mirror of
https://github.com/MariaDB/server.git
synced 2025-01-27 17:33:44 +01:00
6bf6272fda
bug #57006 "Deadlock between HANDLER and FLUSH TABLES WITH READ LOCK" and bug #54673 "It takes too long to get readlock for 'FLUSH TABLES WITH READ LOCK'". The first bug manifested itself as a deadlock which occurred when a connection, which had some table open through HANDLER statement, tried to update some data through DML statement while another connection tried to execute FLUSH TABLES WITH READ LOCK concurrently. What happened was that FTWRL in the second connection managed to perform first step of GRL acquisition and thus blocked all upcoming DML. After that it started to wait for table open through HANDLER statement to be flushed. When the first connection tried to execute DML it has started to wait for GRL/the second connection creating deadlock. The second bug manifested itself as starvation of FLUSH TABLES WITH READ LOCK statements in cases when there was a constant stream of concurrent DML statements (in two or more connections). This has happened because requests for protection against GRL which were acquired by DML statements were ignoring presence of pending GRL and thus the latter was starved. This patch solves both these problems by re-implementing GRL using metadata locks. Similar to the old implementation acquisition of GRL in new implementation is two-step. During the first step we block all concurrent DML and DDL statements by acquiring global S metadata lock (each DML and DDL statement acquires global IX lock for its duration). During the second step we block commits by acquiring global S lock in COMMIT namespace (commit code acquires global IX lock in this namespace). Note that unlike in old implementation acquisition of protection against GRL in DML and DDL is semi-automatic. We assume that any statement which should be blocked by GRL will either open and acquires write-lock on tables or acquires metadata locks on objects it is going to modify. For any such statement global IX metadata lock is automatically acquired for its duration. The first problem is solved because waits for GRL become visible to deadlock detector in metadata locking subsystem and thus deadlocks like one in the first bug become impossible. The second problem is solved because global S locks which are used for GRL implementation are given preference over IX locks which are acquired by concurrent DML (and we can switch to fair scheduling in future if needed). Important change: FTWRL/GRL no longer blocks DML and DDL on temporary tables. Before this patch behavior was not consistent in this respect: in some cases DML/DDL statements on temporary tables were blocked while in others they were not. Since the main use cases for FTWRL are various forms of backups and temporary tables are not preserved during backups we have opted for consistently allowing DML/DDL on temporary tables during FTWRL/GRL. Important change: This patch changes thread state names which are used when DML/DDL of FTWRL is waiting for global read lock. It is now either "Waiting for global read lock" or "Waiting for commit lock" depending on the stage on which FTWRL is. Incompatible change: To solve deadlock in events code which was exposed by this patch we have to replace LOCK_event_metadata mutex with metadata locks on events. As result we have to prohibit DDL on events under LOCK TABLES. This patch also adds extensive test coverage for interaction of DML/DDL and FTWRL. Performance of new and old global read lock implementations in sysbench tests were compared. There were no significant difference between new and old implementations. mysql-test/include/check_ftwrl_compatible.inc: Added helper script which allows to check that a statement is compatible with FLUSH TABLES WITH READ LOCK. mysql-test/include/check_ftwrl_incompatible.inc: Added helper script which allows to check that a statement is incompatible with FLUSH TABLES WITH READ LOCK. mysql-test/include/handler.inc: Adjusted test case to the fact that now DROP TABLE closes open HANDLERs for the table to be dropped before checking if there active FTWRL in this connection. mysql-test/include/wait_show_condition.inc: Fixed small error in the timeout message. The correct name of variable used as parameter for this script is "$condition" and not "$wait_condition". mysql-test/r/delayed.result: Added test coverage for scenario which triggered assert in metadata locking subsystem. mysql-test/r/events_2.result: Updated test results after prohibiting event DDL operations under LOCK TABLES. mysql-test/r/flush.result: Added test coverage for bug #57006 "Deadlock between HANDLER and FLUSH TABLES WITH READ LOCK". mysql-test/r/flush_read_lock.result: Added test coverage for various aspects of FLUSH TABLES WITH READ LOCK functionality. mysql-test/r/flush_read_lock_kill.result: Adjusted test case after replacing custom global read lock implementation with one based on metadata locks. Use new debug_sync point. Do not disable concurrent inserts as now InnoDB we always use InnoDB table. mysql-test/r/handler_innodb.result: Adjusted test case to the fact that now DROP TABLE closes open HANDLERs for the table to be dropped before checking if there active FTWRL in this connection. mysql-test/r/handler_myisam.result: Adjusted test case to the fact that now DROP TABLE closes open HANDLERs for the table to be dropped before checking if there active FTWRL in this connection. mysql-test/r/mdl_sync.result: Adjusted test case after replacing custom global read lock implementation with one based on metadata locks. Replaced usage of GRL-specific debug_sync's with appropriate sync points in MDL subsystem. mysql-test/suite/perfschema/r/dml_setup_instruments.result: Updated test results after removing global COND_global_read_lock condition variable. mysql-test/suite/perfschema/r/func_file_io.result: Ensure that this test doesn't affect subsequent tests. At the end of its execution enable back P_S instrumentation which this test disables at some point. mysql-test/suite/perfschema/r/func_mutex.result: Ensure that this test doesn't affect subsequent tests. At the end of its execution enable back P_S instrumentation which this test disables at some point. mysql-test/suite/perfschema/r/global_read_lock.result: Adjusted test case to take into account that new GRL implementation is based on MDL. mysql-test/suite/perfschema/r/server_init.result: Adjusted test case after replacing custom global read lock implementation with one based on MDL and replacing LOCK_event_metadata mutex with metadata lock. mysql-test/suite/perfschema/t/func_file_io.test: Ensure that this test doesn't affect subsequent tests. At the end of its execution enable back P_S instrumentation which this test disables at some point. mysql-test/suite/perfschema/t/func_mutex.test: Ensure that this test doesn't affect subsequent tests. At the end of its execution enable back P_S instrumentation which this test disables at some point. mysql-test/suite/perfschema/t/global_read_lock.test: Adjusted test case to take into account that new GRL implementation is based on MDL. mysql-test/suite/perfschema/t/server_init.test: Adjusted test case after replacing custom global read lock implementation with one based on MDL and replacing LOCK_event_metadata mutex with metadata lock. mysql-test/suite/rpl/r/rpl_tmp_table_and_DDL.result: Updated test results after prohibiting event DDL under LOCK TABLES. mysql-test/t/delayed.test: Added test coverage for scenario which triggered assert in metadata locking subsystem. mysql-test/t/events_2.test: Updated test case after prohibiting event DDL operations under LOCK TABLES. mysql-test/t/flush.test: Added test coverage for bug #57006 "Deadlock between HANDLER and FLUSH TABLES WITH READ LOCK". mysql-test/t/flush_block_commit.test: Adjusted test case after changing thread state name which is used when COMMIT waits for FLUSH TABLES WITH READ LOCK from "Waiting for release of readlock" to "Waiting for commit lock". mysql-test/t/flush_block_commit_notembedded.test: Adjusted test case after changing thread state name which is used when DML waits for FLUSH TABLES WITH READ LOCK. Now we use "Waiting for global read lock" in this case. mysql-test/t/flush_read_lock.test: Added test coverage for various aspects of FLUSH TABLES WITH READ LOCK functionality. mysql-test/t/flush_read_lock_kill-master.opt: We no longer need to use make_global_read_lock_block_commit_loop debug tag in this test. Instead we rely on an appropriate debug_sync point in MDL code. mysql-test/t/flush_read_lock_kill.test: Adjusted test case after replacing custom global read lock implementation with one based on metadata locks. Use new debug_sync point. Do not disable concurrent inserts as now InnoDB we always use InnoDB table. mysql-test/t/lock_multi.test: Adjusted test case after changing thread state names which are used when DML or DDL waits for FLUSH TABLES WITH READ LOCK to "Waiting for global read lock". mysql-test/t/mdl_sync.test: Adjusted test case after replacing custom global read lock implementation with one based on metadata locks. Replaced usage of GRL-specific debug_sync's with appropriate sync points in MDL subsystem. Updated thread state names which are used when DDL waits for FTWRL. mysql-test/t/trigger_notembedded.test: Adjusted test case after changing thread state names which are used when DML or DDL waits for FLUSH TABLES WITH READ LOCK to "Waiting for global read lock". sql/event_data_objects.cc: Removed Event_queue_element::status/last_executed_changed members and Event_queue_element::update_timing_fields() method. We no longer use this class for updating mysql.events once event is chosen for execution. Accesses to instances of this class in scheduler thread require protection by Event_queue::LOCK_event_queue mutex and we try to avoid updating table while holding this lock. sql/event_data_objects.h: Removed Event_queue_element::status/last_executed_changed members and Event_queue_element::update_timing_fields() method. We no longer use this class for updating mysql.events once event is chosen for execution. Accesses to instances of this class in scheduler thread require protection by Event_queue::LOCK_event_queue mutex and we try to avoid updating table while holding this lock. sql/event_db_repository.cc: - Changed Event_db_repository methods to not release all metadata locks once they are done updating mysql.events table. This allows to keep metadata lock protecting against GRL and lock protecting particular event around until corresponding DDL statement is written to the binary log. - Removed logic for conditional update of "status" and "last_executed" fields from update_timing_fields_for_event() method. In the only case when this method is called now "last_executed" is always modified and tracking change of "status" is too much hassle. sql/event_db_repository.h: Removed logic for conditional update of "status" and "last_executed" fields from Event_db_repository:: update_timing_fields_for_event() method. In the only case when this method is called now "last_executed" is always modified and tracking change of "status" field is too much hassle. sql/event_queue.cc: Changed event scheduler code not to update mysql.events table while holding Event_queue::LOCK_event_queue mutex. Doing so led to a deadlock with a new GRL implementation. This deadlock didn't occur with old implementation due to fact that code acquiring protection against GRL ignored pending GRL requests (which lead to GRL starvation). One of goals of new implementation is to disallow GRL starvation and so we have to solve problem with this deadlock in a different way. sql/events.cc: Changed methods of Events class to acquire protection against GRL while perfoming DDL statement and keep it until statement is written to the binary log. Unfortunately this step together with new GRL implementation exposed deadlock involving Events::LOCK_event_metadata and GRL. To solve it Events::LOCK_event_metadata mutex was replaced with a metadata lock on event. As a side-effect events DDL has to be prohibited under LOCK TABLES even in cases when mysql.events table was explicitly locked for write. sql/events.h: Replaced Events::LOCK_event_metadata mutex with a metadata lock on event. sql/ha_ndbcluster.cc: Updated code after replacing custom global read lock implementation with one based on MDL. Since MDL subsystem should now be able to detect deadlocks involving metadata locks and GRL there is no need for special handling of active GRL. sql/handler.cc: Replaced custom implementation of global read lock with one based on metadata locks. Consequently when doing commit instead of calling method of Global_read_lock class to acquire protection against GRL we simply acquire IX in COMMIT namespace. sql/lock.cc: Replaced custom implementation of global read lock with one based on metadata locks. This step allows to expose wait for GRL to deadlock detector of MDL subsystem and thus succesfully resolve deadlocks similar to one behind bug #57006 "Deadlock between HANDLER and FLUSH TABLES WITH READ LOCK". It also solves problem with GRL starvation described in bug #54673 "It takes too long to get readlock for 'FLUSH TABLES WITH READ LOCK'" since metadata locks used by GRL give preference to FTWRL statement instead of DML statements (if needed in future this can be changed to fair scheduling). Similar to old implementation of acquisition of GRL is two-step. During the first step we block all concurrent DML and DDL statements by acquiring global S metadata lock (each DML and DDL statement acquires global IX lock for its duration). During the second step we block commits by acquiring global S lock in COMMIT namespace (commit code acquires global IX lock in this namespace). Note that unlike in old implementation acquisition of protection against GRL in DML and DDL is semi-automatic. We assume that any statement which should be blocked by GRL will either open and acquires write-lock on tables or acquires metadata locks on objects it is going to modify. For any such statement global IX metadata lock is automatically acquired for its duration. To support this change: - Global_read_lock::lock/unlock_global_read_lock and make_global_read_lock_block_commit methods were changed accordingly. - Global_read_lock::wait_if_global_read_lock() and start_waiting_global_read_lock() methods were dropped. It is now responsibility of code acquiring metadata locks opening tables to acquire protection against GRL by explicitly taking global IX lock with statement duration. - Global variables, mutex and condition variable used by old implementation was removed. - lock_routine_name() was changed to use statement duration for its global IX lock. It was also renamed to lock_object_name() as it now also used to take metadata locks on events. - Global_read_lock::set_explicit_lock_duration() was added which allows not to release locks used for GRL when leaving prelocked mode. sql/lock.h: - Renamed lock_routine_name() to lock_object_name() and changed its signature to allow its usage for events. - Removed broadcast_refresh() function. It is no longer needed with new GRL implementation. sql/log_event.cc: Release metadata locks with statement duration at the end of processing legacy event for LOAD DATA. This ensures that replication thread processing such event properly releases its protection against global read lock. sql/mdl.cc: Changed MDL subsystem to support new MDL-based implementation of global read lock. Added COMMIT and EVENTS namespaces for metadata locks. Changed thread state name for GLOBAL namespace to "Waiting for global read lock". Optimized MDL_map::find_or_insert() method to avoid taking m_mutex mutex when looking up MDL_lock objects for GLOBAL or COMMIT namespaces. We keep pre-created MDL_lock objects for these namespaces around and simply return pointers to these global objects when needed. Changed MDL_lock/MDL_scoped_lock to properly handle notification of insert delayed handler threads when FTWRL takes global S lock. Introduced concept of lock duration. In addition to locks with transaction duration which work in the way which is similar to how locks worked before (i.e. they are released at the end of transaction), locks with statement and explicit duration were introduced. Locks with statement duration are automatically released at the end of statement. Locks with explicit duration require explicit release and obsolete concept of transactional sentinel. * Changed MDL_request and MDL_ticket classes to support notion of duration. * Changed MDL_context to keep locks with different duration in different lists. Changed code handling ticket list to take this into account. * Changed methods responsible for releasing locks to take into account duration of tickets. Particularly public MDL_context::release_lock() method now only can release tickets with explicit duration (there is still internal method which allows to specify duration). To release locks with statement or transaction duration one have to use release_statement/transactional_locks() methods. * Concept of savepoint for MDL subsystem now has to take into account locks with statement duration. Consequently MDL_savepoint class was introduced and methods working with savepoints were updated accordingly. * Added methods which allow to set duration for one or all locks in the context. sql/mdl.h: Changed MDL subsystem to support new MDL-based implementation of global read lock. Added COMMIT and EVENTS namespaces for metadata locks. Introduced concept of lock duration. In addition to locks with transaction duration which work in the way which is similar to how locks worked before (i.e. they are released at the end of transaction), locks with statement and explicit duration were introduced. Locks with statement duration are automatically released at the end of statement. Locks with explicit duration require explicit release and obsolete concept of transactional sentinel. * Changed MDL_request and MDL_ticket classes to support notion of duration. * Changed MDL_context to keep locks with different duration in different lists. Changed code handling ticket list to take this into account. * Changed methods responsible for releasing locks to take into account duration of tickets. Particularly public MDL_context::release_lock() method now only can release tickets with explicit duration (there is still internal method which allows to specify duration). To release locks with statement or transaction duration one have to use release_statement/transactional_locks() methods. * Concept of savepoint for MDL subsystem now has to take into account locks with statement duration. Consequently MDL_savepoint class was introduced and methods working with savepoints were updated accordingly. * Added methods which allow to set duration for one or all locks in the context. sql/mysqld.cc: Removed global mutex and condition variables which were used by old implementation of GRL. Also we no longer need to initialize Events::LOCK_event_metadata mutex as it was replaced with metadata locks on events. sql/mysqld.h: Removed global variable, mutex and condition variables which were used by old implementation of GRL. sql/rpl_rli.cc: When slave thread closes tables which were open for handling of RBR events ensure that it releases global IX lock which was acquired as protection against GRL. sql/sp.cc: Adjusted code to the new signature of lock_object/routine_name(), to the fact that one now needs specify duration of lock when initializing MDL_request and to the fact that savepoints for MDL subsystem are now represented by MDL_savepoint class. sql/sp_head.cc: Ensure that statements in stored procedures release statement metadata locks and thus release their protectiong against GRL in proper moment in time. Adjusted code to the fact that one now needs specify duration of lock when initializing MDL_request. sql/sql_admin.cc: Adjusted code to the fact that one now needs specify duration of lock when initializing MDL_request. sql/sql_base.cc: - Implemented support for new approach to acquiring protection against global read lock. We no longer acquire such protection explicitly on the basis of statement flags. Instead we always rely on code which is responsible for acquiring metadata locks on object to be changed acquiring this protection. This is achieved by acquiring global IX metadata lock with statement duration. Code doing this also responsible for checking that current connection has no active GRL by calling an Global_read_lock::can_acquire_protection() method. Changed code in open_table() and lock_table_names() accordingly. Note that as result of this change DDL and DML on temporary tables is always compatible with GRL (before it was incompatible in some cases and compatible in other cases). - To speed-up code acquiring protection against GRL introduced m_has_protection_against_grl member in Open_table_context class. It indicates that protection was already acquired sometime during open_tables() execution and new attempts can be skipped. - Thanks to new GRL implementation calls to broadcast_refresh() became unnecessary and were removed. - Adjusted code to the fact that one now needs specify duration of lock when initializing MDL_request and to the fact that savepoints for MDL subsystem are now represented by MDL_savepoint class. sql/sql_base.h: Adjusted code to the fact that savepoints for MDL subsystem are now represented by MDL_savepoint class. Also introduced Open_table_context::m_has_protection_against_grl member which allows to avoid acquiring protection against GRL while opening tables if such protection was already acquired. sql/sql_class.cc: Changed THD::leave_locked_tables_mode() after transactional sentinel for metadata locks was obsoleted by introduction of locks with explicit duration. sql/sql_class.h: - Adjusted code to the fact that savepoints for MDL subsystem are now represented by MDL_savepoint class. - Changed Global_read_lock class according to changes in global read lock implementation: * wait_if_global_read_lock and start_waiting_global_read_lock are now gone. Instead code needing protection against GRL has to acquire global IX metadata lock with statement duration itself. To help it new can_acquire_protection() was introduced. Also as result of the above change m_protection_count member is gone too. * Added m_mdl_blocks_commits_lock member to store metadata lock blocking commits. * Adjusted code to the fact that concept of transactional sentinel was obsoleted by concept of lock duration. - Removed CF_PROTECT_AGAINST_GRL flag as it is no longer necessary. New GRL implementation acquires protection against global read lock automagically when statement acquires metadata locks on tables or other objects it is going to change. sql/sql_db.cc: Adjusted code to the fact that one now needs specify duration of lock when initializing MDL_request. sql/sql_handler.cc: Removed call to broadcast_refresh() function. It is no longer needed with new GRL implementation. Adjusted code after introducing duration concept for metadata locks. Particularly to the fact transactional sentinel was replaced with explicit duration. sql/sql_handler.h: Renamed mysql_ha_move_tickets_after_trans_sentinel() to mysql_ha_set_explicit_lock_duration() after transactional sentinel was obsoleted by locks with explicit duration. sql/sql_insert.cc: Adjusted code handling delaying inserts after switching to new GRL implementation. Now connection thread initiating delayed insert has to acquire global IX lock in addition to metadata lock on table being inserted into. This IX lock protects against GRL and similarly to SW lock on table being inserted into has to be passed to handler thread in order to avoid deadlocks. sql/sql_lex.cc: LEX::protect_against_global_read_lock member is no longer necessary since protection against GRL is automatically taken by code acquiring metadata locks/opening tables. sql/sql_lex.h: LEX::protect_against_global_read_lock member is no longer necessary since protection against GRL is automatically taken by code acquiring metadata locks/opening tables. sql/sql_parse.cc: - Implemented support for new approach to acquiring protection against global read lock. We no longer acquire such protection explicitly on the basis of statement flags. Instead we always rely on code which is responsible for acquiring metadata locks on object to be changed acquiring this protection. This is achieved by acquiring global IX metadata lock with statement duration. This lock is automatically released at the end of statement execution. - Changed implementation of CREATE/DROP PROCEDURE/FUNCTION not to release metadata locks and thus protection against of GRL in the middle of statement execution. - Adjusted code to the fact that one now needs specify duration of lock when initializing MDL_request and to the fact that savepoints for MDL subsystem are now represented by MDL_savepoint class. sql/sql_prepare.cc: Adjusted code to the to the fact that savepoints for MDL subsystem are now represented by MDL_savepoint class. sql/sql_rename.cc: With new GRL implementation there is no need to explicitly acquire protection against GRL before renaming tables. This happens automatically in code which acquires metadata locks on tables being renamed. sql/sql_show.cc: Adjusted code to the fact that one now needs specify duration of lock when initializing MDL_request and to the fact that savepoints for MDL subsystem are now represented by MDL_savepoint class. sql/sql_table.cc: - With new GRL implementation there is no need to explicitly acquire protection against GRL before dropping tables. This happens automatically in code which acquires metadata locks on tables being dropped. - Changed mysql_alter_table() not to release lock on new table name explicitly and to rely on automatic release of locks at the end of statement instead. This was necessary since now MDL_context::release_lock() is supported only for locks for explicit duration. sql/sql_trigger.cc: With new GRL implementation there is no need to explicitly acquire protection against GRL before changing table triggers. This happens automatically in code which acquires metadata locks on tables which triggers are to be changed. sql/sql_update.cc: Fix bug exposed by GRL testing. During prepare phase acquire only S metadata locks instead of SW locks to keep prepare of multi-UPDATE compatible with concurrent LOCK TABLES WRITE and global read lock. sql/sql_view.cc: With new GRL implementation there is no need to explicitly acquire protection against GRL before creating view. This happens automatically in code which acquires metadata lock on view to be created. sql/sql_yacc.yy: LEX::protect_against_global_read_lock member is no longer necessary since protection against GRL is automatically taken by code acquiring metadata locks/opening tables. sql/table.cc: Adjusted code to the fact that one now needs specify duration of lock when initializing MDL_request. sql/table.h: Adjusted code to the fact that one now needs specify duration of lock when initializing MDL_request. sql/transaction.cc: Replaced custom implementation of global read lock with one based on metadata locks. Consequently when doing commit instead of calling method of Global_read_lock class to acquire protection against GRL we simply acquire IX in COMMIT namespace. Also adjusted code to the fact that MDL savepoint is now represented by MDL_savepoint class.
1150 lines
28 KiB
Text
1150 lines
28 KiB
Text
# Save the initial number of concurrent sessions
|
|
--source include/count_sessions.inc
|
|
|
|
--disable_warnings
|
|
drop table if exists t1,t2;
|
|
--enable_warnings
|
|
|
|
# Test to see if select will get the lock ahead of low priority update
|
|
|
|
connect (locker,localhost,root,,);
|
|
connect (locker2,localhost,root,,);
|
|
connect (reader,localhost,root,,);
|
|
connect (writer,localhost,root,,);
|
|
|
|
connection locker;
|
|
create table t1(n int);
|
|
insert into t1 values (1);
|
|
connection locker2;
|
|
select get_lock("mysqltest_lock", 100);
|
|
connection locker;
|
|
send
|
|
update t1 set n = 2 and get_lock('mysqltest_lock', 100);
|
|
connection writer;
|
|
# Wait till above update gets blocked on a user lock.
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "User lock" and info = "update t1 set n = 2 and get_lock('mysqltest_lock', 100)";
|
|
--source include/wait_condition.inc
|
|
send
|
|
update low_priority t1 set n = 4;
|
|
connection reader;
|
|
# Sleep a bit till the update of connection writer is in work and hangs
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for table level lock" and
|
|
info = "update low_priority t1 set n = 4";
|
|
--source include/wait_condition.inc
|
|
send
|
|
select n from t1;
|
|
connection locker2;
|
|
# Sleep a bit till the select of connection reader is in work and hangs
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for table level lock" and
|
|
info = "select n from t1";
|
|
--source include/wait_condition.inc
|
|
select release_lock("mysqltest_lock");
|
|
connection locker;
|
|
reap;
|
|
select release_lock("mysqltest_lock");
|
|
connection writer;
|
|
reap;
|
|
connection reader;
|
|
reap;
|
|
drop table t1;
|
|
|
|
connection locker;
|
|
create table t1(n int);
|
|
insert into t1 values (1);
|
|
connection locker2;
|
|
select get_lock("mysqltest_lock", 100);
|
|
connection locker;
|
|
send
|
|
select n from t1 where get_lock('mysqltest_lock', 100);
|
|
connection writer;
|
|
# Wait till above select gets blocked on a user lock.
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "User lock" and info = "select n from t1 where get_lock('mysqltest_lock', 100)";
|
|
--source include/wait_condition.inc
|
|
send
|
|
update low_priority t1 set n = 4;
|
|
connection reader;
|
|
# Sleep a bit till the update of connection writer is in work and hangs
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for table level lock" and
|
|
info = "update low_priority t1 set n = 4";
|
|
--source include/wait_condition.inc
|
|
select n from t1;
|
|
connection locker2;
|
|
select release_lock("mysqltest_lock");
|
|
connection locker;
|
|
reap;
|
|
select release_lock("mysqltest_lock");
|
|
connection writer;
|
|
reap;
|
|
drop table t1;
|
|
|
|
#
|
|
# Test problem when using locks with multi-updates
|
|
# It should not block when multi-update is reading on a read-locked table
|
|
#
|
|
|
|
connection locker;
|
|
create table t1 (a int, b int);
|
|
create table t2 (c int, d int);
|
|
insert into t1 values(1,1);
|
|
insert into t1 values(2,2);
|
|
insert into t2 values(1,2);
|
|
lock table t1 read;
|
|
connection writer;
|
|
update t1,t2 set c=a where b=d;
|
|
connection reader;
|
|
select c from t2;
|
|
connection locker;
|
|
unlock tables;
|
|
drop table t1;
|
|
drop table t2;
|
|
|
|
#
|
|
# Test problem when using locks on many tables and dropping a table that
|
|
# is to-be-locked by another thread
|
|
#
|
|
#
|
|
connection locker;
|
|
create table t1 (a int);
|
|
create table t2 (a int);
|
|
lock table t1 write, t2 write;
|
|
connection reader;
|
|
send
|
|
insert t1 select * from t2;
|
|
connection locker;
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for table metadata lock" and
|
|
info = "insert t1 select * from t2";
|
|
--source include/wait_condition.inc
|
|
drop table t2;
|
|
unlock tables;
|
|
connection reader;
|
|
--error ER_NO_SUCH_TABLE
|
|
reap;
|
|
connection locker;
|
|
drop table t1;
|
|
|
|
#
|
|
# Same test as above, but with the dropped table locked twice
|
|
#
|
|
|
|
connection locker;
|
|
create table t1 (a int);
|
|
create table t2 (a int);
|
|
lock table t1 write, t2 write, t1 as t1_2 write, t2 as t2_2 write;
|
|
connection reader;
|
|
send
|
|
insert t1 select * from t2;
|
|
connection locker;
|
|
# Sleep a bit till the insert of connection reader is in work and hangs
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for table metadata lock" and
|
|
info = "insert t1 select * from t2";
|
|
--source include/wait_condition.inc
|
|
drop table t2;
|
|
unlock tables;
|
|
connection reader;
|
|
--error ER_NO_SUCH_TABLE
|
|
reap;
|
|
connection locker;
|
|
drop table t1;
|
|
|
|
|
|
--echo End of 4.1 tests
|
|
|
|
#
|
|
# Bug#9998 MySQL client hangs on USE "database"
|
|
#
|
|
create table t1(a int);
|
|
lock tables t1 write;
|
|
connection reader;
|
|
show columns from t1;
|
|
connection locker;
|
|
unlock tables;
|
|
drop table t1;
|
|
|
|
#
|
|
# Bug#16986 Deadlock condition with MyISAM tables
|
|
#
|
|
|
|
# Need a matching user in mysql.user for multi-table select
|
|
--source include/add_anonymous_users.inc
|
|
|
|
connection locker;
|
|
USE mysql;
|
|
LOCK TABLES columns_priv WRITE, db WRITE, host WRITE, user WRITE;
|
|
FLUSH TABLES;
|
|
#
|
|
connection reader;
|
|
USE mysql;
|
|
# Note: This must be a multi-table select, otherwise the deadlock will not occur
|
|
send
|
|
SELECT user.Select_priv FROM user, db WHERE user.user = db.user LIMIT 1;
|
|
#
|
|
connection locker;
|
|
# Sleep a bit till the select of connection reader is in work and hangs
|
|
let $wait_condition=
|
|
SELECT COUNT(*) = 1 FROM information_schema.processlist
|
|
WHERE state = "Waiting for table metadata lock" AND info =
|
|
"SELECT user.Select_priv FROM user, db WHERE user.user = db.user LIMIT 1";
|
|
--source include/wait_condition.inc
|
|
# Make test case independent from earlier grants.
|
|
--replace_result "Table is already up to date" "OK"
|
|
OPTIMIZE TABLES columns_priv, db, host, user;
|
|
UNLOCK TABLES;
|
|
#
|
|
connection reader;
|
|
reap;
|
|
USE test;
|
|
#
|
|
connection locker;
|
|
use test;
|
|
#
|
|
connection default;
|
|
#
|
|
# Test if CREATE TABLE with LOCK TABLE deadlocks.
|
|
#
|
|
connection writer;
|
|
CREATE TABLE t1 (c1 int);
|
|
LOCK TABLE t1 WRITE;
|
|
#
|
|
# This waits until t1 is unlocked.
|
|
connection locker;
|
|
send
|
|
FLUSH TABLES WITH READ LOCK;
|
|
#
|
|
connection writer;
|
|
# Sleep a bit till the flush of connection locker is in work and hangs
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for global read lock" and
|
|
info = "FLUSH TABLES WITH READ LOCK";
|
|
--source include/wait_condition.inc
|
|
# This must not block.
|
|
--error ER_TABLE_NOT_LOCKED
|
|
CREATE TABLE t2 (c1 int);
|
|
UNLOCK TABLES;
|
|
#
|
|
# This awakes now.
|
|
connection locker;
|
|
reap;
|
|
UNLOCK TABLES;
|
|
#
|
|
connection default;
|
|
DROP TABLE t1;
|
|
#
|
|
# Test if CREATE TABLE SELECT with LOCK TABLE deadlocks.
|
|
#
|
|
connection writer;
|
|
CREATE TABLE t1 (c1 int);
|
|
LOCK TABLE t1 WRITE;
|
|
#
|
|
# This waits until t1 is unlocked.
|
|
connection locker;
|
|
send
|
|
FLUSH TABLES WITH READ LOCK;
|
|
#
|
|
# This must not block.
|
|
connection writer;
|
|
# Sleep a bit till the flush of connection locker is in work and hangs
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for global read lock" and
|
|
info = "FLUSH TABLES WITH READ LOCK";
|
|
--source include/wait_condition.inc
|
|
--error ER_TABLE_NOT_LOCKED
|
|
CREATE TABLE t2 AS SELECT * FROM t1;
|
|
UNLOCK TABLES;
|
|
#
|
|
# This awakes now.
|
|
connection locker;
|
|
reap;
|
|
UNLOCK TABLES;
|
|
#
|
|
connection default;
|
|
DROP TABLE t1;
|
|
|
|
--source include/delete_anonymous_users.inc
|
|
|
|
#
|
|
# Bug#19815 CREATE/RENAME/DROP DATABASE can deadlock on a global read lock
|
|
#
|
|
connect (con1,localhost,root,,);
|
|
connect (con2,localhost,root,,);
|
|
#
|
|
connection con1;
|
|
CREATE DATABASE mysqltest_1;
|
|
FLUSH TABLES WITH READ LOCK;
|
|
#
|
|
# With bug in place: acquire LOCK_mysql_create_table and
|
|
# wait in wait_if_global_read_lock().
|
|
connection con2;
|
|
send
|
|
DROP DATABASE mysqltest_1;
|
|
#
|
|
# With bug in place: try to acquire LOCK_mysql_create_table...
|
|
# When fixed: Reject dropping db because of the read lock.
|
|
connection con1;
|
|
# Wait a bit so that the session con2 is in state
|
|
# "Waiting for global read lock"
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for global read lock"
|
|
and info = "DROP DATABASE mysqltest_1";
|
|
--source include/wait_condition.inc
|
|
--error ER_CANT_UPDATE_WITH_READLOCK
|
|
DROP DATABASE mysqltest_1;
|
|
UNLOCK TABLES;
|
|
#
|
|
connection con2;
|
|
reap;
|
|
#
|
|
connection default;
|
|
disconnect con1;
|
|
disconnect con2;
|
|
# This must have been dropped by connection 2 already,
|
|
# which waited until the global read lock was released.
|
|
--error ER_DB_DROP_EXISTS
|
|
DROP DATABASE mysqltest_1;
|
|
|
|
#
|
|
# Bug#17264 MySQL Server freeze
|
|
#
|
|
connection locker;
|
|
# Disable warnings to allow test to run also without InnoDB
|
|
--disable_warnings
|
|
create table t1 (f1 int(12) unsigned not null auto_increment, primary key(f1)) engine=innodb;
|
|
--enable_warnings
|
|
lock tables t1 write;
|
|
connection writer;
|
|
send
|
|
alter table t1 auto_increment=0;
|
|
connection reader;
|
|
# Wait till connection writer is blocked
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for table metadata lock" and
|
|
info = "alter table t1 auto_increment=0";
|
|
--source include/wait_condition.inc
|
|
send
|
|
alter table t1 auto_increment=0;
|
|
connection locker;
|
|
# Wait till connection reader is blocked
|
|
let $wait_condition=
|
|
select count(*) = 2 from information_schema.processlist
|
|
where state = "Waiting for table metadata lock" and
|
|
info = "alter table t1 auto_increment=0";
|
|
--source include/wait_condition.inc
|
|
unlock tables;
|
|
connection writer;
|
|
reap;
|
|
connection reader;
|
|
reap;
|
|
connection locker;
|
|
drop table t1;
|
|
|
|
#
|
|
# Bug#43230: SELECT ... FOR UPDATE can hang with FLUSH TABLES WITH READ LOCK indefinitely
|
|
#
|
|
|
|
connect (con1,localhost,root,,);
|
|
connect (con2,localhost,root,,);
|
|
connect (con3,localhost,root,,);
|
|
connect (con4,localhost,root,,);
|
|
connect (con5,localhost,root,,);
|
|
|
|
create table t1 (a int);
|
|
create table t2 like t1;
|
|
|
|
connection con1;
|
|
--echo # con1
|
|
lock tables t1 write;
|
|
connection con2;
|
|
--echo # con2
|
|
send flush tables with read lock;
|
|
connection con5;
|
|
--echo # con5
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for global read lock" and
|
|
info = "flush tables with read lock";
|
|
--source include/wait_condition.inc
|
|
--echo # global read lock is taken
|
|
connection con3;
|
|
--echo # con3
|
|
send select * from t2 for update;
|
|
connection con5;
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for global read lock" and
|
|
info = "select * from t2 for update";
|
|
--source include/wait_condition.inc
|
|
--echo # waiting for release of read lock
|
|
connection con4;
|
|
--echo # con4
|
|
--echo # would hang and later cause a deadlock
|
|
flush tables t2;
|
|
connection con1;
|
|
--echo # clean up
|
|
unlock tables;
|
|
connection con2;
|
|
--reap
|
|
unlock tables;
|
|
connection con3;
|
|
--reap
|
|
connection default;
|
|
disconnect con5;
|
|
disconnect con4;
|
|
disconnect con3;
|
|
disconnect con2;
|
|
disconnect con1;
|
|
|
|
drop table t1,t2;
|
|
|
|
--echo #
|
|
--echo # Lightweight version:
|
|
--echo # Ensure that the wait for a GRL is done before opening tables.
|
|
--echo #
|
|
|
|
connect (con1,localhost,root,,);
|
|
connect (con2,localhost,root,,);
|
|
|
|
create table t1 (a int);
|
|
create table t2 like t1;
|
|
|
|
--echo #
|
|
--echo # UPDATE
|
|
--echo #
|
|
|
|
connection default;
|
|
--echo # default
|
|
flush tables with read lock;
|
|
connection con1;
|
|
--echo # con1
|
|
send update t2 set a = 1;
|
|
connection default;
|
|
--echo # default
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for global read lock" and
|
|
info = "update t2 set a = 1";
|
|
--source include/wait_condition.inc
|
|
--echo # statement is waiting for release of read lock
|
|
connection con2;
|
|
--echo # con2
|
|
flush table t2;
|
|
connection default;
|
|
--echo # default
|
|
unlock tables;
|
|
connection con1;
|
|
--echo # con1
|
|
--reap
|
|
|
|
--echo #
|
|
--echo # LOCK TABLES .. WRITE
|
|
--echo #
|
|
|
|
connection default;
|
|
--echo # default
|
|
flush tables with read lock;
|
|
connection con1;
|
|
--echo # con1
|
|
send lock tables t2 write;
|
|
connection default;
|
|
--echo # default
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for global read lock" and
|
|
info = "lock tables t2 write";
|
|
--source include/wait_condition.inc
|
|
--echo # statement is waiting for release of read lock
|
|
connection con2;
|
|
--echo # con2
|
|
flush table t2;
|
|
connection default;
|
|
--echo # default
|
|
unlock tables;
|
|
connection con1;
|
|
--echo # con1
|
|
--reap
|
|
unlock tables;
|
|
|
|
connection default;
|
|
disconnect con2;
|
|
disconnect con1;
|
|
|
|
drop table t1,t2;
|
|
|
|
|
|
--echo End of 5.0 tests
|
|
|
|
|
|
#
|
|
# Bug#21281 Pending write lock is incorrectly removed when its
|
|
# statement being KILLed
|
|
#
|
|
create table t1 (i int);
|
|
connection locker;
|
|
lock table t1 read;
|
|
connection writer;
|
|
send
|
|
update t1 set i= 10;
|
|
connection reader;
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for table level lock" and
|
|
info = "update t1 set i= 10";
|
|
--source include/wait_condition.inc
|
|
send
|
|
select * from t1;
|
|
connection default;
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for table level lock" and
|
|
info = "select * from t1";
|
|
--source include/wait_condition.inc
|
|
let $ID= `select id from information_schema.processlist
|
|
where state = "Waiting for table level lock" and
|
|
info = "update t1 set i= 10"`;
|
|
--replace_result $ID ID
|
|
eval kill query $ID;
|
|
connection reader;
|
|
--reap
|
|
connection writer;
|
|
--error ER_QUERY_INTERRUPTED
|
|
--reap
|
|
connection locker;
|
|
unlock tables;
|
|
connection default;
|
|
drop table t1;
|
|
|
|
#
|
|
# Bug#25856 HANDLER table OPEN in one connection lock DROP TABLE in another one
|
|
#
|
|
--disable_warnings
|
|
drop table if exists t1;
|
|
--enable_warnings
|
|
create table t1 (a int) ENGINE=MEMORY;
|
|
--echo --> client 2
|
|
connection locker;
|
|
--error ER_ILLEGAL_HA
|
|
handler t1 open;
|
|
--echo --> client 1
|
|
connection default;
|
|
drop table t1;
|
|
|
|
|
|
# Disconnect sessions used in many subtests above
|
|
disconnect locker;
|
|
disconnect locker2;
|
|
disconnect reader;
|
|
disconnect writer;
|
|
|
|
|
|
#
|
|
# Bug#32395 Alter table under a impending global read lock causes a server crash
|
|
#
|
|
|
|
#
|
|
# Test ALTER TABLE under LOCK TABLES and FLUSH TABLES WITH READ LOCK
|
|
#
|
|
|
|
--disable_warnings
|
|
drop table if exists t1;
|
|
--enable_warnings
|
|
create table t1 (i int);
|
|
connect (flush,localhost,root,,test,,);
|
|
connection default;
|
|
--echo connection: default
|
|
lock tables t1 write;
|
|
connection flush;
|
|
--echo connection: flush
|
|
--send flush tables with read lock;
|
|
connection default;
|
|
--echo connection: default
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for global read lock" and
|
|
info = "flush tables with read lock";
|
|
--source include/wait_condition.inc
|
|
alter table t1 add column j int;
|
|
connect (insert,localhost,root,,test,,);
|
|
connection insert;
|
|
--echo connection: insert
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for global read lock" and
|
|
info = "flush tables with read lock";
|
|
--source include/wait_condition.inc
|
|
--send insert into t1 values (1,2);
|
|
--echo connection: default
|
|
connection default;
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for global read lock" and
|
|
info = "insert into t1 values (1,2)";
|
|
--source include/wait_condition.inc
|
|
unlock tables;
|
|
connection flush;
|
|
--echo connection: flush
|
|
--reap
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for global read lock" and
|
|
info = "insert into t1 values (1,2)";
|
|
--source include/wait_condition.inc
|
|
select * from t1;
|
|
unlock tables;
|
|
connection insert;
|
|
--reap
|
|
connection default;
|
|
let $wait_condition=
|
|
select count(*) = 1 from t1;
|
|
--source include/wait_condition.inc
|
|
select * from t1;
|
|
drop table t1;
|
|
disconnect flush;
|
|
disconnect insert;
|
|
|
|
#
|
|
# Test that FLUSH TABLES under LOCK TABLES protects write locked tables
|
|
# from a impending FLUSH TABLES WITH READ LOCK
|
|
#
|
|
|
|
--disable_warnings
|
|
drop table if exists t1;
|
|
--enable_warnings
|
|
create table t1 (i int);
|
|
connect (flush,localhost,root,,test,,);
|
|
connection default;
|
|
--echo connection: default
|
|
lock tables t1 write;
|
|
connection flush;
|
|
--echo connection: flush
|
|
--send flush tables with read lock;
|
|
connection default;
|
|
--echo connection: default
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for global read lock";
|
|
--source include/wait_condition.inc
|
|
flush tables;
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for global read lock";
|
|
--source include/wait_condition.inc
|
|
unlock tables;
|
|
connection flush;
|
|
--reap
|
|
connection default;
|
|
disconnect flush;
|
|
drop table t1;
|
|
|
|
#
|
|
# Bug#30331 Table_locks_waited shows inaccurate values
|
|
#
|
|
|
|
--disable_warnings
|
|
drop table if exists t1,t2;
|
|
--enable_warnings
|
|
create table t1 (a int);
|
|
flush status;
|
|
lock tables t1 read;
|
|
let $tlwa= `show status like 'Table_locks_waited'`;
|
|
connect (waiter,localhost,root,,);
|
|
connection waiter;
|
|
send insert into t1 values(1);
|
|
connection default;
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for table level lock" and
|
|
info = "insert into t1 values(1)";
|
|
--source include/wait_condition.inc
|
|
let $tlwb= `show status like 'Table_locks_waited'`;
|
|
unlock tables;
|
|
connection waiter;
|
|
--reap
|
|
connection default;
|
|
drop table t1;
|
|
disconnect waiter;
|
|
--disable_query_log
|
|
eval SET @tlwa= SUBSTRING_INDEX('$tlwa', ' ', -1);
|
|
eval SET @tlwb= SUBSTRING_INDEX('$tlwb', ' ', -1);
|
|
--enable_query_log
|
|
select @tlwa < @tlwb;
|
|
|
|
--echo End of 5.1 tests
|
|
|
|
#
|
|
# Test that DROP TABLES does not wait for a impending FLUSH TABLES
|
|
# WITH READ LOCK
|
|
#
|
|
|
|
--disable_warnings
|
|
drop table if exists t1;
|
|
--enable_warnings
|
|
create table t1 (i int);
|
|
connect (flush,localhost,root,,test,,);
|
|
connection default;
|
|
--echo connection: default
|
|
lock tables t1 write;
|
|
connection flush;
|
|
--echo connection: flush
|
|
--send flush tables with read lock;
|
|
connection default;
|
|
--echo connection: default
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for global read lock";
|
|
--source include/wait_condition.inc
|
|
flush tables;
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for global read lock";
|
|
--source include/wait_condition.inc
|
|
drop table t1;
|
|
connection flush;
|
|
--reap
|
|
connection default;
|
|
disconnect flush;
|
|
|
|
|
|
--echo #
|
|
--echo # Test for bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock".
|
|
--echo #
|
|
--disable_warnings
|
|
drop table if exists t1;
|
|
--enable_warnings
|
|
create table t1 (c1 int primary key, c2 int, c3 int);
|
|
insert into t1 values (1,1,0),(2,2,0),(3,3,0),(4,4,0),(5,5,0);
|
|
begin;
|
|
update t1 set c3=c3+1 where c2=3;
|
|
|
|
--echo #
|
|
--echo # Switching to connection 'con46272'.
|
|
connect (con46272,localhost,root,,test,,);
|
|
connection con46272;
|
|
--echo # The below ALTER TABLE statement should wait till transaction
|
|
--echo # in connection 'default' is complete and then succeed.
|
|
--echo # It should not deadlock or fail with ER_LOCK_DEADLOCK error.
|
|
--echo # Sending:
|
|
--send alter table t1 add column c4 int;
|
|
|
|
--echo #
|
|
--echo # Switching to connection 'default'.
|
|
connection default;
|
|
--echo # Wait until the above ALTER TABLE gets blocked because this
|
|
--echo # connection holds SW metadata lock on table to be altered.
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for table metadata lock" and
|
|
info = "alter table t1 add column c4 int";
|
|
--source include/wait_condition.inc
|
|
|
|
--echo # The below statement should succeed. It should not
|
|
--echo # deadlock or end with ER_LOCK_DEADLOCK error.
|
|
update t1 set c3=c3+1 where c2=4;
|
|
|
|
--echo # Unblock ALTER TABLE by committing transaction.
|
|
commit;
|
|
|
|
--echo #
|
|
--echo # Switching to connection 'con46272'.
|
|
connection con46272;
|
|
--echo # Reaping ALTER TABLE.
|
|
--reap
|
|
|
|
--echo #
|
|
--echo # Switching to connection 'default'.
|
|
connection default;
|
|
disconnect con46272;
|
|
drop table t1;
|
|
|
|
|
|
--echo #
|
|
--echo # Bug#47249 assert in MDL_global_lock::is_lock_type_compatible
|
|
--echo #
|
|
|
|
--disable_warnings
|
|
DROP TABLE IF EXISTS t1;
|
|
DROP VIEW IF EXISTS v1;
|
|
--enable_warnings
|
|
|
|
--echo #
|
|
--echo # Test 1: LOCK TABLES v1 WRITE, t1 READ;
|
|
--echo #
|
|
--echo # Thanks to the fact that we no longer allow DDL on tables
|
|
--echo # which are locked for write implicitly, the exact scenario
|
|
--echo # in which assert was failing is no longer repeatable.
|
|
|
|
CREATE TABLE t1 ( f1 integer );
|
|
CREATE VIEW v1 AS SELECT f1 FROM t1 ;
|
|
|
|
LOCK TABLES v1 WRITE, t1 READ;
|
|
--error ER_TABLE_NOT_LOCKED_FOR_WRITE
|
|
FLUSH TABLE t1;
|
|
UNLOCK TABLES;
|
|
|
|
# Cleanup
|
|
DROP TABLE t1;
|
|
DROP VIEW v1;
|
|
|
|
--echo #
|
|
--echo # Test 2: LOCK TABLES t1 WRITE, v1 READ;
|
|
--echo #
|
|
|
|
CREATE TABLE t1 ( f1 integer );
|
|
CREATE VIEW v1 AS SELECT f1 FROM t1 ;
|
|
|
|
--echo # Connection 2
|
|
connect (con2,localhost,root);
|
|
LOCK TABLES t1 WRITE, v1 READ;
|
|
FLUSH TABLE t1;
|
|
disconnect con2;
|
|
--source include/wait_until_disconnected.inc
|
|
|
|
--echo # Connection 1
|
|
connection default;
|
|
LOCK TABLES t1 WRITE;
|
|
FLUSH TABLE t1; # Assertion happened here
|
|
|
|
# Cleanup
|
|
DROP TABLE t1;
|
|
DROP VIEW v1;
|
|
|
|
|
|
--echo #
|
|
--echo # Test for bug #50913 "Deadlock between open_and_lock_tables_derived
|
|
--echo # and MDL". Also see additional coverage in mdl_sync.test.
|
|
--echo #
|
|
--disable_warnings
|
|
drop table if exists t1;
|
|
drop view if exists v1;
|
|
--enable_warnings
|
|
connect (con50913,localhost,root);
|
|
connection default;
|
|
create table t1 (i int);
|
|
create view v1 as select i from t1;
|
|
begin;
|
|
select * from t1;
|
|
|
|
--echo # Switching to connection 'con50913'.
|
|
connection con50913;
|
|
--echo # Sending:
|
|
--send alter table t1 add column j int
|
|
|
|
--echo # Switching to connection 'default'.
|
|
connection default;
|
|
--echo # Wait until ALTER TABLE gets blocked.
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for table metadata lock" and
|
|
info = "alter table t1 add column j int";
|
|
--source include/wait_condition.inc
|
|
--echo # The below statement should try to acquire SW lock on 't1'
|
|
--echo # and therefore should get ER_LOCK_DEADLOCK error. Before
|
|
--echo # bug fix it acquired SR lock and hung on thr_lock.c lock.
|
|
--error ER_LOCK_DEADLOCK
|
|
delete a from t1 as a where i = 1;
|
|
--echo # Unblock ALTER TABLE.
|
|
commit;
|
|
|
|
--echo # Switching to connection 'con50913'.
|
|
connection con50913;
|
|
--echo # Reaping ALTER TABLE;
|
|
--reap
|
|
|
|
--echo # Switching to connection 'default'.
|
|
connection default;
|
|
begin;
|
|
select * from v1;
|
|
|
|
--echo # Switching to connection 'con50913'.
|
|
connection con50913;
|
|
--echo # Sending:
|
|
--send alter table t1 drop column j
|
|
|
|
--echo # Switching to connection 'default'.
|
|
connection default;
|
|
--echo # Wait until ALTER TABLE gets blocked.
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for table metadata lock" and
|
|
info = "alter table t1 drop column j";
|
|
--source include/wait_condition.inc
|
|
--echo # The below statement should try to acquire SW lock on 't1'
|
|
--echo # and therefore should get ER_LOCK_DEADLOCK error. Before
|
|
--echo # bug fix it acquired SR lock and hung on thr_lock.c lock.
|
|
--error ER_LOCK_DEADLOCK
|
|
insert into v1 values (1);
|
|
--echo # Unblock ALTER TABLE.
|
|
commit;
|
|
|
|
--echo # Switching to connection 'con50913'.
|
|
connection con50913;
|
|
--echo # Reaping ALTER TABLE;
|
|
--reap
|
|
|
|
--echo # Switching to connection 'default'.
|
|
connection default;
|
|
disconnect con50913;
|
|
drop view v1;
|
|
drop table t1;
|
|
|
|
|
|
--echo #
|
|
--echo # Bug#45225 Locking: hang if drop table with no timeout
|
|
--echo #
|
|
--echo # These tests also provide function coverage for the
|
|
--echo # lock_wait_timeout server variable.
|
|
--echo #
|
|
|
|
--disable_warnings
|
|
DROP TABLE IF EXISTS t1;
|
|
--enable_warnings
|
|
|
|
CREATE TABLE t1 (id int);
|
|
|
|
connect(con2, localhost, root,,);
|
|
SET SESSION lock_wait_timeout= 1;
|
|
|
|
--echo #
|
|
--echo # Test 1: acquire exclusive lock
|
|
--echo #
|
|
|
|
--echo # Connection default
|
|
connection default;
|
|
START TRANSACTION;
|
|
INSERT INTO t1 VALUES (1);
|
|
|
|
--echo # Connection 2
|
|
connection con2;
|
|
--error ER_LOCK_WAIT_TIMEOUT
|
|
DROP TABLE t1;
|
|
|
|
--echo # Connection default
|
|
connection default;
|
|
COMMIT;
|
|
|
|
--echo #
|
|
--echo # Test 2: upgrade shared lock
|
|
--echo #
|
|
|
|
--echo # Connection default
|
|
connection default;
|
|
START TRANSACTION;
|
|
SELECT * FROM t1;
|
|
|
|
--echo # Connection 2
|
|
connection con2;
|
|
--error ER_LOCK_WAIT_TIMEOUT
|
|
ALTER TABLE t1 RENAME TO t2;
|
|
|
|
--echo # Connection default
|
|
connection default;
|
|
COMMIT;
|
|
|
|
--echo #
|
|
--echo # Test 3: acquire shared lock
|
|
--echo #
|
|
|
|
--echo # Connection default
|
|
connection default;
|
|
LOCK TABLE t1 WRITE;
|
|
|
|
--echo # Connection 2
|
|
connection con2;
|
|
--error ER_LOCK_WAIT_TIMEOUT
|
|
INSERT INTO t1(id) VALUES (2);
|
|
|
|
--echo # Connection default
|
|
connection default;
|
|
UNLOCK TABLES;
|
|
|
|
--echo #
|
|
--echo # Test 4: table level locks
|
|
--echo #
|
|
|
|
--echo # Connection default
|
|
connection default;
|
|
LOCK TABLE t1 READ;
|
|
|
|
--echo # Connection 2
|
|
connection con2;
|
|
--error ER_LOCK_WAIT_TIMEOUT
|
|
INSERT INTO t1(id) VALUES(4);
|
|
|
|
--echo # Connection default
|
|
connection default;
|
|
UNLOCK TABLES;
|
|
|
|
--echo #
|
|
--echo # Test 5: Waiting on Table Definition Cache (TDC)
|
|
--echo #
|
|
|
|
connect(con3, localhost, root);
|
|
|
|
--echo # Connection default
|
|
connection default;
|
|
LOCK TABLE t1 READ;
|
|
|
|
--echo # Connection con3
|
|
connection con3;
|
|
--echo # Sending:
|
|
--send FLUSH TABLES
|
|
|
|
--echo # Connection con2
|
|
connection con2;
|
|
let $wait_condition=
|
|
SELECT COUNT(*) = 1 FROM information_schema.processlist
|
|
WHERE state = "Waiting for table flush" AND info = "FLUSH TABLES";
|
|
--source include/wait_condition.inc
|
|
--error ER_LOCK_WAIT_TIMEOUT
|
|
SELECT * FROM t1;
|
|
|
|
--echo # Connection default
|
|
connection default;
|
|
UNLOCK TABLES;
|
|
|
|
--echo # Connection con3
|
|
connection con3;
|
|
--echo # Reaping: FLUSH TABLES
|
|
--reap
|
|
|
|
--echo #
|
|
--echo # Test 6: Timeouts in I_S queries
|
|
--echo #
|
|
|
|
--echo # Connection default
|
|
connection default;
|
|
CREATE TABLE t2 (id INT);
|
|
LOCK TABLE t2 WRITE;
|
|
|
|
--echo # Connection con3
|
|
connection con3;
|
|
--echo # Sending:
|
|
--send DROP TABLE t1, t2
|
|
|
|
--echo # Connection con2
|
|
connection con2;
|
|
let $wait_condition=
|
|
SELECT COUNT(*) = 1 FROM information_schema.processlist
|
|
WHERE state = "Waiting for table metadata lock" AND
|
|
info = "DROP TABLE t1, t2";
|
|
--source include/wait_condition.inc
|
|
# Note: This query causes two timeouts.
|
|
# 1: try_acquire_high_prio_shared_mdl_lock on t1
|
|
# 2: recover_from_failed_open on t1
|
|
SELECT table_name, table_comment FROM information_schema.tables
|
|
WHERE table_schema= 'test' AND table_name= 't1';
|
|
|
|
--echo # Connection default
|
|
connection default;
|
|
UNLOCK TABLES;
|
|
|
|
--echo # Connection con3
|
|
connection con3;
|
|
--echo # Reaping: DROP TABLE t1, t2
|
|
--reap
|
|
|
|
--echo # Connection default
|
|
connection default;
|
|
--echo # Cleanup
|
|
disconnect con2;
|
|
disconnect con3;
|
|
|
|
|
|
--echo #
|
|
--echo # Test for bug #51134 "Crash in MDL_lock::destroy on a concurrent
|
|
--echo # DDL workload".
|
|
--echo #
|
|
--disable_warnings
|
|
drop tables if exists t1, t2, t3;
|
|
--enable_warnings
|
|
connect (con1, localhost, root, , );
|
|
connect (con2, localhost, root, , );
|
|
connection default;
|
|
create table t3 (i int);
|
|
|
|
--echo # Switching to connection 'con1'
|
|
connection con1;
|
|
--echo # Lock 't3' so upcoming RENAME is blocked.
|
|
lock table t3 read;
|
|
|
|
--echo # Switching to connection 'con2'
|
|
connection con2;
|
|
--echo # Remember ID for this connection.
|
|
let $ID= `select connection_id()`;
|
|
--echo # Start statement which will try to acquire two instances
|
|
--echo # of X metadata lock on the same object.
|
|
--echo # Sending:
|
|
--send rename tables t1 to t2, t2 to t3;
|
|
|
|
--echo # Switching to connection 'default'
|
|
connection default;
|
|
--echo # Wait until RENAME TABLE is blocked on table 't3'.
|
|
let $wait_condition=
|
|
select count(*) = 1 from information_schema.processlist
|
|
where state = "Waiting for table metadata lock" and
|
|
info = "rename tables t1 to t2, t2 to t3";
|
|
--source include/wait_condition.inc
|
|
--echo # Kill RENAME TABLE.
|
|
--replace_result $ID ID
|
|
eval kill query $ID;
|
|
|
|
--echo # Switching to connection 'con2'
|
|
connection con2;
|
|
--echo # RENAME TABLE should be aborted but should not crash.
|
|
--error ER_QUERY_INTERRUPTED
|
|
--reap
|
|
|
|
--echo # Switching to connection 'con1'
|
|
connection con1;
|
|
unlock tables;
|
|
|
|
--echo # Switching to connection 'default'
|
|
connection default;
|
|
disconnect con1;
|
|
disconnect con2;
|
|
drop table t3;
|
|
|
|
|
|
--echo #
|
|
--echo # Test for the bug where upgradable metadata locks was acquired
|
|
--echo # even if the table to altered was temporary.
|
|
--echo # Bug found while working on the related bug #51240.
|
|
--echo #
|
|
|
|
--disable_warnings
|
|
DROP TABLE IF EXISTS t1;
|
|
--enable_warnings
|
|
|
|
CREATE TABLE t1 (id INT);
|
|
LOCK TABLE t1 WRITE;
|
|
|
|
--echo # Connection con1
|
|
connect (con1, localhost, root);
|
|
CREATE TEMPORARY TABLE t1 (id INT);
|
|
# This alter should not block and timeout.
|
|
ALTER TABLE t1 ADD COLUMN j INT;
|
|
|
|
--echo # Connection default
|
|
connection default;
|
|
disconnect con1;
|
|
UNLOCK TABLES;
|
|
DROP TABLE t1;
|
|
|
|
|
|
# Wait till all disconnects are completed
|
|
--source include/wait_until_count_sessions.inc
|