel_node->state = SEL_NODE_OPEN;
/* Fetch next row to print */
thr->run_node = sel_node;
return(thr);
}
if (sel_node->state != SEL_NODE_FETCH) {
ut_ad(sel_node->state == SEL_NODE_NO_MORE_ROWS);
/* No more rows to print */
thr->run_node = que_node_get_parent(node);
return(thr);
}
arg = sel_node->select_list;
while (arg) {
dfield_print_also_hex(que_node_get_val(arg));
fputs(" ::: ", stderr);
arg = que_node_get_next(arg);
}
putc('\n', stderr);
/* Fetch next row to print */
thr->run_node = sel_node;
return(thr);
}
/********************************************************************
Converts a key value stored in MySQL format to an Innobase dtuple. The last
field of the key value may be just a prefix of a fixed length field: hence
the parameter key_len. But currently we do not allow search keys where the
last field is only a prefix of the full key field len and print a warning if
such appears. A counterpart of this function is
ha_innobase::store_key_val_for_row() in ha_innodb.cc. */
void
row_sel_convert_mysql_key_to_innobase(
/*==================================*/
dtuple_t* tuple, /* in: tuple where to build;
NOTE: we assume that the type info
in the tuple is already according
to index! */
byte* buf, /* in: buffer to use in field
conversions */
ulint buf_len, /* in: buffer length */
dict_index_t* index, /* in: index of the key value */
byte* key_ptr, /* in: MySQL key value */
ulint key_len, /* in: MySQL key value length */
trx_t* trx) /* in: transaction */
{
byte* original_buf = buf;
byte* original_key_ptr = key_ptr;
dict_field_t* field;
dfield_t* dfield;
ulint data_offset;
ulint data_len;
ulint data_field_len;
ibool is_null;
byte* key_end;
ulint n_fields = 0;
ulint type;
/* For documentation of the key value storage format in MySQL, see
ha_innobase::store_key_val_for_row() in ha_innodb.cc. */
key_end = key_ptr + key_len;
/* Permit us to access any field in the tuple (ULINT_MAX): */
dtuple_set_n_fields(tuple, ULINT_MAX);
dfield = dtuple_get_nth_field(tuple, 0);
field = dict_index_get_nth_field(index, 0);
if (dfield_get_type(dfield)->mtype == DATA_SYS) {
/* A special case: we are looking for a position in the
generated clustered index which InnoDB automatically added
to a table with no primary key: the first and the only
ordering column is ROW_ID which InnoDB stored to the key_ptr
buffer. */
ut_a(key_len == DATA_ROW_ID_LEN);
dfield_set_data(dfield, key_ptr, DATA_ROW_ID_LEN);
dtuple_set_n_fields(tuple, 1);
return;
}
while (key_ptr < key_end) {
ut_a(field->col->mtype == dfield_get_type(dfield)->mtype);
data_offset = 0;
is_null = FALSE;
if (!(dfield_get_type(dfield)->prtype & DATA_NOT_NULL)) {
/* The first byte in the field tells if this is
an SQL NULL value */
data_offset = 1;
if (*key_ptr != 0) {
dfield_set_data(dfield, NULL, UNIV_SQL_NULL);
is_null = TRUE;
}
}
type = dfield_get_type(dfield)->mtype;
/* Calculate data length and data field total length */
if (type == DATA_BLOB) {
/* The key field is a column prefix of a BLOB or
TEXT */
ut_a(field->prefix_len > 0);
/* MySQL stores the actual data length to the first 2
bytes after the optional SQL NULL marker byte. The
storage format is little-endian, that is, the most
significant byte at a higher address. In UTF-8, MySQL
seems to reserve field->prefix_len bytes for
storing this field in the key value buffer, even
though the actual value only takes data_len bytes
from the start. */
data_len = key_ptr[data_offset]
+ 256 * key_ptr[data_offset + 1];
data_field_len = data_offset + 2 + field->prefix_len;
data_offset += 2;
/* Now that we know the length, we store the column
value like it would be a fixed char field */
} else if (field->prefix_len > 0) {
/* Looks like MySQL pads unused end bytes in the
prefix with space. Therefore, also in UTF-8, it is ok
to compare with a prefix containing full prefix_len
bytes, and no need to take at most prefix_len / 3
UTF-8 characters from the start.
If the prefix is used as the upper end of a LIKE
'abc%' query, then MySQL pads the end with chars
0xff. TODO: in that case does it any harm to compare
with the full prefix_len bytes. How do characters
0xff in UTF-8 behave? */
data_len = field->prefix_len;
data_field_len = data_offset + data_len;
} else {
data_len = dfield_get_type(dfield)->len;
data_field_len = data_offset + data_len;
}
if (dtype_get_mysql_type(dfield_get_type(dfield))
== DATA_MYSQL_TRUE_VARCHAR
&& dfield_get_type(dfield)->mtype != DATA_INT) {
/* In a MySQL key value format, a true VARCHAR is
always preceded by 2 bytes of a length field.
dfield_get_type(dfield)->len returns the maximum
'payload' len in bytes. That does not include the
2 bytes that tell the actual data length.
We added the check != DATA_INT to make sure we do
not treat MySQL ENUM or SET as a true VARCHAR! */
data_len += 2;
data_field_len += 2;
}
/* Storing may use at most data_len bytes of buf */
if (!is_null) {
row_mysql_store_col_in_innobase_format(
dfield, buf,
FALSE, /* MySQL key value format col */
key_ptr + data_offset, data_len,
dict_table_is_comp(index->table));
buf += data_len;
}
key_ptr += data_field_len;
if (key_ptr > key_end) {
/* The last field in key was not a complete key field
but a prefix of it.
Print a warning about this! HA_READ_PREFIX_LAST does
not currently work in InnoDB with partial-field key
value prefixes. Since MySQL currently uses a padding
trick to calculate LIKE 'abc%' type queries there
should never be partial-field prefixes in searches. */
ut_print_timestamp(stderr);
fputs(" InnoDB: Warning: using a partial-field"
" key prefix in search.\n"
"InnoDB: ", stderr);
dict_index_name_print(stderr, trx, index);
fprintf(stderr, ". Last data field length %lu bytes,\n"
"InnoDB: key ptr now exceeds"
" key end by %lu bytes.\n"
"InnoDB: Key value in the MySQL format:\n",
(ulong) data_field_len,
(ulong) (key_ptr - key_end));
fflush(stderr);
ut_print_buf(stderr, original_key_ptr, key_len);
fprintf(stderr, "\n");
if (!is_null) {
dfield->len -= (ulint)(key_ptr - key_end);
}
}
n_fields++;
field++;
dfield++;
}
ut_a(buf <= original_buf + buf_len);
/* We set the length of tuple to n_fields: we assume that the memory
area allocated for it is big enough (usually bigger than n_fields). */
dtuple_set_n_fields(tuple, n_fields);
}
/******************************************************************
Stores the row id to the prebuilt struct. */
static
void
row_sel_store_row_id_to_prebuilt(
/*=============================*/
row_prebuilt_t* prebuilt, /* in: prebuilt */
rec_t* index_rec, /* in: record */
dict_index_t* index, /* in: index of the record */
const ulint* offsets) /* in: rec_get_offsets
(index_rec, index) */
{
byte* data;
ulint len;
ut_ad(rec_offs_validate(index_rec, index, offsets));
data = rec_get_nth_field(
index_rec, offsets,
dict_index_get_sys_col_pos(index, DATA_ROW_ID), &len);
if (len != DATA_ROW_ID_LEN) {
fprintf(stderr,
"InnoDB: Error: Row id field is"
" wrong length %lu in ", (ulong) len);
dict_index_name_print(stderr, prebuilt->trx, index);
fprintf(stderr, "\n"
"InnoDB: Field number %lu, record:\n",
(ulong) dict_index_get_sys_col_pos(index,
DATA_ROW_ID));
rec_print_new(stderr, index_rec, offsets);
putc('\n', stderr);
ut_error;
}
ut_memcpy(prebuilt->row_id, data, len);
}
/******************************************************************
Stores a non-SQL-NULL field in the MySQL format. The counterpart of this
function is row_mysql_store_col_in_innobase_format() in row0mysql.c. */
static
void
row_sel_field_store_in_mysql_format(
/*================================*/
byte* dest, /* in/out: buffer where to store; NOTE that BLOBs
are not in themselves stored here: the caller must
allocate and copy the BLOB into buffer before, and pass
the pointer to the BLOB in 'data' */
const mysql_row_templ_t* templ, /* in: MySQL column template.
Its following fields are referenced:
type, is_unsigned, mysql_col_len, mbminlen, mbmaxlen */
byte* data, /* in: data to store */
ulint len) /* in: length of the data */
{
byte* ptr;
byte* field_end;
byte* pad_ptr;
ut_ad(len != UNIV_SQL_NULL);
UNIV_MEM_ASSERT_RW(data, len);
if (templ->type == DATA_INT) {
/* Convert integer data from Innobase to a little-endian
format, sign bit restored to normal */
ptr = dest + len;
for (;;) {
ptr--;
*ptr = *data;
if (ptr == dest) {
break;
}
data++;
}
if (!templ->is_unsigned) {
dest[len - 1] = (byte) (dest[len - 1] ^ 128);
}
ut_ad(templ->mysql_col_len == len);
} else if (templ->type == DATA_VARCHAR
|| templ->type == DATA_VARMYSQL
|| templ->type == DATA_BINARY) {
field_end = dest + templ->mysql_col_len;
if (templ->mysql_type == DATA_MYSQL_TRUE_VARCHAR) {
/* This is a >= 5.0.3 type true VARCHAR. Store the
length of the data to the first byte or the first
two bytes of dest. */
dest = row_mysql_store_true_var_len(
dest, len, templ->mysql_length_bytes);
}
/* Copy the actual data */
ut_memcpy(dest, data, len);
/* Pad with trailing spaces. We pad with spaces also the
unused end of a >= 5.0.3 true VARCHAR column, just in case
MySQL expects its contents to be deterministic. */
pad_ptr = dest + len;
ut_ad(templ->mbminlen <= templ->mbmaxlen);
/* We handle UCS2 charset strings differently. */
if (templ->mbminlen == 2) {
/* A space char is two bytes, 0x0020 in UCS2 */
if (len & 1) {
/* A 0x20 has been stripped from the column.
Pad it back. */
if (pad_ptr < field_end) {
*pad_ptr = 0x20;
pad_ptr++;
}
}
/* Pad the rest of the string with 0x0020 */
while (pad_ptr < field_end) {
*pad_ptr = 0x00;
pad_ptr++;
*pad_ptr = 0x20;
pad_ptr++;
}
} else {
ut_ad(templ->mbminlen == 1);
/* space=0x20 */
memset(pad_ptr, 0x20, field_end - pad_ptr);
}
} else if (templ->type == DATA_BLOB) {
/* Store a pointer to the BLOB buffer to dest: the BLOB was
already copied to the buffer in row_sel_store_mysql_rec */
row_mysql_store_blob_ref(dest, templ->mysql_col_len, data,
len);
} else if (templ->type == DATA_MYSQL) {
memcpy(dest, data, len);
ut_ad(templ->mysql_col_len >= len);
ut_ad(templ->mbmaxlen >= templ->mbminlen);
ut_ad(templ->mbmaxlen > templ->mbminlen
|| templ->mysql_col_len == len);
/* The following assertion would fail for old tables
containing UTF-8 ENUM columns due to Bug #9526. */
ut_ad(!templ->mbmaxlen
|| !(templ->mysql_col_len % templ->mbmaxlen));
ut_ad(len * templ->mbmaxlen >= templ->mysql_col_len);
if (templ->mbminlen != templ->mbmaxlen) {
/* Pad with spaces. This undoes the stripping
done in row0mysql.ic, function
row_mysql_store_col_in_innobase_format(). */
memset(dest + len, 0x20, templ->mysql_col_len - len);
}
} else {
ut_ad(templ->type == DATA_CHAR
|| templ->type == DATA_FIXBINARY
/*|| templ->type == DATA_SYS_CHILD
|| templ->type == DATA_SYS*/
|| templ->type == DATA_FLOAT
|| templ->type == DATA_DOUBLE
|| templ->type == DATA_DECIMAL);
ut_ad(templ->mysql_col_len == len);
memcpy(dest, data, len);
}
}
/******************************************************************
Convert a row in the Innobase format to a row in the MySQL format.
Note that the template in prebuilt may advise us to copy only a few
columns to mysql_rec, other columns are left blank. All columns may not
be needed in the query. */
static
ibool
row_sel_store_mysql_rec(
/*====================*/
/* out: TRUE if success, FALSE if
could not allocate memory for a BLOB
(though we may also assert in that
case) */
byte* mysql_rec, /* out: row in the MySQL format */
row_prebuilt_t* prebuilt, /* in: prebuilt struct */
rec_t* rec, /* in: Innobase record in the index
which was described in prebuilt's
template */
const ulint* offsets) /* in: array returned by
rec_get_offsets() */
{
mysql_row_templ_t* templ;
mem_heap_t* extern_field_heap = NULL;
mem_heap_t* heap;
byte* data;
ulint len;
ulint i;
ut_ad(prebuilt->mysql_template);
ut_ad(prebuilt->default_rec);
ut_ad(rec_offs_validate(rec, NULL, offsets));
if (UNIV_LIKELY_NULL(prebuilt->blob_heap)) {
mem_heap_free(prebuilt->blob_heap);
prebuilt->blob_heap = NULL;
}
/* init null bytes with default values as they might be
left uninitialized in some cases and this uninited bytes
might be copied into mysql record buffer that leads to
valgrind warnings */
memcpy(mysql_rec, prebuilt->default_rec, prebuilt->null_bitmap_len);
for (i = 0; i < prebuilt->n_template; i++) {
templ = prebuilt->mysql_template + i;
if (UNIV_UNLIKELY(rec_offs_nth_extern(offsets,
templ->rec_field_no))) {
/* Copy an externally stored field to the temporary
heap */
ut_a(!prebuilt->trx->has_search_latch);
if (UNIV_UNLIKELY(templ->type == DATA_BLOB)) {
if (prebuilt->blob_heap == NULL) {
prebuilt->blob_heap = mem_heap_create(
UNIV_PAGE_SIZE);
}
heap = prebuilt->blob_heap;
} else {
extern_field_heap
= mem_heap_create(UNIV_PAGE_SIZE);
heap = extern_field_heap;
}
/* NOTE: if we are retrieving a big BLOB, we may
already run out of memory in the next call, which
causes an assert */
data = btr_rec_copy_externally_stored_field(
rec, offsets, templ->rec_field_no,
&len, heap);
ut_a(len != UNIV_SQL_NULL);
} else {
/* Field is stored in the row. */
data = rec_get_nth_field(rec, offsets,
templ->rec_field_no, &len);
if (UNIV_UNLIKELY(templ->type == DATA_BLOB)
&& len != UNIV_SQL_NULL) {
/* It is a BLOB field locally stored in the
InnoDB record: we MUST copy its contents to
prebuilt->blob_heap here because later code
assumes all BLOB values have been copied to a
safe place. */
if (prebuilt->blob_heap == NULL) {
prebuilt->blob_heap = mem_heap_create(
UNIV_PAGE_SIZE);
}
data = memcpy(mem_heap_alloc(
prebuilt->blob_heap, len),
data, len);
}
}
if (len != UNIV_SQL_NULL) {
row_sel_field_store_in_mysql_format(
mysql_rec + templ->mysql_col_offset,
templ, data, len);
/* Cleanup */
if (extern_field_heap) {
mem_heap_free(extern_field_heap);
extern_field_heap = NULL;
}
if (templ->mysql_null_bit_mask) {
/* It is a nullable column with a non-NULL
value */
mysql_rec[templ->mysql_null_byte_offset]
&= ~(byte) templ->mysql_null_bit_mask;
}
} else {
/* MySQL assumes that the field for an SQL
NULL value is set to the default value. */
UNIV_MEM_ASSERT_RW(prebuilt->default_rec
+ templ->mysql_col_offset,
templ->mysql_col_len);
mysql_rec[templ->mysql_null_byte_offset]
|= (byte) templ->mysql_null_bit_mask;
memcpy(mysql_rec + templ->mysql_col_offset,
prebuilt->default_rec + templ->mysql_col_offset,
templ->mysql_col_len);
}
}
return(TRUE);
}
/*************************************************************************
Builds a previous version of a clustered index record for a consistent read */
static
ulint
row_sel_build_prev_vers_for_mysql(
/*==============================*/
/* out: DB_SUCCESS or error code */
read_view_t* read_view, /* in: read view */
dict_index_t* clust_index, /* in: clustered index */
row_prebuilt_t* prebuilt, /* in: prebuilt struct */
rec_t* rec, /* in: record in a clustered index */
ulint** offsets, /* in/out: offsets returned by
rec_get_offsets(rec, clust_index) */
mem_heap_t** offset_heap, /* in/out: memory heap from which
the offsets are allocated */
rec_t** old_vers, /* out: old version, or NULL if the
record does not exist in the view:
i.e., it was freshly inserted
afterwards */
mtr_t* mtr) /* in: mtr */
{
ulint err;
if (prebuilt->old_vers_heap) {
mem_heap_empty(prebuilt->old_vers_heap);
} else {
prebuilt->old_vers_heap = mem_heap_create(200);
}
err = row_vers_build_for_consistent_read(
rec, mtr, clust_index, offsets, read_view, offset_heap,
prebuilt->old_vers_heap, old_vers);
return(err);
}
/*************************************************************************
Retrieves the clustered index record corresponding to a record in a
non-clustered index. Does the necessary locking. Used in the MySQL
interface. */
static
ulint
row_sel_get_clust_rec_for_mysql(
/*============================*/
/* out: DB_SUCCESS, DB_SUCCESS_LOCKED_REC,
or error code */
row_prebuilt_t* prebuilt,/* in: prebuilt struct in the handle */
dict_index_t* sec_index,/* in: secondary index where rec resides */
rec_t* rec, /* in: record in a non-clustered index; if
this is a locking read, then rec is not
allowed to be delete-marked, and that would
not make sense either */
que_thr_t* thr, /* in: query thread */
rec_t** out_rec,/* out: clustered record or an old version of
it, NULL if the old version did not exist
in the read view, i.e., it was a fresh
inserted version */
ulint** offsets,/* out: offsets returned by
rec_get_offsets(out_rec, clust_index) */
mem_heap_t** offset_heap,/* in/out: memory heap from which
the offsets are allocated */
mtr_t* mtr) /* in: mtr used to get access to the
non-clustered record; the same mtr is used to
access the clustered index */
{
dict_index_t* clust_index;
rec_t* clust_rec;
rec_t* old_vers;
ulint err;
trx_t* trx;
*out_rec = NULL;
trx = thr_get_trx(thr);
row_build_row_ref_in_tuple(prebuilt->clust_ref, sec_index, rec, trx);
clust_index = dict_table_get_first_index(sec_index->table);
btr_pcur_open_with_no_init(clust_index, prebuilt->clust_ref,
PAGE_CUR_LE, BTR_SEARCH_LEAF,
prebuilt->clust_pcur, 0, mtr);
clust_rec = btr_pcur_get_rec(prebuilt->clust_pcur);
prebuilt->clust_pcur->trx_if_known = trx;
/* Note: only if the search ends up on a non-infimum record is the
low_match value the real match to the search tuple */
if (!page_rec_is_user_rec(clust_rec)
|| btr_pcur_get_low_match(prebuilt->clust_pcur)
< dict_index_get_n_unique(clust_index)) {
/* In a rare case it is possible that no clust rec is found
for a delete-marked secondary index record: if in row0umod.c
in row_undo_mod_remove_clust_low() we have already removed
the clust rec, while purge is still cleaning and removing
secondary index records associated with earlier versions of
the clustered index record. In that case we know that the
clustered index record did not exist in the read view of
trx. */
if (!rec_get_deleted_flag(rec,
dict_table_is_comp(sec_index->table))
|| prebuilt->select_lock_type != LOCK_NONE) {
ut_print_timestamp(stderr);
fputs(" InnoDB: error clustered record"
" for sec rec not found\n"
"InnoDB: ", stderr);
dict_index_name_print(stderr, trx, sec_index);
fputs("\n"
"InnoDB: sec index record ", stderr);
rec_print(stderr, rec, sec_index);
fputs("\n"
"InnoDB: clust index record ", stderr);
rec_print(stderr, clust_rec, clust_index);
putc('\n', stderr);
trx_print(stderr, trx, 600);
fputs("\n"
"InnoDB: Submit a detailed bug report"
" to http://bugs.mysql.com\n", stderr);
}
clust_rec = NULL;
err = DB_SUCCESS;
goto func_exit;
}
*offsets = rec_get_offsets(clust_rec, clust_index, *offsets,
ULINT_UNDEFINED, offset_heap);
if (prebuilt->select_lock_type != LOCK_NONE) {
/* Try to place a lock on the index record; we are searching
the clust rec with a unique condition, hence
we set a LOCK_REC_NOT_GAP type lock */
err = lock_clust_rec_read_check_and_lock(
0, clust_rec, clust_index, *offsets,
prebuilt->select_lock_type, LOCK_REC_NOT_GAP, thr);
switch (err) {
case DB_SUCCESS:
case DB_SUCCESS_LOCKED_REC:
break;
default:
goto err_exit;
}
} else {
/* This is a non-locking consistent read: if necessary, fetch
a previous version of the record */
old_vers = NULL;
/* If the isolation level allows reading of uncommitted data,
then we never look for an earlier version */
if (trx->isolation_level > TRX_ISO_READ_UNCOMMITTED
&& !lock_clust_rec_cons_read_sees(
clust_rec, clust_index, *offsets,
trx->read_view)) {
/* The following call returns 'offsets' associated with
'old_vers' */
err = row_sel_build_prev_vers_for_mysql(
trx->read_view, clust_index, prebuilt,
clust_rec, offsets, offset_heap, &old_vers,
mtr);
if (err != DB_SUCCESS) {
goto err_exit;
}
clust_rec = old_vers;
}
/* If we had to go to an earlier version of row or the
secondary index record is delete marked, then it may be that
the secondary index record corresponding to clust_rec
(or old_vers) is not rec; in that case we must ignore
such row because in our snapshot rec would not have existed.
Remember that from rec we cannot see directly which transaction
id corresponds to it: we have to go to the clustered index
record. A query where we want to fetch all rows where
the secondary index value is in some interval would return
a wrong result if we would not drop rows which we come to
visit through secondary index records that would not really
exist in our snapshot. */
if (clust_rec && (old_vers || rec_get_deleted_flag(
rec,
dict_table_is_comp(
sec_index->table)))
&& !row_sel_sec_rec_is_for_clust_rec(
rec, sec_index, clust_rec, clust_index)) {
clust_rec = NULL;
} else {
#ifdef UNIV_SEARCH_DEBUG
ut_a(clust_rec == NULL
|| row_sel_sec_rec_is_for_clust_rec(
rec, sec_index, clust_rec, clust_index));
#endif
}
err = DB_SUCCESS;
}
func_exit:
*out_rec = clust_rec;
if (prebuilt->select_lock_type != LOCK_NONE) {
/* We may use the cursor in update or in unlock_row():
store its position */
btr_pcur_store_position(prebuilt->clust_pcur, mtr);
}
err_exit:
return(err);
}
/************************************************************************
Restores cursor position after it has been stored. We have to take into
account that the record cursor was positioned on may have been deleted.
Then we may have to move the cursor one step up or down. */
static
ibool
sel_restore_position_for_mysql(
/*===========================*/
/* out: TRUE if we may need to
process the record the cursor is
now positioned on (i.e. we should
not go to the next record yet) */
ibool* same_user_rec, /* out: TRUE if we were able to restore
the cursor on a user record with the
same ordering prefix in in the
B-tree index */
ulint latch_mode, /* in: latch mode wished in
restoration */
btr_pcur_t* pcur, /* in: cursor whose position
has been stored */
ibool moves_up, /* in: TRUE if the cursor moves up
in the index */
mtr_t* mtr) /* in: mtr; CAUTION: may commit
mtr temporarily! */
{
ibool success;
ulint relative_position;
relative_position = pcur->rel_pos;
success = btr_pcur_restore_position(latch_mode, pcur, mtr);
*same_user_rec = success;
if (relative_position == BTR_PCUR_ON) {
if (success) {
return(FALSE);
}
if (moves_up) {
btr_pcur_move_to_next(pcur, mtr);
}
return(TRUE);
}
if (relative_position == BTR_PCUR_AFTER
|| relative_position == BTR_PCUR_AFTER_LAST_IN_TREE) {
if (moves_up) {
return(TRUE);
}
if (btr_pcur_is_on_user_rec(pcur, mtr)) {
btr_pcur_move_to_prev(pcur, mtr);
}
return(TRUE);
}
ut_ad(relative_position == BTR_PCUR_BEFORE
|| relative_position == BTR_PCUR_BEFORE_FIRST_IN_TREE);
if (moves_up && btr_pcur_is_on_user_rec(pcur, mtr)) {
btr_pcur_move_to_next(pcur, mtr);
}
return(TRUE);
}
/************************************************************************
Pops a cached row for MySQL from the fetch cache. */
UNIV_INLINE
void
row_sel_pop_cached_row_for_mysql(
/*=============================*/
byte* buf, /* in/out: buffer where to copy the
row */
row_prebuilt_t* prebuilt) /* in: prebuilt struct */
{
ulint i;
mysql_row_templ_t* templ;
byte* cached_rec;
ut_ad(prebuilt->n_fetch_cached > 0);
ut_ad(prebuilt->mysql_prefix_len <= prebuilt->mysql_row_len);
if (UNIV_UNLIKELY(prebuilt->keep_other_fields_on_keyread)) {
/* Copy cache record field by field, don't touch fields that
are not covered by current key */
cached_rec = prebuilt->fetch_cache[
prebuilt->fetch_cache_first];
for (i = 0; i < prebuilt->n_template; i++) {
templ = prebuilt->mysql_template + i;
#if 0 /* Some of the cached_rec may legitimately be uninitialized. */
UNIV_MEM_ASSERT_RW(cached_rec
+ templ->mysql_col_offset,
templ->mysql_col_len);
#endif
ut_memcpy(buf + templ->mysql_col_offset,
cached_rec + templ->mysql_col_offset,
templ->mysql_col_len);
/* Copy NULL bit of the current field from cached_rec
to buf */
if (templ->mysql_null_bit_mask) {
buf[templ->mysql_null_byte_offset]
^= (buf[templ->mysql_null_byte_offset]
^ cached_rec[templ->mysql_null_byte_offset])
& (byte)templ->mysql_null_bit_mask;
}
}
}
else {
#if 0 /* Some of the cached_rec may legitimately be uninitialized. */
UNIV_MEM_ASSERT_RW(prebuilt->fetch_cache
[prebuilt->fetch_cache_first],
prebuilt->mysql_prefix_len);
#endif
ut_memcpy(buf,
prebuilt->fetch_cache[prebuilt->fetch_cache_first],
prebuilt->mysql_prefix_len);
}
prebuilt->n_fetch_cached--;
prebuilt->fetch_cache_first++;
if (prebuilt->n_fetch_cached == 0) {
prebuilt->fetch_cache_first = 0;
}
}
/************************************************************************
Pushes a row for MySQL to the fetch cache. */
UNIV_INLINE
void
row_sel_push_cache_row_for_mysql(
/*=============================*/
row_prebuilt_t* prebuilt, /* in: prebuilt struct */
rec_t* rec, /* in: record to push */
const ulint* offsets) /* in: rec_get_offsets() */
{
byte* buf;
ulint i;
ut_ad(prebuilt->n_fetch_cached < MYSQL_FETCH_CACHE_SIZE);
ut_ad(rec_offs_validate(rec, NULL, offsets));
ut_a(!prebuilt->templ_contains_blob);
if (prebuilt->fetch_cache[0] == NULL) {
/* Allocate memory for the fetch cache */
for (i = 0; i < MYSQL_FETCH_CACHE_SIZE; i++) {
/* A user has reported memory corruption in these
buffers in Linux. Put magic numbers there to help
to track a possible bug. */
buf = mem_alloc(prebuilt->mysql_row_len + 8);
prebuilt->fetch_cache[i] = buf + 4;
mach_write_to_4(buf, ROW_PREBUILT_FETCH_MAGIC_N);
mach_write_to_4(buf + 4 + prebuilt->mysql_row_len,
ROW_PREBUILT_FETCH_MAGIC_N);
}
}
ut_ad(prebuilt->fetch_cache_first == 0);
UNIV_MEM_INVALID(prebuilt->fetch_cache[prebuilt->n_fetch_cached],
prebuilt->mysql_row_len);
if (UNIV_UNLIKELY(!row_sel_store_mysql_rec(
prebuilt->fetch_cache[
prebuilt->n_fetch_cached],
prebuilt, rec, offsets))) {
ut_error;
}
prebuilt->n_fetch_cached++;
}
/*************************************************************************
Tries to do a shortcut to fetch a clustered index record with a unique key,
using the hash index if possible (not always). We assume that the search
mode is PAGE_CUR_GE, it is a consistent read, there is a read view in trx,
btr search latch has been locked in S-mode. */
static
ulint
row_sel_try_search_shortcut_for_mysql(
/*==================================*/
/* out: SEL_FOUND, SEL_EXHAUSTED, SEL_RETRY */
rec_t** out_rec,/* out: record if found */
row_prebuilt_t* prebuilt,/* in: prebuilt struct */
ulint** offsets,/* in/out: for rec_get_offsets(*out_rec) */
mem_heap_t** heap, /* in/out: heap for rec_get_offsets() */
mtr_t* mtr) /* in: started mtr */
{
dict_index_t* index = prebuilt->index;
dtuple_t* search_tuple = prebuilt->search_tuple;
btr_pcur_t* pcur = prebuilt->pcur;
trx_t* trx = prebuilt->trx;
rec_t* rec;
ut_ad(index->type & DICT_CLUSTERED);
ut_ad(!prebuilt->templ_contains_blob);
btr_pcur_open_with_no_init(index, search_tuple, PAGE_CUR_GE,
BTR_SEARCH_LEAF, pcur,
#ifndef UNIV_SEARCH_DEBUG
RW_S_LATCH,
#else
0,
#endif
mtr);
rec = btr_pcur_get_rec(pcur);
if (!page_rec_is_user_rec(rec)) {
return(SEL_RETRY);
}
/* As the cursor is now placed on a user record after a search with
the mode PAGE_CUR_GE, the up_match field in the cursor tells how many
fields in the user record matched to the search tuple */
if (btr_pcur_get_up_match(pcur) < dtuple_get_n_fields(search_tuple)) {
return(SEL_EXHAUSTED);
}
/* This is a non-locking consistent read: if necessary, fetch
a previous version of the record */
*offsets = rec_get_offsets(rec, index, *offsets,
ULINT_UNDEFINED, heap);
if (!lock_clust_rec_cons_read_sees(rec, index,
*offsets, trx->read_view)) {
return(SEL_RETRY);
}
if (rec_get_deleted_flag(rec, dict_table_is_comp(index->table))) {
return(SEL_EXHAUSTED);
}
*out_rec = rec;
return(SEL_FOUND);
}
/************************************************************************
Searches for rows in the database. This is used in the interface to
MySQL. This function opens a cursor, and also implements fetch next
and fetch prev. NOTE that if we do a search with a full key value
from a unique index (ROW_SEL_EXACT), then we will not store the cursor
position and fetch next or fetch prev must not be tried to the cursor! */
ulint
row_search_for_mysql(
/*=================*/
/* out: DB_SUCCESS,
DB_RECORD_NOT_FOUND,
DB_END_OF_INDEX, DB_DEADLOCK,
DB_LOCK_TABLE_FULL, DB_CORRUPTION,
or DB_TOO_BIG_RECORD */
byte* buf, /* in/out: buffer for the fetched
row in the MySQL format */
ulint mode, /* in: search mode PAGE_CUR_L, ... */
row_prebuilt_t* prebuilt, /* in: prebuilt struct for the
table handle; this contains the info
of search_tuple, index; if search
tuple contains 0 fields then we
position the cursor at the start or
the end of the index, depending on
'mode' */
ulint match_mode, /* in: 0 or ROW_SEL_EXACT or
ROW_SEL_EXACT_PREFIX */
ulint direction) /* in: 0 or ROW_SEL_NEXT or
ROW_SEL_PREV; NOTE: if this is != 0,
then prebuilt must have a pcur
with stored position! In opening of a
cursor 'direction' should be 0. */
{
dict_index_t* index = prebuilt->index;
ibool comp = dict_table_is_comp(index->table);
dtuple_t* search_tuple = prebuilt->search_tuple;
btr_pcur_t* pcur = prebuilt->pcur;
trx_t* trx = prebuilt->trx;
dict_index_t* clust_index;
que_thr_t* thr;
rec_t* rec;
rec_t* result_rec;
rec_t* clust_rec;
ulint err = DB_SUCCESS;
ibool unique_search = FALSE;
ibool unique_search_from_clust_index = FALSE;
ibool mtr_has_extra_clust_latch = FALSE;
ibool moves_up = FALSE;
ibool set_also_gap_locks = TRUE;
/* if the query is a plain locking SELECT, and the isolation level
is <= TRX_ISO_READ_COMMITTED, then this is set to FALSE */
ibool did_semi_consistent_read = FALSE;
/* if the returned record was locked and we did a semi-consistent
read (fetch the newest committed version), then this is set to
TRUE */
#ifdef UNIV_SEARCH_DEBUG
ulint cnt = 0;
#endif /* UNIV_SEARCH_DEBUG */
ulint next_offs;
ibool same_user_rec;
mtr_t mtr;
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
*offsets_ = (sizeof offsets_) / sizeof *offsets_;
ut_ad(index && pcur && search_tuple);
ut_ad(trx->mysql_thread_id == os_thread_get_curr_id());
if (UNIV_UNLIKELY(prebuilt->table->ibd_file_missing)) {
ut_print_timestamp(stderr);
fprintf(stderr, " InnoDB: Error:\n"
"InnoDB: MySQL is trying to use a table handle"
" but the .ibd file for\n"
"InnoDB: table %s does not exist.\n"
"InnoDB: Have you deleted the .ibd file"
" from the database directory under\n"
"InnoDB: the MySQL datadir, or have you used"
" DISCARD TABLESPACE?\n"
"InnoDB: Look from\n"
"InnoDB: http://dev.mysql.com/doc/refman/5.1/en/"
"innodb-troubleshooting.html\n"
"InnoDB: how you can resolve the problem.\n",
prebuilt->table->name);
return(DB_ERROR);
}
if (UNIV_UNLIKELY(prebuilt->magic_n != ROW_PREBUILT_ALLOCATED)) {
fprintf(stderr,
"InnoDB: Error: trying to free a corrupt\n"
"InnoDB: table handle. Magic n %lu, table name ",
(ulong) prebuilt->magic_n);
ut_print_name(stderr, trx, TRUE, prebuilt->table->name);
putc('\n', stderr);
mem_analyze_corruption(prebuilt);
ut_error;
}
#if 0
/* August 19, 2005 by Heikki: temporarily disable this error
print until the cursor lock count is done correctly.
See bugs #12263 and #12456!*/
if (trx->n_mysql_tables_in_use == 0
&& UNIV_UNLIKELY(prebuilt->select_lock_type == LOCK_NONE)) {
/* Note that if MySQL uses an InnoDB temp table that it
created inside LOCK TABLES, then n_mysql_tables_in_use can
be zero; in that case select_lock_type is set to LOCK_X in
::start_stmt. */
fputs("InnoDB: Error: MySQL is trying to perform a SELECT\n"
"InnoDB: but it has not locked"
" any tables in ::external_lock()!\n",
stderr);
trx_print(stderr, trx, 600);
fputc('\n', stderr);
}
#endif
#if 0
fprintf(stderr, "Match mode %lu\n search tuple ",
(ulong) match_mode);
dtuple_print(search_tuple);
fprintf(stderr, "N tables locked %lu\n",
(ulong) trx->mysql_n_tables_locked);
#endif
/*-------------------------------------------------------------*/
/* PHASE 0: Release a possible s-latch we are holding on the
adaptive hash index latch if there is someone waiting behind */
if (UNIV_UNLIKELY(btr_search_latch.writer != RW_LOCK_NOT_LOCKED)
&& trx->has_search_latch) {
/* There is an x-latch request on the adaptive hash index:
release the s-latch to reduce starvation and wait for
BTR_SEA_TIMEOUT rounds before trying to keep it again over
calls from MySQL */
rw_lock_s_unlock(&btr_search_latch);
trx->has_search_latch = FALSE;
trx->search_latch_timeout = BTR_SEA_TIMEOUT;
}
/* Reset the new record lock info if srv_locks_unsafe_for_binlog
is set or session is using a READ COMMITED isolation level. Then
we are able to remove the record locks set here on an individual
row. */
prebuilt->new_rec_locks = 0;
/*-------------------------------------------------------------*/
/* PHASE 1: Try to pop the row from the prefetch cache */
if (UNIV_UNLIKELY(direction == 0)) {
trx->op_info = "starting index read";
prebuilt->n_rows_fetched = 0;
prebuilt->n_fetch_cached = 0;
prebuilt->fetch_cache_first = 0;
if (prebuilt->sel_graph == NULL) {
/* Build a dummy select query graph */
row_prebuild_sel_graph(prebuilt);
}
} else {
trx->op_info = "fetching rows";
if (prebuilt->n_rows_fetched == 0) {
prebuilt->fetch_direction = direction;
}
if (UNIV_UNLIKELY(direction != prebuilt->fetch_direction)) {
if (UNIV_UNLIKELY(prebuilt->n_fetch_cached > 0)) {
ut_error;
/* TODO: scrollable cursor: restore cursor to
the place of the latest returned row,
or better: prevent caching for a scroll
cursor! */
}
prebuilt->n_rows_fetched = 0;
prebuilt->n_fetch_cached = 0;
prebuilt->fetch_cache_first = 0;
} else if (UNIV_LIKELY(prebuilt->n_fetch_cached > 0)) {
row_sel_pop_cached_row_for_mysql(buf, prebuilt);
prebuilt->n_rows_fetched++;
srv_n_rows_read++;
err = DB_SUCCESS;
goto func_exit;
}
if (prebuilt->fetch_cache_first > 0
&& prebuilt->fetch_cache_first < MYSQL_FETCH_CACHE_SIZE) {
/* The previous returned row was popped from the fetch
cache, but the cache was not full at the time of the
popping: no more rows can exist in the result set */
err = DB_RECORD_NOT_FOUND;
goto func_exit;
}
prebuilt->n_rows_fetched++;
if (prebuilt->n_rows_fetched > 1000000000) {
/* Prevent wrap-over */
prebuilt->n_rows_fetched = 500000000;
}
mode = pcur->search_mode;
}
/* In a search where at most one record in the index may match, we
can use a LOCK_REC_NOT_GAP type record lock when locking a
non-delete-marked matching record.
Note that in a unique secondary index there may be different
delete-marked versions of a record where only the primary key
values differ: thus in a secondary index we must use next-key
locks when locking delete-marked records. */
if (match_mode == ROW_SEL_EXACT
&& index->type & DICT_UNIQUE
&& dtuple_get_n_fields(search_tuple)
== dict_index_get_n_unique(index)
&& (index->type & DICT_CLUSTERED
|| !dtuple_contains_null(search_tuple))) {
/* Note above that a UNIQUE secondary index can contain many
rows with the same key value if one of the columns is the SQL
null. A clustered index under MySQL can never contain null
columns because we demand that all the columns in primary key
are non-null. */
unique_search = TRUE;
/* Even if the condition is unique, MySQL seems to try to
retrieve also a second row if a primary key contains more than
1 column. Return immediately if this is not a HANDLER
command. */
if (UNIV_UNLIKELY(direction != 0
&& !prebuilt->used_in_HANDLER)) {
err = DB_RECORD_NOT_FOUND;
goto func_exit;
}
}
mtr_start(&mtr);
/*-------------------------------------------------------------*/
/* PHASE 2: Try fast adaptive hash index search if possible */
/* Next test if this is the special case where we can use the fast
adaptive hash index to try the search. Since we must release the
search system latch when we retrieve an externally stored field, we
cannot use the adaptive hash index in a search in the case the row
may be long and there may be externally stored fields */
if (UNIV_UNLIKELY(direction == 0)
&& unique_search
&& index->type & DICT_CLUSTERED
&& !prebuilt->templ_contains_blob
&& !prebuilt->used_in_HANDLER
&& (prebuilt->mysql_row_len < UNIV_PAGE_SIZE / 8)) {
mode = PAGE_CUR_GE;
unique_search_from_clust_index = TRUE;
if (trx->mysql_n_tables_locked == 0
&& prebuilt->select_lock_type == LOCK_NONE
&& trx->isolation_level > TRX_ISO_READ_UNCOMMITTED
&& trx->read_view) {
/* This is a SELECT query done as a consistent read,
and the read view has already been allocated:
let us try a search shortcut through the hash
index.
NOTE that we must also test that
mysql_n_tables_locked == 0, because this might
also be INSERT INTO ... SELECT ... or
CREATE TABLE ... SELECT ... . Our algorithm is
NOT prepared to inserts interleaved with the SELECT,
and if we try that, we can deadlock on the adaptive
hash index semaphore! */
#ifndef UNIV_SEARCH_DEBUG
if (!trx->has_search_latch) {
rw_lock_s_lock(&btr_search_latch);
trx->has_search_latch = TRUE;
}
#endif
switch (row_sel_try_search_shortcut_for_mysql(
&rec, prebuilt, &offsets, &heap,
&mtr)) {
case SEL_FOUND:
#ifdef UNIV_SEARCH_DEBUG
ut_a(0 == cmp_dtuple_rec(search_tuple,
rec, offsets));
#endif
if (!row_sel_store_mysql_rec(buf, prebuilt,
rec, offsets)) {
err = DB_TOO_BIG_RECORD;
/* We let the main loop to do the
error handling */
goto shortcut_fails_too_big_rec;
}
mtr_commit(&mtr);
/* ut_print_name(stderr, index->name);
fputs(" shortcut\n", stderr); */
srv_n_rows_read++;
if (trx->search_latch_timeout > 0
&& trx->has_search_latch) {
trx->search_latch_timeout--;
rw_lock_s_unlock(&btr_search_latch);
trx->has_search_latch = FALSE;
}
/* NOTE that we do NOT store the cursor
position */
err = DB_SUCCESS;
goto func_exit;
case SEL_EXHAUSTED:
mtr_commit(&mtr);
/* ut_print_name(stderr, index->name);
fputs(" record not found 2\n", stderr); */
if (trx->search_latch_timeout > 0
&& trx->has_search_latch) {
trx->search_latch_timeout--;
rw_lock_s_unlock(&btr_search_latch);
trx->has_search_latch = FALSE;
}
/* NOTE that we do NOT store the cursor
position */
err = DB_RECORD_NOT_FOUND;
goto func_exit;
}
shortcut_fails_too_big_rec:
mtr_commit(&mtr);
mtr_start(&mtr);
}
}
/*-------------------------------------------------------------*/
/* PHASE 3: Open or restore index cursor position */
if (trx->has_search_latch) {
rw_lock_s_unlock(&btr_search_latch);
trx->has_search_latch = FALSE;
}
trx_start_if_not_started(trx);
if (trx->isolation_level <= TRX_ISO_READ_COMMITTED
&& prebuilt->select_lock_type != LOCK_NONE
&& trx->mysql_thd != NULL
&& thd_is_select(trx->mysql_thd)) {
/* It is a plain locking SELECT and the isolation
level is low: do not lock gaps */
set_also_gap_locks = FALSE;
}
/* Note that if the search mode was GE or G, then the cursor
naturally moves upward (in fetch next) in alphabetical order,
otherwise downward */
if (UNIV_UNLIKELY(direction == 0)) {
if (mode == PAGE_CUR_GE || mode == PAGE_CUR_G) {
moves_up = TRUE;
}
} else if (direction == ROW_SEL_NEXT) {
moves_up = TRUE;
}
thr = que_fork_get_first_thr(prebuilt->sel_graph);
que_thr_move_to_run_state_for_mysql(thr, trx);
clust_index = dict_table_get_first_index(index->table);
if (UNIV_LIKELY(direction != 0)) {
ibool need_to_process = sel_restore_position_for_mysql(
&same_user_rec, BTR_SEARCH_LEAF,
pcur, moves_up, &mtr);
if (UNIV_UNLIKELY(need_to_process)) {
if (UNIV_UNLIKELY(prebuilt->row_read_type
== ROW_READ_DID_SEMI_CONSISTENT)) {
/* We did a semi-consistent read,
but the record was removed in
the meantime. */
prebuilt->row_read_type
= ROW_READ_TRY_SEMI_CONSISTENT;
}
} else if (UNIV_LIKELY(prebuilt->row_read_type
!= ROW_READ_DID_SEMI_CONSISTENT)) {
/* The cursor was positioned on the record
that we returned previously. If we need
to repeat a semi-consistent read as a
pessimistic locking read, the record
cannot be skipped. */
goto next_rec;
}
} else if (dtuple_get_n_fields(search_tuple) > 0) {
btr_pcur_open_with_no_init(index, search_tuple, mode,
BTR_SEARCH_LEAF,
pcur, 0, &mtr);
pcur->trx_if_known = trx;
rec = btr_pcur_get_rec(pcur);
if (!moves_up
&& !page_rec_is_supremum(rec)
&& set_also_gap_locks
&& !(srv_locks_unsafe_for_binlog
|| trx->isolation_level <= TRX_ISO_READ_COMMITTED)
&& prebuilt->select_lock_type != LOCK_NONE) {
/* Try to place a gap lock on the next index record
to prevent phantoms in ORDER BY ... DESC queries */
offsets = rec_get_offsets(page_rec_get_next(rec),
index, offsets,
ULINT_UNDEFINED, &heap);
err = sel_set_rec_lock(page_rec_get_next(rec),
index, offsets,
prebuilt->select_lock_type,
LOCK_GAP, thr);
switch (err) {
case DB_SUCCESS_LOCKED_REC:
err = DB_SUCCESS;
case DB_SUCCESS:
break;
default:
goto lock_wait_or_error;
}
}
} else {
if (mode == PAGE_CUR_G) {
btr_pcur_open_at_index_side(
TRUE, index, BTR_SEARCH_LEAF, pcur, FALSE,
&mtr);
} else if (mode == PAGE_CUR_L) {
btr_pcur_open_at_index_side(
FALSE, index, BTR_SEARCH_LEAF, pcur, FALSE,
&mtr);
}
}
if (!prebuilt->sql_stat_start) {
/* No need to set an intention lock or assign a read view */
if (trx->read_view == NULL
&& prebuilt->select_lock_type == LOCK_NONE) {
fputs("InnoDB: Error: MySQL is trying to"
" perform a consistent read\n"
"InnoDB: but the read view is not assigned!\n",
stderr);
trx_print(stderr, trx, 600);
fputc('\n', stderr);
ut_a(0);
}
} else if (prebuilt->select_lock_type == LOCK_NONE) {
/* This is a consistent read */
/* Assign a read view for the query */
trx_assign_read_view(trx);
prebuilt->sql_stat_start = FALSE;
} else {
ulint lock_mode;
if (prebuilt->select_lock_type == LOCK_S) {
lock_mode = LOCK_IS;
} else {
lock_mode = LOCK_IX;
}
err = lock_table(0, index->table, lock_mode, thr);
if (err != DB_SUCCESS) {
goto lock_wait_or_error;
}
prebuilt->sql_stat_start = FALSE;
}
rec_loop:
/*-------------------------------------------------------------*/
/* PHASE 4: Look for matching records in a loop */
rec = btr_pcur_get_rec(pcur);
ut_ad(!!page_rec_is_comp(rec) == comp);
#ifdef UNIV_SEARCH_DEBUG
/*
fputs("Using ", stderr);
dict_index_name_print(stderr, index);
fprintf(stderr, " cnt %lu ; Page no %lu\n", cnt,
buf_frame_get_page_no(buf_frame_align(rec)));
rec_print(rec);
*/
#endif /* UNIV_SEARCH_DEBUG */
if (page_rec_is_infimum(rec)) {
/* The infimum record on a page cannot be in the result set,
and neither can a record lock be placed on it: we skip such
a record. */
goto next_rec;
}
if (page_rec_is_supremum(rec)) {
if (set_also_gap_locks
&& !(srv_locks_unsafe_for_binlog
|| trx->isolation_level <= TRX_ISO_READ_COMMITTED)
&& prebuilt->select_lock_type != LOCK_NONE) {
/* Try to place a lock on the index record */
/* If innodb_locks_unsafe_for_binlog option is used
or this session is using a READ COMMITTED isolation
level we do not lock gaps. Supremum record is really
a gap and therefore we do not set locks there. */
offsets = rec_get_offsets(rec, index, offsets,
ULINT_UNDEFINED, &heap);
err = sel_set_rec_lock(rec, index, offsets,
prebuilt->select_lock_type,
LOCK_ORDINARY, thr);
switch (err) {
case DB_SUCCESS_LOCKED_REC:
err = DB_SUCCESS;
case DB_SUCCESS:
break;
default:
goto lock_wait_or_error;
}
}
/* A page supremum record cannot be in the result set: skip
it now that we have placed a possible lock on it */
goto next_rec;
}
/*-------------------------------------------------------------*/
/* Do sanity checks in case our cursor has bumped into page
corruption */
if (comp) {
next_offs = rec_get_next_offs(rec, TRUE);
if (UNIV_UNLIKELY(next_offs < PAGE_NEW_SUPREMUM)) {
goto wrong_offs;
}
} else {
next_offs = rec_get_next_offs(rec, FALSE);
if (UNIV_UNLIKELY(next_offs < PAGE_OLD_SUPREMUM)) {
goto wrong_offs;
}
}
if (UNIV_UNLIKELY(next_offs >= UNIV_PAGE_SIZE - PAGE_DIR)) {
wrong_offs:
if (srv_force_recovery == 0 || moves_up == FALSE) {
ut_print_timestamp(stderr);
buf_page_print(buf_frame_align(rec));
fprintf(stderr,
"\nInnoDB: rec address %p, first"
" buffer frame %p\n"
"InnoDB: buffer pool high end %p,"
" buf block fix count %lu\n",
(void*) rec, (void*) buf_pool->frame_zero,
(void*) buf_pool->high_end,
(ulong)buf_block_align(rec)->buf_fix_count);
fprintf(stderr,
"InnoDB: Index corruption: rec offs %lu"
" next offs %lu, page no %lu,\n"
"InnoDB: ",
(ulong) page_offset(rec),
(ulong) next_offs,
(ulong) buf_frame_get_page_no(rec));
dict_index_name_print(stderr, trx, index);
fputs(". Run CHECK TABLE. You may need to\n"
"InnoDB: restore from a backup, or"
" dump + drop + reimport the table.\n",
stderr);
err = DB_CORRUPTION;
goto lock_wait_or_error;
} else {
/* The user may be dumping a corrupt table. Jump
over the corruption to recover as much as possible. */
fprintf(stderr,
"InnoDB: Index corruption: rec offs %lu"
" next offs %lu, page no %lu,\n"
"InnoDB: ",
(ulong) page_offset(rec),
(ulong) next_offs,
(ulong) buf_frame_get_page_no(rec));
dict_index_name_print(stderr, trx, index);
fputs(". We try to skip the rest of the page.\n",
stderr);
btr_pcur_move_to_last_on_page(pcur, &mtr);
goto next_rec;
}
}
/*-------------------------------------------------------------*/
/* Calculate the 'offsets' associated with 'rec' */
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap);
if (UNIV_UNLIKELY(srv_force_recovery > 0)) {
if (!rec_validate(rec, offsets)
|| !btr_index_rec_validate(rec, index, FALSE)) {
fprintf(stderr,
"InnoDB: Index corruption: rec offs %lu"
" next offs %lu, page no %lu,\n"
"InnoDB: ",
(ulong) page_offset(rec),
(ulong) next_offs,
(ulong) buf_frame_get_page_no(rec));
dict_index_name_print(stderr, trx, index);
fputs(". We try to skip the record.\n",
stderr);
goto next_rec;
}
}
/* Note that we cannot trust the up_match value in the cursor at this
place because we can arrive here after moving the cursor! Thus
we have to recompare rec and search_tuple to determine if they
match enough. */
if (match_mode == ROW_SEL_EXACT) {
/* Test if the index record matches completely to search_tuple
in prebuilt: if not, then we return with DB_RECORD_NOT_FOUND */
/* fputs("Comparing rec and search tuple\n", stderr); */
if (0 != cmp_dtuple_rec(search_tuple, rec, offsets)) {
if (set_also_gap_locks
&& !(srv_locks_unsafe_for_binlog
|| trx->isolation_level
<= TRX_ISO_READ_COMMITTED)
&& prebuilt->select_lock_type != LOCK_NONE) {
/* Try to place a gap lock on the index
record only if innodb_locks_unsafe_for_binlog
option is not set or this session is not
using a READ COMMITTED isolation level. */
err = sel_set_rec_lock(
rec, index, offsets,
prebuilt->select_lock_type, LOCK_GAP,
thr);
switch (err) {
case DB_SUCCESS_LOCKED_REC:
case DB_SUCCESS:
break;
default:
goto lock_wait_or_error;
}
}
btr_pcur_store_position(pcur, &mtr);
err = DB_RECORD_NOT_FOUND;
/* ut_print_name(stderr, index->name);
fputs(" record not found 3\n", stderr); */
goto normal_return;
}
} else if (match_mode == ROW_SEL_EXACT_PREFIX) {
if (!cmp_dtuple_is_prefix_of_rec(search_tuple, rec, offsets)) {
if (set_also_gap_locks
&& !(srv_locks_unsafe_for_binlog
|| trx->isolation_level
<= TRX_ISO_READ_COMMITTED)
&& prebuilt->select_lock_type != LOCK_NONE) {
/* Try to place a gap lock on the index
record only if innodb_locks_unsafe_for_binlog
option is not set or this session is not
using a READ COMMITTED isolation level. */
err = sel_set_rec_lock(
rec, index, offsets,
prebuilt->select_lock_type, LOCK_GAP,
thr);
switch (err) {
case DB_SUCCESS_LOCKED_REC:
case DB_SUCCESS:
break;
default:
goto lock_wait_or_error;
}
}
btr_pcur_store_position(pcur, &mtr);
err = DB_RECORD_NOT_FOUND;
/* ut_print_name(stderr, index->name);
fputs(" record not found 4\n", stderr); */
goto normal_return;
}
}
/* We are ready to look at a possible new index entry in the result
set: the cursor is now placed on a user record */
if (prebuilt->select_lock_type != LOCK_NONE) {
/* Try to place a lock on the index record; note that delete
marked records are a special case in a unique search. If there
is a non-delete marked record, then it is enough to lock its
existence with LOCK_REC_NOT_GAP. */
/* If innodb_locks_unsafe_for_binlog option is used
or this session is using a READ COMMITED isolation
level we lock only the record, i.e., next-key locking is
not used. */
ulint lock_type;
if (!set_also_gap_locks
|| srv_locks_unsafe_for_binlog
|| trx->isolation_level <= TRX_ISO_READ_COMMITTED
|| (unique_search
&& !UNIV_UNLIKELY(rec_get_deleted_flag(rec, comp)))) {
goto no_gap_lock;
} else {
lock_type = LOCK_ORDINARY;
}
/* If we are doing a 'greater or equal than a primary key
value' search from a clustered index, and we find a record
that has that exact primary key value, then there is no need
to lock the gap before the record, because no insert in the
gap can be in our search range. That is, no phantom row can
appear that way.
An example: if col1 is the primary key, the search is WHERE
col1 >= 100, and we find a record where col1 = 100, then no
need to lock the gap before that record. */
if (index == clust_index
&& mode == PAGE_CUR_GE
&& direction == 0
&& dtuple_get_n_fields_cmp(search_tuple)
== dict_index_get_n_unique(index)
&& 0 == cmp_dtuple_rec(search_tuple, rec, offsets)) {
no_gap_lock:
lock_type = LOCK_REC_NOT_GAP;
}
err = sel_set_rec_lock(rec, index, offsets,
prebuilt->select_lock_type,
lock_type, thr);
switch (err) {
rec_t* old_vers;
case DB_SUCCESS_LOCKED_REC:
if (srv_locks_unsafe_for_binlog
|| trx->isolation_level
<= TRX_ISO_READ_COMMITTED) {
/* Note that a record of
prebuilt->index was locked. */
prebuilt->new_rec_locks = 1;
}
err = DB_SUCCESS;
case DB_SUCCESS:
break;
case DB_LOCK_WAIT:
/* Never unlock rows that were part of a conflict. */
prebuilt->new_rec_locks = 0;
if (UNIV_LIKELY(prebuilt->row_read_type
!= ROW_READ_TRY_SEMI_CONSISTENT)
|| unique_search
|| index != clust_index) {
goto lock_wait_or_error;
}
/* The following call returns 'offsets'
associated with 'old_vers' */
err = row_sel_build_committed_vers_for_mysql(
clust_index, prebuilt, rec,
&offsets, &heap, &old_vers, &mtr);
if (err != DB_SUCCESS) {
goto lock_wait_or_error;
}
mutex_enter(&kernel_mutex);
if (trx->was_chosen_as_deadlock_victim) {
mutex_exit(&kernel_mutex);
err = DB_DEADLOCK;
goto lock_wait_or_error;
}
if (UNIV_LIKELY(trx->wait_lock != NULL)) {
lock_cancel_waiting_and_release(
trx->wait_lock);
} else {
mutex_exit(&kernel_mutex);
/* The lock was granted while we were
searching for the last committed version.
Do a normal locking read. */
offsets = rec_get_offsets(rec, index, offsets,
ULINT_UNDEFINED,
&heap);
err = DB_SUCCESS;
break;
}
mutex_exit(&kernel_mutex);
if (old_vers == NULL) {
/* The row was not yet committed */
goto next_rec;
}
did_semi_consistent_read = TRUE;
rec = old_vers;
break;
default:
goto lock_wait_or_error;
}
} else {
/* This is a non-locking consistent read: if necessary, fetch
a previous version of the record */
if (trx->isolation_level == TRX_ISO_READ_UNCOMMITTED) {
/* Do nothing: we let a non-locking SELECT read the
latest version of the record */
} else if (index == clust_index) {
/* Fetch a previous version of the row if the current
one is not visible in the snapshot; if we have a very
high force recovery level set, we try to avoid crashes
by skipping this lookup */
if (UNIV_LIKELY(srv_force_recovery < 5)
&& !lock_clust_rec_cons_read_sees(
rec, index, offsets, trx->read_view)) {
rec_t* old_vers;
/* The following call returns 'offsets'
associated with 'old_vers' */
err = row_sel_build_prev_vers_for_mysql(
trx->read_view, clust_index,
prebuilt, rec, &offsets, &heap,
&old_vers, &mtr);
if (err != DB_SUCCESS) {
goto lock_wait_or_error;
}
if (old_vers == NULL) {
/* The row did not exist yet in
the read view */
goto next_rec;
}
rec = old_vers;
}
} else if (!lock_sec_rec_cons_read_sees(rec, index,
trx->read_view)) {
/* We are looking into a non-clustered index,
and to get the right version of the record we
have to look also into the clustered index: this
is necessary, because we can only get the undo
information via the clustered index record. */
ut_ad(index != clust_index);
goto requires_clust_rec;
}
}
/* NOTE that at this point rec can be an old version of a clustered
index record built for a consistent read. We cannot assume after this
point that rec is on a buffer pool page. Functions like
page_rec_is_comp() cannot be used! */
if (UNIV_UNLIKELY(rec_get_deleted_flag(rec, comp))) {
/* The record is delete-marked: we can skip it */
if ((srv_locks_unsafe_for_binlog
|| trx->isolation_level <= TRX_ISO_READ_COMMITTED)
&& prebuilt->select_lock_type != LOCK_NONE
&& !did_semi_consistent_read) {
/* No need to keep a lock on a delete-marked record
if we do not want to use next-key locking. */
row_unlock_for_mysql(prebuilt, TRUE);
}
/* This is an optimization to skip setting the next key lock
on the record that follows this delete-marked record. This
optimization works because of the unique search criteria
which precludes the presence of a range lock between this
delete marked record and the record following it.
For now this is applicable only to clustered indexes while
doing a unique search. There is scope for further optimization
applicable to unique secondary indexes. Current behaviour is
to widen the scope of a lock on an already delete marked record
if the same record is deleted twice by the same transaction */
if (index == clust_index && unique_search) {
err = DB_RECORD_NOT_FOUND;
goto normal_return;
}
goto next_rec;
}
/* Get the clustered index record if needed, if we did not do the
search using the clustered index. */
if (index != clust_index && prebuilt->need_to_access_clustered) {
requires_clust_rec:
/* We use a 'goto' to the preceding label if a consistent
read of a secondary index record requires us to look up old
versions of the associated clustered index record. */
ut_ad(rec_offs_validate(rec, index, offsets));
/* It was a non-clustered index and we must fetch also the
clustered index record */
mtr_has_extra_clust_latch = TRUE;
/* The following call returns 'offsets' associated with
'clust_rec'. Note that 'clust_rec' can be an old version
built for a consistent read. */
err = row_sel_get_clust_rec_for_mysql(prebuilt, index, rec,
thr, &clust_rec,
&offsets, &heap, &mtr);
switch (err) {
case DB_SUCCESS:
if (clust_rec == NULL) {
/* The record did not exist in the read view */
ut_ad(prebuilt->select_lock_type == LOCK_NONE);
goto next_rec;
}
break;
case DB_SUCCESS_LOCKED_REC:
ut_a(clust_rec != NULL);
if (srv_locks_unsafe_for_binlog
|| trx->isolation_level
<= TRX_ISO_READ_COMMITTED) {
/* Note that the clustered index record
was locked. */
prebuilt->new_rec_locks = 2;
}
err = DB_SUCCESS;
break;
default:
goto lock_wait_or_error;
}
if (UNIV_UNLIKELY(rec_get_deleted_flag(clust_rec, comp))) {
/* The record is delete marked: we can skip it */
if ((srv_locks_unsafe_for_binlog
|| trx->isolation_level <= TRX_ISO_READ_COMMITTED)
&& prebuilt->select_lock_type != LOCK_NONE) {
/* No need to keep a lock on a delete-marked
record if we do not want to use next-key
locking. */
row_unlock_for_mysql(prebuilt, TRUE);
}
goto next_rec;
}
if (prebuilt->need_to_access_clustered) {
result_rec = clust_rec;
ut_ad(rec_offs_validate(result_rec, clust_index,
offsets));
} else {
/* We used 'offsets' for the clust rec, recalculate
them for 'rec' */
offsets = rec_get_offsets(rec, index, offsets,
ULINT_UNDEFINED, &heap);
result_rec = rec;
}
} else {
result_rec = rec;
}
/* We found a qualifying record 'result_rec'. At this point,
'offsets' are associated with 'result_rec'. */
ut_ad(rec_offs_validate(result_rec,
result_rec != rec ? clust_index : index,
offsets));
if ((match_mode == ROW_SEL_EXACT
|| prebuilt->n_rows_fetched >= MYSQL_FETCH_CACHE_THRESHOLD)
&& prebuilt->select_lock_type == LOCK_NONE
&& !prebuilt->templ_contains_blob
&& !prebuilt->clust_index_was_generated
&& !prebuilt->used_in_HANDLER
&& prebuilt->template_type
!= ROW_MYSQL_DUMMY_TEMPLATE) {
/* Inside an update, for example, we do not cache rows,
since we may use the cursor position to do the actual
update, that is why we require ...lock_type == LOCK_NONE.
Since we keep space in prebuilt only for the BLOBs of
a single row, we cannot cache rows in the case there
are BLOBs in the fields to be fetched. In HANDLER we do
not cache rows because there the cursor is a scrollable
cursor. */
row_sel_push_cache_row_for_mysql(prebuilt, result_rec,
offsets);
if (prebuilt->n_fetch_cached == MYSQL_FETCH_CACHE_SIZE) {
goto got_row;
}
goto next_rec;
} else {
if (prebuilt->template_type == ROW_MYSQL_DUMMY_TEMPLATE) {
memcpy(buf + 4, result_rec
- rec_offs_extra_size(offsets),
rec_offs_size(offsets));
mach_write_to_4(buf,
rec_offs_extra_size(offsets) + 4);
} else {
if (!row_sel_store_mysql_rec(buf, prebuilt,
result_rec, offsets)) {
err = DB_TOO_BIG_RECORD;
goto lock_wait_or_error;
}
}
if (prebuilt->clust_index_was_generated) {
if (result_rec != rec) {
offsets = rec_get_offsets(
rec, index, offsets, ULINT_UNDEFINED,
&heap);
}
row_sel_store_row_id_to_prebuilt(prebuilt, rec,
index, offsets);
}
}
/* From this point on, 'offsets' are invalid. */
got_row:
/* We have an optimization to save CPU time: if this is a consistent
read on a unique condition on the clustered index, then we do not
store the pcur position, because any fetch next or prev will anyway
return 'end of file'. Exceptions are locking reads and the MySQL
HANDLER command where the user can move the cursor with PREV or NEXT
even after a unique search. */
if (!unique_search_from_clust_index
|| prebuilt->select_lock_type != LOCK_NONE
|| prebuilt->used_in_HANDLER) {
/* Inside an update always store the cursor position */
btr_pcur_store_position(pcur, &mtr);
}
err = DB_SUCCESS;
goto normal_return;
next_rec:
/* Reset the old and new "did semi-consistent read" flags. */
if (UNIV_UNLIKELY(prebuilt->row_read_type
== ROW_READ_DID_SEMI_CONSISTENT)) {
prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT;
}
did_semi_consistent_read = FALSE;
prebuilt->new_rec_locks = 0;
/*-------------------------------------------------------------*/
/* PHASE 5: Move the cursor to the next index record */
if (UNIV_UNLIKELY(mtr_has_extra_clust_latch)) {
/* We must commit mtr if we are moving to the next
non-clustered index record, because we could break the
latching order if we would access a different clustered
index page right away without releasing the previous. */
btr_pcur_store_position(pcur, &mtr);
mtr_commit(&mtr);
mtr_has_extra_clust_latch = FALSE;
mtr_start(&mtr);
if (sel_restore_position_for_mysql(&same_user_rec,
BTR_SEARCH_LEAF,
pcur, moves_up, &mtr)) {
#ifdef UNIV_SEARCH_DEBUG
cnt++;
#endif /* UNIV_SEARCH_DEBUG */
goto rec_loop;
}
}
if (moves_up) {
if (UNIV_UNLIKELY(!btr_pcur_move_to_next(pcur, &mtr))) {
not_moved:
btr_pcur_store_position(pcur, &mtr);
if (match_mode != 0) {
err = DB_RECORD_NOT_FOUND;
} else {
err = DB_END_OF_INDEX;
}
goto normal_return;
}
} else {
if (UNIV_UNLIKELY(!btr_pcur_move_to_prev(pcur, &mtr))) {
goto not_moved;
}
}
#ifdef UNIV_SEARCH_DEBUG
cnt++;
#endif /* UNIV_SEARCH_DEBUG */
goto rec_loop;
lock_wait_or_error:
/* Reset the old and new "did semi-consistent read" flags. */
if (UNIV_UNLIKELY(prebuilt->row_read_type
== ROW_READ_DID_SEMI_CONSISTENT)) {
prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT;
}
did_semi_consistent_read = FALSE;
/*-------------------------------------------------------------*/
btr_pcur_store_position(pcur, &mtr);
mtr_commit(&mtr);
mtr_has_extra_clust_latch = FALSE;
trx->error_state = err;
/* The following is a patch for MySQL */
que_thr_stop_for_mysql(thr);
thr->lock_state = QUE_THR_LOCK_ROW;
if (row_mysql_handle_errors(&err, trx, thr, NULL)) {
/* It was a lock wait, and it ended */
thr->lock_state = QUE_THR_LOCK_NOLOCK;
mtr_start(&mtr);
sel_restore_position_for_mysql(&same_user_rec,
BTR_SEARCH_LEAF, pcur,
moves_up, &mtr);
if ((srv_locks_unsafe_for_binlog
|| trx->isolation_level <= TRX_ISO_READ_COMMITTED)
&& !same_user_rec) {
/* Since we were not able to restore the cursor
on the same user record, we cannot use
row_unlock_for_mysql() to unlock any records, and
we must thus reset the new rec lock info. Since
in lock0lock.c we have blocked the inheriting of gap
X-locks, we actually do not have any new record locks
set in this case.
Note that if we were able to restore on the 'same'
user record, it is still possible that we were actually
waiting on a delete-marked record, and meanwhile
it was removed by purge and inserted again by some
other user. But that is no problem, because in
rec_loop we will again try to set a lock, and
new_rec_lock_info in trx will be right at the end. */
prebuilt->new_rec_locks = 0;
}
mode = pcur->search_mode;
goto rec_loop;
}
thr->lock_state = QUE_THR_LOCK_NOLOCK;
#ifdef UNIV_SEARCH_DEBUG
/* fputs("Using ", stderr);
dict_index_name_print(stderr, index);
fprintf(stderr, " cnt %lu ret value %lu err\n", cnt, err); */
#endif /* UNIV_SEARCH_DEBUG */
goto func_exit;
normal_return:
/*-------------------------------------------------------------*/
que_thr_stop_for_mysql_no_error(thr, trx);
mtr_commit(&mtr);
if (prebuilt->n_fetch_cached > 0) {
row_sel_pop_cached_row_for_mysql(buf, prebuilt);
err = DB_SUCCESS;
}
#ifdef UNIV_SEARCH_DEBUG
/* fputs("Using ", stderr);
dict_index_name_print(stderr, index);
fprintf(stderr, " cnt %lu ret value %lu err\n", cnt, err); */
#endif /* UNIV_SEARCH_DEBUG */
if (err == DB_SUCCESS) {
srv_n_rows_read++;
}
func_exit:
trx->op_info = "";
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
/* Set or reset the "did semi-consistent read" flag on return.
The flag did_semi_consistent_read is set if and only if
the record being returned was fetched with a semi-consistent read. */
ut_ad(prebuilt->row_read_type != ROW_READ_WITH_LOCKS
|| !did_semi_consistent_read);
if (UNIV_UNLIKELY(prebuilt->row_read_type != ROW_READ_WITH_LOCKS)) {
if (UNIV_UNLIKELY(did_semi_consistent_read)) {
prebuilt->row_read_type = ROW_READ_DID_SEMI_CONSISTENT;
} else {
prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT;
}
}
return(err);
}
/***********************************************************************
Checks if MySQL at the moment is allowed for this table to retrieve a
consistent read result, or store it to the query cache. */
ibool
row_search_check_if_query_cache_permitted(
/*======================================*/
/* out: TRUE if storing or retrieving
from the query cache is permitted */
trx_t* trx, /* in: transaction object */
const char* norm_name) /* in: concatenation of database name,
'/' char, table name */
{
dict_table_t* table;
ibool ret = FALSE;
table = dict_table_get(norm_name, FALSE);
if (table == NULL) {
return(FALSE);
}
mutex_enter(&kernel_mutex);
/* Start the transaction if it is not started yet */
trx_start_if_not_started_low(trx);
/* If there are locks on the table or some trx has invalidated the
cache up to our trx id, then ret = FALSE.
We do not check what type locks there are on the table, though only
IX type locks actually would require ret = FALSE. */
if (UT_LIST_GET_LEN(table->locks) == 0
&& ut_dulint_cmp(trx->id,
table->query_cache_inv_trx_id) >= 0) {
ret = TRUE;
/* If the isolation level is high, assign a read view for the
transaction if it does not yet have one */
if (trx->isolation_level >= TRX_ISO_REPEATABLE_READ
&& !trx->read_view) {
trx->read_view = read_view_open_now(
trx->id, trx->global_read_view_heap);
trx->global_read_view = trx->read_view;
}
}
mutex_exit(&kernel_mutex);
return(ret);
}
/***********************************************************************
Read the AUTOINC column from the current row. If the value is less than
0 and the type is not unsigned then we reset the value to 0. */
static
ib_ulonglong
row_search_autoinc_read_column(
/*===========================*/
/* out: value read from the column */
dict_index_t* index, /* in: index to read from */
const rec_t* rec, /* in: current rec */
ulint col_no, /* in: column number */
ulint mtype, /*!< in: column main type */
ibool unsigned_type) /* in: signed or unsigned flag */
{
ulint len;
const byte* data;
ib_ulonglong value;
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
*offsets_ = sizeof offsets_ / sizeof *offsets_;
/* TODO: We have to cast away the const of rec for now. This needs
to be fixed later.*/
offsets = rec_get_offsets(
(rec_t*) rec, index, offsets, ULINT_UNDEFINED, &heap);
/* TODO: We have to cast away the const of rec for now. This needs
to be fixed later.*/
data = rec_get_nth_field((rec_t*)rec, offsets, col_no, &len);
ut_a(len != UNIV_SQL_NULL);
switch (mtype) {
case DATA_INT:
ut_a(len <= sizeof value);
value = mach_read_int_type(data, len, unsigned_type);
break;
case DATA_FLOAT:
ut_a(len == sizeof(float));
value = (ib_ulonglong) mach_float_read(data);
break;
case DATA_DOUBLE:
ut_a(len == sizeof(double));
value = (ib_ulonglong) mach_double_read(data);
break;
default:
ut_error;
}
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
/* We assume that the autoinc counter can't be negative. */
if (!unsigned_type && (ib_longlong) value < 0) {
value = 0;
}
return(value);
}
/***********************************************************************
Get the last row. */
static
const rec_t*
row_search_autoinc_get_rec(
/*=======================*/
/* out: current rec or NULL */
btr_pcur_t* pcur, /* in: the current cursor */
mtr_t* mtr) /* in: mini transaction */
{
do {
const rec_t* rec = btr_pcur_get_rec(pcur);
if (page_rec_is_user_rec(rec)) {
return(rec);
}
} while (btr_pcur_move_to_prev(pcur, mtr));
return(NULL);
}
/***********************************************************************
Read the max AUTOINC value from an index. */
ulint
row_search_max_autoinc(
/*===================*/
/* out: DB_SUCCESS if all OK else
error code, DB_RECORD_NOT_FOUND if
column name can't be found in index */
dict_index_t* index, /* in: index to search */
const char* col_name, /* in: name of autoinc column */
ib_ulonglong* value) /* out: AUTOINC value read */
{
ulint i;
ulint n_cols;
dict_field_t* dfield = NULL;
ulint error = DB_SUCCESS;
n_cols = dict_index_get_n_ordering_defined_by_user(index);
/* Search the index for the AUTOINC column name */
for (i = 0; i < n_cols; ++i) {
dfield = dict_index_get_nth_field(index, i);
if (strcmp(col_name, dfield->name) == 0) {
break;
}
}
*value = 0;
/* Must find the AUTOINC column name */
if (i < n_cols && dfield) {
mtr_t mtr;
btr_pcur_t pcur;
mtr_start(&mtr);
/* Open at the high/right end (FALSE), and INIT
cursor (TRUE) */
btr_pcur_open_at_index_side(
FALSE, index, BTR_SEARCH_LEAF, &pcur, TRUE, &mtr);
if (page_get_n_recs(btr_pcur_get_page(&pcur)) > 0) {
const rec_t* rec;
rec = row_search_autoinc_get_rec(&pcur, &mtr);
if (rec != NULL) {
ibool unsigned_type = (
dfield->col->prtype & DATA_UNSIGNED);
*value = row_search_autoinc_read_column(
index, rec, i,
dfield->col->mtype, unsigned_type);
}
}
btr_pcur_close(&pcur);
mtr_commit(&mtr);
} else {
error = DB_RECORD_NOT_FOUND;
}
return(error);
}