mariadb/storage/innobase/row/row0log.cc
Marko Mäkelä 4e1116b2c6 MDEV-12271 Port MySQL 8.0 Bug#23150562 REMOVE UNIV_MUST_NOT_INLINE AND UNIV_NONINL
Also, remove empty .ic files that were not removed by my MySQL commit.

Problem:
InnoDB used to support a compilation mode that allowed to choose
whether the function definitions in .ic files are to be inlined or not.
This stopped making sense when InnoDB moved to C++ in MySQL 5.6
(and ha_innodb.cc started to #include .ic files), and more so in
MySQL 5.7 when inline methods and functions were introduced
in .h files.

Solution:
Remove all references to UNIV_NONINL and UNIV_MUST_NOT_INLINE from
all files, assuming that the symbols are never defined.
Remove the files fut0fut.cc and ut0byte.cc which only mattered when
UNIV_NONINL was defined.
2017-03-17 12:42:07 +02:00

3980 lines
110 KiB
C++

/*****************************************************************************
Copyright (c) 2011, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2017, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file row/row0log.cc
Modification log for online index creation and online table rebuild
Created 2011-05-26 Marko Makela
*******************************************************/
#include "row0log.h"
#include "row0row.h"
#include "row0ins.h"
#include "row0upd.h"
#include "row0merge.h"
#include "row0ext.h"
#include "data0data.h"
#include "que0que.h"
#include "srv0mon.h"
#include "handler0alter.h"
#include "ut0new.h"
#include "ut0stage.h"
#include "trx0rec.h"
#include <algorithm>
#include <map>
ulint onlineddl_rowlog_rows;
ulint onlineddl_rowlog_pct_used;
ulint onlineddl_pct_progress;
/** Table row modification operations during online table rebuild.
Delete-marked records are not copied to the rebuilt table. */
enum row_tab_op {
/** Insert a record */
ROW_T_INSERT = 0x41,
/** Update a record in place */
ROW_T_UPDATE,
/** Delete (purge) a record */
ROW_T_DELETE
};
/** Index record modification operations during online index creation */
enum row_op {
/** Insert a record */
ROW_OP_INSERT = 0x61,
/** Delete a record */
ROW_OP_DELETE
};
/** Size of the modification log entry header, in bytes */
#define ROW_LOG_HEADER_SIZE 2/*op, extra_size*/
/** Log block for modifications during online ALTER TABLE */
struct row_log_buf_t {
byte* block; /*!< file block buffer */
ut_new_pfx_t block_pfx; /*!< opaque descriptor of "block". Set
by ut_allocator::allocate_large() and fed to
ut_allocator::deallocate_large(). */
mrec_buf_t buf; /*!< buffer for accessing a record
that spans two blocks */
ulint blocks; /*!< current position in blocks */
ulint bytes; /*!< current position within block */
ulonglong total; /*!< logical position, in bytes from
the start of the row_log_table log;
0 for row_log_online_op() and
row_log_apply(). */
};
/** Tracks BLOB allocation during online ALTER TABLE */
class row_log_table_blob_t {
public:
/** Constructor (declaring a BLOB freed)
@param offset_arg row_log_t::tail::total */
#ifdef UNIV_DEBUG
row_log_table_blob_t(ulonglong offset_arg) :
old_offset (0), free_offset (offset_arg),
offset (BLOB_FREED) {}
#else /* UNIV_DEBUG */
row_log_table_blob_t() :
offset (BLOB_FREED) {}
#endif /* UNIV_DEBUG */
/** Declare a BLOB freed again.
@param offset_arg row_log_t::tail::total */
#ifdef UNIV_DEBUG
void blob_free(ulonglong offset_arg)
#else /* UNIV_DEBUG */
void blob_free()
#endif /* UNIV_DEBUG */
{
ut_ad(offset < offset_arg);
ut_ad(offset != BLOB_FREED);
ut_d(old_offset = offset);
ut_d(free_offset = offset_arg);
offset = BLOB_FREED;
}
/** Declare a freed BLOB reused.
@param offset_arg row_log_t::tail::total */
void blob_alloc(ulonglong offset_arg) {
ut_ad(free_offset <= offset_arg);
ut_d(old_offset = offset);
offset = offset_arg;
}
/** Determine if a BLOB was freed at a given log position
@param offset_arg row_log_t::head::total after the log record
@return true if freed */
bool is_freed(ulonglong offset_arg) const {
/* This is supposed to be the offset at the end of the
current log record. */
ut_ad(offset_arg > 0);
/* We should never get anywhere close the magic value. */
ut_ad(offset_arg < BLOB_FREED);
return(offset_arg < offset);
}
private:
/** Magic value for a freed BLOB */
static const ulonglong BLOB_FREED = ~0ULL;
#ifdef UNIV_DEBUG
/** Old offset, in case a page was freed, reused, freed, ... */
ulonglong old_offset;
/** Offset of last blob_free() */
ulonglong free_offset;
#endif /* UNIV_DEBUG */
/** Byte offset to the log file */
ulonglong offset;
};
/** @brief Map of off-page column page numbers to 0 or log byte offsets.
If there is no mapping for a page number, it is safe to access.
If a page number maps to 0, it is an off-page column that has been freed.
If a page number maps to a nonzero number, the number is a byte offset
into the index->online_log, indicating that the page is safe to access
when applying log records starting from that offset. */
typedef std::map<
ulint,
row_log_table_blob_t,
std::less<ulint>,
ut_allocator<std::pair<const ulint, row_log_table_blob_t> > >
page_no_map;
/** @brief Buffer for logging modifications during online index creation
All modifications to an index that is being created will be logged by
row_log_online_op() to this buffer.
All modifications to a table that is being rebuilt will be logged by
row_log_table_delete(), row_log_table_update(), row_log_table_insert()
to this buffer.
When head.blocks == tail.blocks, the reader will access tail.block
directly. When also head.bytes == tail.bytes, both counts will be
reset to 0 and the file will be truncated. */
struct row_log_t {
int fd; /*!< file descriptor */
ib_mutex_t mutex; /*!< mutex protecting error,
max_trx and tail */
page_no_map* blobs; /*!< map of page numbers of off-page columns
that have been freed during table-rebuilding
ALTER TABLE (row_log_table_*); protected by
index->lock X-latch only */
dict_table_t* table; /*!< table that is being rebuilt,
or NULL when this is a secondary
index that is being created online */
bool same_pk;/*!< whether the definition of the PRIMARY KEY
has remained the same */
const dtuple_t* add_cols;
/*!< default values of added columns, or NULL */
const ulint* col_map;/*!< mapping of old column numbers to
new ones, or NULL if !table */
dberr_t error; /*!< error that occurred during online
table rebuild */
trx_id_t max_trx;/*!< biggest observed trx_id in
row_log_online_op();
protected by mutex and index->lock S-latch,
or by index->lock X-latch only */
row_log_buf_t tail; /*!< writer context;
protected by mutex and index->lock S-latch,
or by index->lock X-latch only */
row_log_buf_t head; /*!< reader context; protected by MDL only;
modifiable by row_log_apply_ops() */
ulint n_old_col;
/*!< number of non-virtual column in
old table */
ulint n_old_vcol;
/*!< number of virtual column in old table */
const char* path; /*!< where to create temporary file during
log operation */
};
/** Create the file or online log if it does not exist.
@param[in,out] log online rebuild log
@return true if success, false if not */
static MY_ATTRIBUTE((warn_unused_result))
int
row_log_tmpfile(
row_log_t* log)
{
DBUG_ENTER("row_log_tmpfile");
if (log->fd < 0) {
log->fd = row_merge_file_create_low(log->path);
DBUG_EXECUTE_IF("row_log_tmpfile_fail",
if (log->fd > 0)
row_merge_file_destroy_low(log->fd);
log->fd = -1;);
if (log->fd >= 0) {
MONITOR_ATOMIC_INC(MONITOR_ALTER_TABLE_LOG_FILES);
}
}
DBUG_RETURN(log->fd);
}
/** Allocate the memory for the log buffer.
@param[in,out] log_buf Buffer used for log operation
@return TRUE if success, false if not */
static MY_ATTRIBUTE((warn_unused_result))
bool
row_log_block_allocate(
row_log_buf_t& log_buf)
{
DBUG_ENTER("row_log_block_allocate");
if (log_buf.block == NULL) {
DBUG_EXECUTE_IF(
"simulate_row_log_allocation_failure",
DBUG_RETURN(false);
);
log_buf.block = ut_allocator<byte>(mem_key_row_log_buf)
.allocate_large(srv_sort_buf_size, &log_buf.block_pfx);
if (log_buf.block == NULL) {
DBUG_RETURN(false);
}
}
DBUG_RETURN(true);
}
/** Free the log buffer.
@param[in,out] log_buf Buffer used for log operation */
static
void
row_log_block_free(
row_log_buf_t& log_buf)
{
DBUG_ENTER("row_log_block_free");
if (log_buf.block != NULL) {
ut_allocator<byte>(mem_key_row_log_buf).deallocate_large(
log_buf.block, &log_buf.block_pfx);
log_buf.block = NULL;
}
DBUG_VOID_RETURN;
}
/******************************************************//**
Logs an operation to a secondary index that is (or was) being created. */
void
row_log_online_op(
/*==============*/
dict_index_t* index, /*!< in/out: index, S or X latched */
const dtuple_t* tuple, /*!< in: index tuple */
trx_id_t trx_id) /*!< in: transaction ID for insert,
or 0 for delete */
{
byte* b;
ulint extra_size;
ulint size;
ulint mrec_size;
ulint avail_size;
row_log_t* log;
ut_ad(dtuple_validate(tuple));
ut_ad(dtuple_get_n_fields(tuple) == dict_index_get_n_fields(index));
ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_S)
|| rw_lock_own(dict_index_get_lock(index), RW_LOCK_X));
if (dict_index_is_corrupted(index)) {
return;
}
ut_ad(dict_index_is_online_ddl(index));
/* Compute the size of the record. This differs from
row_merge_buf_encode(), because here we do not encode
extra_size+1 (and reserve 0 as the end-of-chunk marker). */
size = rec_get_converted_size_temp(
index, tuple->fields, tuple->n_fields, NULL, &extra_size);
ut_ad(size >= extra_size);
ut_ad(size <= sizeof log->tail.buf);
mrec_size = ROW_LOG_HEADER_SIZE
+ (extra_size >= 0x80) + size
+ (trx_id ? DATA_TRX_ID_LEN : 0);
log = index->online_log;
mutex_enter(&log->mutex);
if (trx_id > log->max_trx) {
log->max_trx = trx_id;
}
if (!row_log_block_allocate(log->tail)) {
log->error = DB_OUT_OF_MEMORY;
goto err_exit;
}
UNIV_MEM_INVALID(log->tail.buf, sizeof log->tail.buf);
ut_ad(log->tail.bytes < srv_sort_buf_size);
avail_size = srv_sort_buf_size - log->tail.bytes;
if (mrec_size > avail_size) {
b = log->tail.buf;
} else {
b = log->tail.block + log->tail.bytes;
}
if (trx_id != 0) {
*b++ = ROW_OP_INSERT;
trx_write_trx_id(b, trx_id);
b += DATA_TRX_ID_LEN;
} else {
*b++ = ROW_OP_DELETE;
}
if (extra_size < 0x80) {
*b++ = (byte) extra_size;
} else {
ut_ad(extra_size < 0x8000);
*b++ = (byte) (0x80 | (extra_size >> 8));
*b++ = (byte) extra_size;
}
rec_convert_dtuple_to_temp(
b + extra_size, index, tuple->fields, tuple->n_fields, NULL);
b += size;
if (mrec_size >= avail_size) {
dberr_t err;
IORequest request(IORequest::WRITE);
const os_offset_t byte_offset
= (os_offset_t) log->tail.blocks
* srv_sort_buf_size;
if (byte_offset + srv_sort_buf_size >= srv_online_max_size) {
goto write_failed;
}
if (mrec_size == avail_size) {
ut_ad(b == &log->tail.block[srv_sort_buf_size]);
} else {
ut_ad(b == log->tail.buf + mrec_size);
memcpy(log->tail.block + log->tail.bytes,
log->tail.buf, avail_size);
}
UNIV_MEM_ASSERT_RW(log->tail.block, srv_sort_buf_size);
if (row_log_tmpfile(log) < 0) {
log->error = DB_OUT_OF_MEMORY;
goto err_exit;
}
err = os_file_write(
request,
"(modification log)",
OS_FILE_FROM_FD(log->fd),
log->tail.block, byte_offset, srv_sort_buf_size);
log->tail.blocks++;
if (err != DB_SUCCESS) {
write_failed:
/* We set the flag directly instead of invoking
dict_set_corrupted_index_cache_only(index) here,
because the index is not "public" yet. */
index->type |= DICT_CORRUPT;
}
UNIV_MEM_INVALID(log->tail.block, srv_sort_buf_size);
memcpy(log->tail.block, log->tail.buf + avail_size,
mrec_size - avail_size);
log->tail.bytes = mrec_size - avail_size;
} else {
log->tail.bytes += mrec_size;
ut_ad(b == log->tail.block + log->tail.bytes);
}
UNIV_MEM_INVALID(log->tail.buf, sizeof log->tail.buf);
err_exit:
mutex_exit(&log->mutex);
}
/******************************************************//**
Gets the error status of the online index rebuild log.
@return DB_SUCCESS or error code */
dberr_t
row_log_table_get_error(
/*====================*/
const dict_index_t* index) /*!< in: clustered index of a table
that is being rebuilt online */
{
ut_ad(dict_index_is_clust(index));
ut_ad(dict_index_is_online_ddl(index));
return(index->online_log->error);
}
/******************************************************//**
Starts logging an operation to a table that is being rebuilt.
@return pointer to log, or NULL if no logging is necessary */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
byte*
row_log_table_open(
/*===============*/
row_log_t* log, /*!< in/out: online rebuild log */
ulint size, /*!< in: size of log record */
ulint* avail) /*!< out: available size for log record */
{
mutex_enter(&log->mutex);
UNIV_MEM_INVALID(log->tail.buf, sizeof log->tail.buf);
if (log->error != DB_SUCCESS) {
err_exit:
mutex_exit(&log->mutex);
return(NULL);
}
if (!row_log_block_allocate(log->tail)) {
log->error = DB_OUT_OF_MEMORY;
goto err_exit;
}
ut_ad(log->tail.bytes < srv_sort_buf_size);
*avail = srv_sort_buf_size - log->tail.bytes;
if (size > *avail) {
return(log->tail.buf);
} else {
return(log->tail.block + log->tail.bytes);
}
}
/******************************************************//**
Stops logging an operation to a table that is being rebuilt. */
static MY_ATTRIBUTE((nonnull))
void
row_log_table_close_func(
/*=====================*/
row_log_t* log, /*!< in/out: online rebuild log */
#ifdef UNIV_DEBUG
const byte* b, /*!< in: end of log record */
#endif /* UNIV_DEBUG */
ulint size, /*!< in: size of log record */
ulint avail) /*!< in: available size for log record */
{
ut_ad(mutex_own(&log->mutex));
if (size >= avail) {
dberr_t err;
IORequest request(IORequest::WRITE);
const os_offset_t byte_offset
= (os_offset_t) log->tail.blocks
* srv_sort_buf_size;
if (byte_offset + srv_sort_buf_size >= srv_online_max_size) {
goto write_failed;
}
if (size == avail) {
ut_ad(b == &log->tail.block[srv_sort_buf_size]);
} else {
ut_ad(b == log->tail.buf + size);
memcpy(log->tail.block + log->tail.bytes,
log->tail.buf, avail);
}
UNIV_MEM_ASSERT_RW(log->tail.block, srv_sort_buf_size);
if (row_log_tmpfile(log) < 0) {
log->error = DB_OUT_OF_MEMORY;
goto err_exit;
}
err = os_file_write(
request,
"(modification log)",
OS_FILE_FROM_FD(log->fd),
log->tail.block, byte_offset, srv_sort_buf_size);
log->tail.blocks++;
if (err != DB_SUCCESS) {
write_failed:
log->error = DB_ONLINE_LOG_TOO_BIG;
}
UNIV_MEM_INVALID(log->tail.block, srv_sort_buf_size);
memcpy(log->tail.block, log->tail.buf + avail, size - avail);
log->tail.bytes = size - avail;
} else {
log->tail.bytes += size;
ut_ad(b == log->tail.block + log->tail.bytes);
}
log->tail.total += size;
UNIV_MEM_INVALID(log->tail.buf, sizeof log->tail.buf);
err_exit:
mutex_exit(&log->mutex);
my_atomic_addlint(&onlineddl_rowlog_rows, 1);
/* 10000 means 100.00%, 4525 means 45.25% */
onlineddl_rowlog_pct_used = static_cast<ulint>((log->tail.total * 10000) / srv_online_max_size);
}
#ifdef UNIV_DEBUG
# define row_log_table_close(log, b, size, avail) \
row_log_table_close_func(log, b, size, avail)
#else /* UNIV_DEBUG */
# define row_log_table_close(log, b, size, avail) \
row_log_table_close_func(log, size, avail)
#endif /* UNIV_DEBUG */
/** Check whether a virtual column is indexed in the new table being
created during alter table
@param[in] index cluster index
@param[in] v_no virtual column number
@return true if it is indexed, else false */
bool
row_log_col_is_indexed(
const dict_index_t* index,
ulint v_no)
{
return(dict_table_get_nth_v_col(
index->online_log->table, v_no)->m_col.ord_part);
}
/******************************************************//**
Logs a delete operation to a table that is being rebuilt.
This will be merged in row_log_table_apply_delete(). */
void
row_log_table_delete(
/*=================*/
const rec_t* rec, /*!< in: clustered index leaf page record,
page X-latched */
const dtuple_t* ventry, /*!< in: dtuple holding virtual column info */
dict_index_t* index, /*!< in/out: clustered index, S-latched
or X-latched */
const ulint* offsets,/*!< in: rec_get_offsets(rec,index) */
const byte* sys) /*!< in: DB_TRX_ID,DB_ROLL_PTR that should
be logged, or NULL to use those in rec */
{
ulint old_pk_extra_size;
ulint old_pk_size;
ulint ext_size = 0;
ulint mrec_size;
ulint avail_size;
mem_heap_t* heap = NULL;
const dtuple_t* old_pk;
row_ext_t* ext;
ut_ad(dict_index_is_clust(index));
ut_ad(rec_offs_validate(rec, index, offsets));
ut_ad(rec_offs_n_fields(offsets) == dict_index_get_n_fields(index));
ut_ad(rec_offs_size(offsets) <= sizeof index->online_log->tail.buf);
ut_ad(rw_lock_own_flagged(
&index->lock,
RW_LOCK_FLAG_S | RW_LOCK_FLAG_X | RW_LOCK_FLAG_SX));
if (dict_index_is_corrupted(index)
|| !dict_index_is_online_ddl(index)
|| index->online_log->error != DB_SUCCESS) {
return;
}
dict_table_t* new_table = index->online_log->table;
dict_index_t* new_index = dict_table_get_first_index(new_table);
ut_ad(dict_index_is_clust(new_index));
ut_ad(!dict_index_is_online_ddl(new_index));
/* Create the tuple PRIMARY KEY,DB_TRX_ID,DB_ROLL_PTR in new_table. */
if (index->online_log->same_pk) {
dtuple_t* tuple;
ut_ad(new_index->n_uniq == index->n_uniq);
/* The PRIMARY KEY and DB_TRX_ID,DB_ROLL_PTR are in the first
fields of the record. */
heap = mem_heap_create(
DATA_TRX_ID_LEN
+ DTUPLE_EST_ALLOC(new_index->n_uniq + 2));
old_pk = tuple = dtuple_create(heap, new_index->n_uniq + 2);
dict_index_copy_types(tuple, new_index, tuple->n_fields);
dtuple_set_n_fields_cmp(tuple, new_index->n_uniq);
for (ulint i = 0; i < dtuple_get_n_fields(tuple); i++) {
ulint len;
const void* field = rec_get_nth_field(
rec, offsets, i, &len);
dfield_t* dfield = dtuple_get_nth_field(
tuple, i);
ut_ad(len != UNIV_SQL_NULL);
ut_ad(!rec_offs_nth_extern(offsets, i));
dfield_set_data(dfield, field, len);
}
if (sys) {
dfield_set_data(
dtuple_get_nth_field(tuple,
new_index->n_uniq),
sys, DATA_TRX_ID_LEN);
dfield_set_data(
dtuple_get_nth_field(tuple,
new_index->n_uniq + 1),
sys + DATA_TRX_ID_LEN, DATA_ROLL_PTR_LEN);
}
} else {
/* The PRIMARY KEY has changed. Translate the tuple. */
old_pk = row_log_table_get_pk(
rec, index, offsets, NULL, &heap);
if (!old_pk) {
ut_ad(index->online_log->error != DB_SUCCESS);
if (heap) {
goto func_exit;
}
return;
}
}
ut_ad(DATA_TRX_ID_LEN == dtuple_get_nth_field(
old_pk, old_pk->n_fields - 2)->len);
ut_ad(DATA_ROLL_PTR_LEN == dtuple_get_nth_field(
old_pk, old_pk->n_fields - 1)->len);
old_pk_size = rec_get_converted_size_temp(
new_index, old_pk->fields, old_pk->n_fields, NULL,
&old_pk_extra_size);
ut_ad(old_pk_extra_size < 0x100);
mrec_size = 4 + old_pk_size;
/* Log enough prefix of the BLOB unless both the
old and new table are in COMPACT or REDUNDANT format,
which store the prefix in the clustered index record. */
if (rec_offs_any_extern(offsets)
&& (dict_table_get_format(index->table) >= UNIV_FORMAT_B
|| dict_table_get_format(new_table) >= UNIV_FORMAT_B)) {
/* Build a cache of those off-page column prefixes
that are referenced by secondary indexes. It can be
that none of the off-page columns are needed. */
row_build(ROW_COPY_DATA, index, rec,
offsets, NULL, NULL, NULL, &ext, heap);
if (ext) {
/* Log the row_ext_t, ext->ext and ext->buf */
ext_size = ext->n_ext * ext->max_len
+ sizeof(*ext)
+ ext->n_ext * sizeof(ulint)
+ (ext->n_ext - 1) * sizeof ext->len;
mrec_size += ext_size;
}
}
/* Check if we need to log virtual column data */
if (ventry->n_v_fields > 0) {
ulint v_extra;
mrec_size += rec_get_converted_size_temp(
new_index, NULL, 0, ventry, &v_extra);
}
if (byte* b = row_log_table_open(index->online_log,
mrec_size, &avail_size)) {
*b++ = ROW_T_DELETE;
*b++ = static_cast<byte>(old_pk_extra_size);
/* Log the size of external prefix we saved */
mach_write_to_2(b, ext_size);
b += 2;
rec_convert_dtuple_to_temp(
b + old_pk_extra_size, new_index,
old_pk->fields, old_pk->n_fields, NULL);
b += old_pk_size;
if (ext_size) {
ulint cur_ext_size = sizeof(*ext)
+ (ext->n_ext - 1) * sizeof ext->len;
memcpy(b, ext, cur_ext_size);
b += cur_ext_size;
/* Check if we need to col_map to adjust the column
number. If columns were added/removed/reordered,
adjust the column number. */
if (const ulint* col_map =
index->online_log->col_map) {
for (ulint i = 0; i < ext->n_ext; i++) {
const_cast<ulint&>(ext->ext[i]) =
col_map[ext->ext[i]];
}
}
memcpy(b, ext->ext, ext->n_ext * sizeof(*ext->ext));
b += ext->n_ext * sizeof(*ext->ext);
ext_size -= cur_ext_size
+ ext->n_ext * sizeof(*ext->ext);
memcpy(b, ext->buf, ext_size);
b += ext_size;
}
/* log virtual columns */
if (ventry->n_v_fields > 0) {
rec_convert_dtuple_to_temp(
b, new_index, NULL, 0, ventry);
b += mach_read_from_2(b);
}
row_log_table_close(
index->online_log, b, mrec_size, avail_size);
}
func_exit:
mem_heap_free(heap);
}
/******************************************************//**
Logs an insert or update to a table that is being rebuilt. */
static
void
row_log_table_low_redundant(
/*========================*/
const rec_t* rec, /*!< in: clustered index leaf
page record in ROW_FORMAT=REDUNDANT,
page X-latched */
const dtuple_t* ventry, /*!< in: dtuple holding virtual
column info or NULL */
const dtuple_t* o_ventry,/*!< in: old dtuple holding virtual
column info or NULL */
dict_index_t* index, /*!< in/out: clustered index, S-latched
or X-latched */
bool insert, /*!< in: true if insert,
false if update */
const dtuple_t* old_pk, /*!< in: old PRIMARY KEY value
(if !insert and a PRIMARY KEY
is being created) */
const dict_index_t* new_index)
/*!< in: clustered index of the
new table, not latched */
{
ulint old_pk_size;
ulint old_pk_extra_size;
ulint size;
ulint extra_size;
ulint mrec_size;
ulint avail_size;
mem_heap_t* heap = NULL;
dtuple_t* tuple;
ulint num_v = ventry ? dtuple_get_n_v_fields(ventry) : 0;
ut_ad(!page_is_comp(page_align(rec)));
ut_ad(dict_index_get_n_fields(index) == rec_get_n_fields_old(rec));
ut_ad(dict_tf2_is_valid(index->table->flags, index->table->flags2));
ut_ad(!dict_table_is_comp(index->table)); /* redundant row format */
ut_ad(dict_index_is_clust(new_index));
heap = mem_heap_create(DTUPLE_EST_ALLOC(index->n_fields));
tuple = dtuple_create_with_vcol(heap, index->n_fields, num_v);
dict_index_copy_types(tuple, index, index->n_fields);
if (num_v) {
dict_table_copy_v_types(tuple, index->table);
}
dtuple_set_n_fields_cmp(tuple, dict_index_get_n_unique(index));
if (rec_get_1byte_offs_flag(rec)) {
for (ulint i = 0; i < index->n_fields; i++) {
dfield_t* dfield;
ulint len;
const void* field;
dfield = dtuple_get_nth_field(tuple, i);
field = rec_get_nth_field_old(rec, i, &len);
dfield_set_data(dfield, field, len);
}
} else {
for (ulint i = 0; i < index->n_fields; i++) {
dfield_t* dfield;
ulint len;
const void* field;
dfield = dtuple_get_nth_field(tuple, i);
field = rec_get_nth_field_old(rec, i, &len);
dfield_set_data(dfield, field, len);
if (rec_2_is_field_extern(rec, i)) {
dfield_set_ext(dfield);
}
}
}
size = rec_get_converted_size_temp(
index, tuple->fields, tuple->n_fields, ventry, &extra_size);
mrec_size = ROW_LOG_HEADER_SIZE + size + (extra_size >= 0x80);
if (ventry && ventry->n_v_fields > 0) {
ulint v_extra = 0;
mrec_size += rec_get_converted_size_temp(
index, NULL, 0, ventry, &v_extra);
if (o_ventry) {
mrec_size += rec_get_converted_size_temp(
index, NULL, 0, o_ventry, &v_extra);
}
} else if (index->table->n_v_cols) {
mrec_size += 2;
}
if (insert || index->online_log->same_pk) {
ut_ad(!old_pk);
old_pk_extra_size = old_pk_size = 0;
} else {
ut_ad(old_pk);
ut_ad(old_pk->n_fields == 2 + old_pk->n_fields_cmp);
ut_ad(DATA_TRX_ID_LEN == dtuple_get_nth_field(
old_pk, old_pk->n_fields - 2)->len);
ut_ad(DATA_ROLL_PTR_LEN == dtuple_get_nth_field(
old_pk, old_pk->n_fields - 1)->len);
old_pk_size = rec_get_converted_size_temp(
new_index, old_pk->fields, old_pk->n_fields,
ventry, &old_pk_extra_size);
ut_ad(old_pk_extra_size < 0x100);
mrec_size += 1/*old_pk_extra_size*/ + old_pk_size;
}
if (byte* b = row_log_table_open(index->online_log,
mrec_size, &avail_size)) {
*b++ = insert ? ROW_T_INSERT : ROW_T_UPDATE;
if (old_pk_size) {
*b++ = static_cast<byte>(old_pk_extra_size);
rec_convert_dtuple_to_temp(
b + old_pk_extra_size, new_index,
old_pk->fields, old_pk->n_fields,
ventry);
b += old_pk_size;
}
if (extra_size < 0x80) {
*b++ = static_cast<byte>(extra_size);
} else {
ut_ad(extra_size < 0x8000);
*b++ = static_cast<byte>(0x80 | (extra_size >> 8));
*b++ = static_cast<byte>(extra_size);
}
rec_convert_dtuple_to_temp(
b + extra_size, index, tuple->fields, tuple->n_fields,
ventry);
b += size;
if (ventry && ventry->n_v_fields > 0) {
rec_convert_dtuple_to_temp(
b, new_index, NULL, 0, ventry);
b += mach_read_from_2(b);
if (o_ventry) {
rec_convert_dtuple_to_temp(
b, new_index, NULL, 0, o_ventry);
b += mach_read_from_2(b);
}
} else if (index->table->n_v_cols) {
/* The table contains virtual columns, but nothing
has changed for them, so just mark a 2 bytes length
field */
mach_write_to_2(b, 2);
b += 2;
}
row_log_table_close(
index->online_log, b, mrec_size, avail_size);
}
mem_heap_free(heap);
}
/******************************************************//**
Logs an insert or update to a table that is being rebuilt. */
static
void
row_log_table_low(
/*==============*/
const rec_t* rec, /*!< in: clustered index leaf page record,
page X-latched */
const dtuple_t* ventry, /*!< in: dtuple holding virtual column info */
const dtuple_t* o_ventry,/*!< in: dtuple holding old virtual column
info */
dict_index_t* index, /*!< in/out: clustered index, S-latched
or X-latched */
const ulint* offsets,/*!< in: rec_get_offsets(rec,index) */
bool insert, /*!< in: true if insert, false if update */
const dtuple_t* old_pk) /*!< in: old PRIMARY KEY value (if !insert
and a PRIMARY KEY is being created) */
{
ulint omit_size;
ulint old_pk_size;
ulint old_pk_extra_size;
ulint extra_size;
ulint mrec_size;
ulint avail_size;
const dict_index_t* new_index;
new_index = dict_table_get_first_index(index->online_log->table);
ut_ad(dict_index_is_clust(index));
ut_ad(dict_index_is_clust(new_index));
ut_ad(!dict_index_is_online_ddl(new_index));
ut_ad(rec_offs_validate(rec, index, offsets));
ut_ad(rec_offs_n_fields(offsets) == dict_index_get_n_fields(index));
ut_ad(rec_offs_size(offsets) <= sizeof index->online_log->tail.buf);
ut_ad(rw_lock_own_flagged(
&index->lock,
RW_LOCK_FLAG_S | RW_LOCK_FLAG_X | RW_LOCK_FLAG_SX));
ut_ad(fil_page_get_type(page_align(rec)) == FIL_PAGE_INDEX);
ut_ad(page_is_leaf(page_align(rec)));
ut_ad(!page_is_comp(page_align(rec)) == !rec_offs_comp(offsets));
if (dict_index_is_corrupted(index)
|| !dict_index_is_online_ddl(index)
|| index->online_log->error != DB_SUCCESS) {
return;
}
if (!rec_offs_comp(offsets)) {
row_log_table_low_redundant(
rec, ventry, o_ventry, index, insert,
old_pk, new_index);
return;
}
ut_ad(page_is_comp(page_align(rec)));
ut_ad(rec_get_status(rec) == REC_STATUS_ORDINARY);
omit_size = REC_N_NEW_EXTRA_BYTES;
extra_size = rec_offs_extra_size(offsets) - omit_size;
mrec_size = ROW_LOG_HEADER_SIZE
+ (extra_size >= 0x80) + rec_offs_size(offsets) - omit_size;
if (ventry && ventry->n_v_fields > 0) {
ulint v_extra = 0;
mrec_size += rec_get_converted_size_temp(
new_index, NULL, 0, ventry, &v_extra);
if (o_ventry) {
mrec_size += rec_get_converted_size_temp(
new_index, NULL, 0, o_ventry, &v_extra);
}
} else if (index->table->n_v_cols) {
/* Always leave 2 bytes length marker for virtual column
data logging even if there is none of them is indexed if table
has virtual columns */
mrec_size += 2;
}
if (insert || index->online_log->same_pk) {
ut_ad(!old_pk);
old_pk_extra_size = old_pk_size = 0;
} else {
ut_ad(old_pk);
ut_ad(old_pk->n_fields == 2 + old_pk->n_fields_cmp);
ut_ad(DATA_TRX_ID_LEN == dtuple_get_nth_field(
old_pk, old_pk->n_fields - 2)->len);
ut_ad(DATA_ROLL_PTR_LEN == dtuple_get_nth_field(
old_pk, old_pk->n_fields - 1)->len);
old_pk_size = rec_get_converted_size_temp(
new_index, old_pk->fields, old_pk->n_fields,
old_pk, &old_pk_extra_size);
ut_ad(old_pk_extra_size < 0x100);
mrec_size += 1/*old_pk_extra_size*/ + old_pk_size;
}
if (byte* b = row_log_table_open(index->online_log,
mrec_size, &avail_size)) {
*b++ = insert ? ROW_T_INSERT : ROW_T_UPDATE;
if (old_pk_size) {
*b++ = static_cast<byte>(old_pk_extra_size);
rec_convert_dtuple_to_temp(
b + old_pk_extra_size, new_index,
old_pk->fields, old_pk->n_fields,
NULL);
b += old_pk_size;
}
if (extra_size < 0x80) {
*b++ = static_cast<byte>(extra_size);
} else {
ut_ad(extra_size < 0x8000);
*b++ = static_cast<byte>(0x80 | (extra_size >> 8));
*b++ = static_cast<byte>(extra_size);
}
memcpy(b, rec - rec_offs_extra_size(offsets), extra_size);
b += extra_size;
memcpy(b, rec, rec_offs_data_size(offsets));
b += rec_offs_data_size(offsets);
if (ventry && ventry->n_v_fields > 0) {
rec_convert_dtuple_to_temp(
b, new_index, NULL, 0, ventry);
b += mach_read_from_2(b);
if (o_ventry) {
rec_convert_dtuple_to_temp(
b, new_index, NULL, 0, o_ventry);
b += mach_read_from_2(b);
}
} else if (index->table->n_v_cols) {
/* The table contains virtual columns, but nothing
has changed for them, so just mark a 2 bytes length
field */
mach_write_to_2(b, 2);
b += 2;
}
row_log_table_close(
index->online_log, b, mrec_size, avail_size);
}
}
/******************************************************//**
Logs an update to a table that is being rebuilt.
This will be merged in row_log_table_apply_update(). */
void
row_log_table_update(
/*=================*/
const rec_t* rec, /*!< in: clustered index leaf page record,
page X-latched */
dict_index_t* index, /*!< in/out: clustered index, S-latched
or X-latched */
const ulint* offsets,/*!< in: rec_get_offsets(rec,index) */
const dtuple_t* old_pk, /*!< in: row_log_table_get_pk()
before the update */
const dtuple_t* new_v_row,/*!< in: dtuple contains the new virtual
columns */
const dtuple_t* old_v_row)/*!< in: dtuple contains the old virtual
columns */
{
row_log_table_low(rec, new_v_row, old_v_row, index, offsets,
false, old_pk);
}
/** Gets the old table column of a PRIMARY KEY column.
@param table old table (before ALTER TABLE)
@param col_map mapping of old column numbers to new ones
@param col_no column position in the new table
@return old table column, or NULL if this is an added column */
static
const dict_col_t*
row_log_table_get_pk_old_col(
/*=========================*/
const dict_table_t* table,
const ulint* col_map,
ulint col_no)
{
for (ulint i = 0; i < table->n_cols; i++) {
if (col_no == col_map[i]) {
return(dict_table_get_nth_col(table, i));
}
}
return(NULL);
}
/** Maps an old table column of a PRIMARY KEY column.
@param[in] col old table column (before ALTER TABLE)
@param[in] ifield clustered index field in the new table (after
ALTER TABLE)
@param[in,out] dfield clustered index tuple field in the new table
@param[in,out] heap memory heap for allocating dfield contents
@param[in] rec clustered index leaf page record in the old
table
@param[in] offsets rec_get_offsets(rec)
@param[in] i rec field corresponding to col
@param[in] page_size page size of the old table
@param[in] max_len maximum length of dfield
@retval DB_INVALID_NULL if a NULL value is encountered
@retval DB_TOO_BIG_INDEX_COL if the maximum prefix length is exceeded */
static
dberr_t
row_log_table_get_pk_col(
const dict_col_t* col,
const dict_field_t* ifield,
dfield_t* dfield,
mem_heap_t* heap,
const rec_t* rec,
const ulint* offsets,
ulint i,
const page_size_t& page_size,
ulint max_len)
{
const byte* field;
ulint len;
field = rec_get_nth_field(rec, offsets, i, &len);
if (len == UNIV_SQL_NULL) {
return(DB_INVALID_NULL);
}
if (rec_offs_nth_extern(offsets, i)) {
ulint field_len = ifield->prefix_len;
byte* blob_field;
if (!field_len) {
field_len = ifield->fixed_len;
if (!field_len) {
field_len = max_len + 1;
}
}
blob_field = static_cast<byte*>(
mem_heap_alloc(heap, field_len));
len = btr_copy_externally_stored_field_prefix(
blob_field, field_len, page_size, field, len);
if (len >= max_len + 1) {
return(DB_TOO_BIG_INDEX_COL);
}
dfield_set_data(dfield, blob_field, len);
} else {
dfield_set_data(dfield, mem_heap_dup(heap, field, len), len);
}
return(DB_SUCCESS);
}
/******************************************************//**
Constructs the old PRIMARY KEY and DB_TRX_ID,DB_ROLL_PTR
of a table that is being rebuilt.
@return tuple of PRIMARY KEY,DB_TRX_ID,DB_ROLL_PTR in the rebuilt table,
or NULL if the PRIMARY KEY definition does not change */
const dtuple_t*
row_log_table_get_pk(
/*=================*/
const rec_t* rec, /*!< in: clustered index leaf page record,
page X-latched */
dict_index_t* index, /*!< in/out: clustered index, S-latched
or X-latched */
const ulint* offsets,/*!< in: rec_get_offsets(rec,index) */
byte* sys, /*!< out: DB_TRX_ID,DB_ROLL_PTR for
row_log_table_delete(), or NULL */
mem_heap_t** heap) /*!< in/out: memory heap where allocated */
{
dtuple_t* tuple = NULL;
row_log_t* log = index->online_log;
ut_ad(dict_index_is_clust(index));
ut_ad(dict_index_is_online_ddl(index));
ut_ad(!offsets || rec_offs_validate(rec, index, offsets));
ut_ad(rw_lock_own_flagged(
&index->lock,
RW_LOCK_FLAG_S | RW_LOCK_FLAG_X | RW_LOCK_FLAG_SX));
ut_ad(log);
ut_ad(log->table);
if (log->same_pk) {
/* The PRIMARY KEY columns are unchanged. */
if (sys) {
/* Store the DB_TRX_ID,DB_ROLL_PTR. */
ulint trx_id_offs = index->trx_id_offset;
if (!trx_id_offs) {
ulint pos = dict_index_get_sys_col_pos(
index, DATA_TRX_ID);
ulint len;
ut_ad(pos > 0);
if (!offsets) {
offsets = rec_get_offsets(
rec, index, NULL, pos + 1,
heap);
}
trx_id_offs = rec_get_nth_field_offs(
offsets, pos, &len);
ut_ad(len == DATA_TRX_ID_LEN);
}
memcpy(sys, rec + trx_id_offs,
DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN);
}
return(NULL);
}
mutex_enter(&log->mutex);
/* log->error is protected by log->mutex. */
if (log->error == DB_SUCCESS) {
dict_table_t* new_table = log->table;
dict_index_t* new_index
= dict_table_get_first_index(new_table);
const ulint new_n_uniq
= dict_index_get_n_unique(new_index);
if (!*heap) {
ulint size = 0;
if (!offsets) {
size += (1 + REC_OFFS_HEADER_SIZE
+ index->n_fields)
* sizeof *offsets;
}
for (ulint i = 0; i < new_n_uniq; i++) {
size += dict_col_get_min_size(
dict_index_get_nth_col(new_index, i));
}
*heap = mem_heap_create(
DTUPLE_EST_ALLOC(new_n_uniq + 2) + size);
}
if (!offsets) {
offsets = rec_get_offsets(rec, index, NULL,
ULINT_UNDEFINED, heap);
}
tuple = dtuple_create(*heap, new_n_uniq + 2);
dict_index_copy_types(tuple, new_index, tuple->n_fields);
dtuple_set_n_fields_cmp(tuple, new_n_uniq);
const ulint max_len = DICT_MAX_FIELD_LEN_BY_FORMAT(new_table);
const page_size_t& page_size
= dict_table_page_size(index->table);
for (ulint new_i = 0; new_i < new_n_uniq; new_i++) {
dict_field_t* ifield;
dfield_t* dfield;
ulint prtype;
ulint mbminmaxlen;
ifield = dict_index_get_nth_field(new_index, new_i);
dfield = dtuple_get_nth_field(tuple, new_i);
const ulint col_no
= dict_field_get_col(ifield)->ind;
if (const dict_col_t* col
= row_log_table_get_pk_old_col(
index->table, log->col_map, col_no)) {
ulint i = dict_col_get_clust_pos(col, index);
if (i == ULINT_UNDEFINED) {
ut_ad(0);
log->error = DB_CORRUPTION;
goto err_exit;
}
log->error = row_log_table_get_pk_col(
col, ifield, dfield, *heap,
rec, offsets, i, page_size, max_len);
if (log->error != DB_SUCCESS) {
err_exit:
tuple = NULL;
goto func_exit;
}
mbminmaxlen = col->mbminmaxlen;
prtype = col->prtype;
} else {
/* No matching column was found in the old
table, so this must be an added column.
Copy the default value. */
ut_ad(log->add_cols);
dfield_copy(dfield, dtuple_get_nth_field(
log->add_cols, col_no));
mbminmaxlen = dfield->type.mbminmaxlen;
prtype = dfield->type.prtype;
}
ut_ad(!dfield_is_ext(dfield));
ut_ad(!dfield_is_null(dfield));
if (ifield->prefix_len) {
ulint len = dtype_get_at_most_n_mbchars(
prtype, mbminmaxlen,
ifield->prefix_len,
dfield_get_len(dfield),
static_cast<const char*>(
dfield_get_data(dfield)));
ut_ad(len <= dfield_get_len(dfield));
dfield_set_len(dfield, len);
}
}
const byte* trx_roll = rec
+ row_get_trx_id_offset(index, offsets);
/* Copy the fields, because the fields will be updated
or the record may be moved somewhere else in the B-tree
as part of the upcoming operation. */
if (sys) {
memcpy(sys, trx_roll,
DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN);
trx_roll = sys;
} else {
trx_roll = static_cast<const byte*>(
mem_heap_dup(
*heap, trx_roll,
DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN));
}
dfield_set_data(dtuple_get_nth_field(tuple, new_n_uniq),
trx_roll, DATA_TRX_ID_LEN);
dfield_set_data(dtuple_get_nth_field(tuple, new_n_uniq + 1),
trx_roll + DATA_TRX_ID_LEN, DATA_ROLL_PTR_LEN);
}
func_exit:
mutex_exit(&log->mutex);
return(tuple);
}
/******************************************************//**
Logs an insert to a table that is being rebuilt.
This will be merged in row_log_table_apply_insert(). */
void
row_log_table_insert(
/*=================*/
const rec_t* rec, /*!< in: clustered index leaf page record,
page X-latched */
const dtuple_t* ventry, /*!< in: dtuple holding virtual column info */
dict_index_t* index, /*!< in/out: clustered index, S-latched
or X-latched */
const ulint* offsets)/*!< in: rec_get_offsets(rec,index) */
{
row_log_table_low(rec, ventry, NULL, index, offsets, true, NULL);
}
/******************************************************//**
Notes that a BLOB is being freed during online ALTER TABLE. */
void
row_log_table_blob_free(
/*====================*/
dict_index_t* index, /*!< in/out: clustered index, X-latched */
ulint page_no)/*!< in: starting page number of the BLOB */
{
ut_ad(dict_index_is_clust(index));
ut_ad(dict_index_is_online_ddl(index));
ut_ad(rw_lock_own_flagged(
&index->lock,
RW_LOCK_FLAG_X | RW_LOCK_FLAG_SX));
ut_ad(page_no != FIL_NULL);
if (index->online_log->error != DB_SUCCESS) {
return;
}
page_no_map* blobs = index->online_log->blobs;
if (blobs == NULL) {
index->online_log->blobs = blobs = UT_NEW_NOKEY(page_no_map());
}
#ifdef UNIV_DEBUG
const ulonglong log_pos = index->online_log->tail.total;
#else
# define log_pos /* empty */
#endif /* UNIV_DEBUG */
const page_no_map::value_type v(page_no,
row_log_table_blob_t(log_pos));
std::pair<page_no_map::iterator,bool> p = blobs->insert(v);
if (!p.second) {
/* Update the existing mapping. */
ut_ad(p.first->first == page_no);
p.first->second.blob_free(log_pos);
}
#undef log_pos
}
/******************************************************//**
Notes that a BLOB is being allocated during online ALTER TABLE. */
void
row_log_table_blob_alloc(
/*=====================*/
dict_index_t* index, /*!< in/out: clustered index, X-latched */
ulint page_no)/*!< in: starting page number of the BLOB */
{
ut_ad(dict_index_is_clust(index));
ut_ad(dict_index_is_online_ddl(index));
ut_ad(rw_lock_own_flagged(
&index->lock,
RW_LOCK_FLAG_X | RW_LOCK_FLAG_SX));
ut_ad(page_no != FIL_NULL);
if (index->online_log->error != DB_SUCCESS) {
return;
}
/* Only track allocations if the same page has been freed
earlier. Double allocation without a free is not allowed. */
if (page_no_map* blobs = index->online_log->blobs) {
page_no_map::iterator p = blobs->find(page_no);
if (p != blobs->end()) {
ut_ad(p->first == page_no);
p->second.blob_alloc(index->online_log->tail.total);
}
}
}
/******************************************************//**
Converts a log record to a table row.
@return converted row, or NULL if the conversion fails */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
const dtuple_t*
row_log_table_apply_convert_mrec(
/*=============================*/
const mrec_t* mrec, /*!< in: merge record */
dict_index_t* index, /*!< in: index of mrec */
const ulint* offsets, /*!< in: offsets of mrec */
const row_log_t* log, /*!< in: rebuild context */
mem_heap_t* heap, /*!< in/out: memory heap */
trx_id_t trx_id, /*!< in: DB_TRX_ID of mrec */
dberr_t* error) /*!< out: DB_SUCCESS or
DB_MISSING_HISTORY or
reason of failure */
{
dtuple_t* row;
ulint num_v = dict_table_get_n_v_cols(log->table);
*error = DB_SUCCESS;
/* This is based on row_build(). */
if (log->add_cols) {
row = dtuple_copy(log->add_cols, heap);
/* dict_table_copy_types() would set the fields to NULL */
for (ulint i = 0; i < dict_table_get_n_cols(log->table); i++) {
dict_col_copy_type(
dict_table_get_nth_col(log->table, i),
dfield_get_type(dtuple_get_nth_field(row, i)));
}
} else {
row = dtuple_create_with_vcol(
heap, dict_table_get_n_cols(log->table), num_v);
dict_table_copy_types(row, log->table);
}
for (ulint i = 0; i < rec_offs_n_fields(offsets); i++) {
const dict_field_t* ind_field
= dict_index_get_nth_field(index, i);
if (ind_field->prefix_len) {
/* Column prefixes can only occur in key
fields, which cannot be stored externally. For
a column prefix, there should also be the full
field in the clustered index tuple. The row
tuple comprises full fields, not prefixes. */
ut_ad(!rec_offs_nth_extern(offsets, i));
continue;
}
const dict_col_t* col
= dict_field_get_col(ind_field);
ulint col_no
= log->col_map[dict_col_get_no(col)];
if (col_no == ULINT_UNDEFINED) {
/* dropped column */
continue;
}
dfield_t* dfield
= dtuple_get_nth_field(row, col_no);
ulint len;
const byte* data;
if (rec_offs_nth_extern(offsets, i)) {
ut_ad(rec_offs_any_extern(offsets));
rw_lock_x_lock(dict_index_get_lock(index));
if (const page_no_map* blobs = log->blobs) {
data = rec_get_nth_field(
mrec, offsets, i, &len);
ut_ad(len >= BTR_EXTERN_FIELD_REF_SIZE);
ulint page_no = mach_read_from_4(
data + len - (BTR_EXTERN_FIELD_REF_SIZE
- BTR_EXTERN_PAGE_NO));
page_no_map::const_iterator p = blobs->find(
page_no);
if (p != blobs->end()
&& p->second.is_freed(log->head.total)) {
/* This BLOB has been freed.
We must not access the row. */
*error = DB_MISSING_HISTORY;
dfield_set_data(dfield, data, len);
dfield_set_ext(dfield);
goto blob_done;
}
}
data = btr_rec_copy_externally_stored_field(
mrec, offsets,
dict_table_page_size(index->table),
i, &len, heap);
ut_a(data);
dfield_set_data(dfield, data, len);
blob_done:
rw_lock_x_unlock(dict_index_get_lock(index));
} else {
data = rec_get_nth_field(mrec, offsets, i, &len);
dfield_set_data(dfield, data, len);
}
if (len != UNIV_SQL_NULL && col->mtype == DATA_MYSQL
&& col->len != len && !dict_table_is_comp(log->table)) {
ut_ad(col->len >= len);
if (dict_table_is_comp(index->table)) {
byte* buf = (byte*) mem_heap_alloc(heap,
col->len);
memcpy(buf, dfield->data, len);
memset(buf + len, 0x20, col->len - len);
dfield_set_data(dfield, buf, col->len);
} else {
/* field length mismatch should not happen
when rebuilding the redundant row format
table. */
ut_ad(0);
*error = DB_CORRUPTION;
return(NULL);
}
}
/* See if any columns were changed to NULL or NOT NULL. */
const dict_col_t* new_col
= dict_table_get_nth_col(log->table, col_no);
ut_ad(new_col->mtype == col->mtype);
/* Assert that prtype matches except for nullability. */
ut_ad(!((new_col->prtype ^ col->prtype) & ~DATA_NOT_NULL));
ut_ad(!((new_col->prtype ^ dfield_get_type(dfield)->prtype)
& ~DATA_NOT_NULL));
if (new_col->prtype == col->prtype) {
continue;
}
if ((new_col->prtype & DATA_NOT_NULL)
&& dfield_is_null(dfield)) {
/* We got a NULL value for a NOT NULL column. */
*error = DB_INVALID_NULL;
return(NULL);
}
/* Adjust the DATA_NOT_NULL flag in the parsed row. */
dfield_get_type(dfield)->prtype = new_col->prtype;
ut_ad(dict_col_type_assert_equal(new_col,
dfield_get_type(dfield)));
}
/* read the virtual column data if any */
if (num_v) {
byte* b = const_cast<byte*>(mrec)
+ rec_offs_data_size(offsets);
trx_undo_read_v_cols(log->table, b, row, false,
&(log->col_map[log->n_old_col]));
}
return(row);
}
/******************************************************//**
Replays an insert operation on a table that was rebuilt.
@return DB_SUCCESS or error code */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_log_table_apply_insert_low(
/*===========================*/
que_thr_t* thr, /*!< in: query graph */
const dtuple_t* row, /*!< in: table row
in the old table definition */
trx_id_t trx_id, /*!< in: trx_id of the row */
mem_heap_t* offsets_heap, /*!< in/out: memory heap
that can be emptied */
mem_heap_t* heap, /*!< in/out: memory heap */
row_merge_dup_t* dup) /*!< in/out: for reporting
duplicate key errors */
{
dberr_t error;
dtuple_t* entry;
const row_log_t*log = dup->index->online_log;
dict_index_t* index = dict_table_get_first_index(log->table);
ulint n_index = 0;
ut_ad(dtuple_validate(row));
ut_ad(trx_id);
DBUG_LOG("ib_alter_table",
"insert table " << index->table->id << " (index "
<< index->id << "): " << rec_printer(row).str());
static const ulint flags
= (BTR_CREATE_FLAG
| BTR_NO_LOCKING_FLAG
| BTR_NO_UNDO_LOG_FLAG
| BTR_KEEP_SYS_FLAG);
entry = row_build_index_entry(row, NULL, index, heap);
error = row_ins_clust_index_entry_low(
flags, BTR_MODIFY_TREE, index, index->n_uniq,
entry, 0, thr, false);
switch (error) {
case DB_SUCCESS:
break;
case DB_SUCCESS_LOCKED_REC:
/* The row had already been copied to the table. */
return(DB_SUCCESS);
default:
return(error);
}
do {
n_index++;
if (!(index = dict_table_get_next_index(index))) {
break;
}
if (index->type & DICT_FTS) {
continue;
}
entry = row_build_index_entry(row, NULL, index, heap);
error = row_ins_sec_index_entry_low(
flags, BTR_MODIFY_TREE,
index, offsets_heap, heap, entry, trx_id, thr,
false);
/* Report correct index name for duplicate key error. */
if (error == DB_DUPLICATE_KEY) {
thr_get_trx(thr)->error_key_num = n_index;
}
} while (error == DB_SUCCESS);
return(error);
}
/******************************************************//**
Replays an insert operation on a table that was rebuilt.
@return DB_SUCCESS or error code */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_log_table_apply_insert(
/*=======================*/
que_thr_t* thr, /*!< in: query graph */
const mrec_t* mrec, /*!< in: record to insert */
const ulint* offsets, /*!< in: offsets of mrec */
mem_heap_t* offsets_heap, /*!< in/out: memory heap
that can be emptied */
mem_heap_t* heap, /*!< in/out: memory heap */
row_merge_dup_t* dup, /*!< in/out: for reporting
duplicate key errors */
trx_id_t trx_id) /*!< in: DB_TRX_ID of mrec */
{
const row_log_t*log = dup->index->online_log;
dberr_t error;
const dtuple_t* row = row_log_table_apply_convert_mrec(
mrec, dup->index, offsets, log, heap, trx_id, &error);
switch (error) {
case DB_MISSING_HISTORY:
ut_ad(log->blobs);
/* Because some BLOBs are missing, we know that the
transaction was rolled back later (a rollback of
an insert can free BLOBs).
We can simply skip the insert: the subsequent
ROW_T_DELETE will be ignored, or a ROW_T_UPDATE will
be interpreted as ROW_T_INSERT. */
return(DB_SUCCESS);
case DB_SUCCESS:
ut_ad(row != NULL);
break;
default:
ut_ad(0);
case DB_INVALID_NULL:
ut_ad(row == NULL);
return(error);
}
error = row_log_table_apply_insert_low(
thr, row, trx_id, offsets_heap, heap, dup);
if (error != DB_SUCCESS) {
/* Report the erroneous row using the new
version of the table. */
innobase_row_to_mysql(dup->table, log->table, row);
}
return(error);
}
/******************************************************//**
Deletes a record from a table that is being rebuilt.
@return DB_SUCCESS or error code */
static MY_ATTRIBUTE((warn_unused_result))
dberr_t
row_log_table_apply_delete_low(
/*===========================*/
btr_pcur_t* pcur, /*!< in/out: B-tree cursor,
will be trashed */
const dtuple_t* ventry, /*!< in: dtuple holding
virtual column info */
const ulint* offsets, /*!< in: offsets on pcur */
const row_ext_t* save_ext, /*!< in: saved external field
info, or NULL */
mem_heap_t* heap, /*!< in/out: memory heap */
mtr_t* mtr) /*!< in/out: mini-transaction,
will be committed */
{
dberr_t error;
row_ext_t* ext;
dtuple_t* row;
dict_index_t* index = btr_pcur_get_btr_cur(pcur)->index;
ut_ad(dict_index_is_clust(index));
DBUG_LOG("ib_alter_table",
"delete table " << index->table->id << " (index "
<< index->id << "): "
<< rec_printer(btr_pcur_get_rec(pcur), offsets).str());
if (dict_table_get_next_index(index)) {
/* Build a row template for purging secondary index entries. */
row = row_build(
ROW_COPY_DATA, index, btr_pcur_get_rec(pcur),
offsets, NULL, NULL, NULL,
save_ext ? NULL : &ext, heap);
if (ventry) {
dtuple_copy_v_fields(row, ventry);
}
if (!save_ext) {
save_ext = ext;
}
} else {
row = NULL;
}
btr_cur_pessimistic_delete(&error, FALSE, btr_pcur_get_btr_cur(pcur),
BTR_CREATE_FLAG, false, mtr);
mtr_commit(mtr);
if (error != DB_SUCCESS) {
return(error);
}
while ((index = dict_table_get_next_index(index)) != NULL) {
if (index->type & DICT_FTS) {
continue;
}
const dtuple_t* entry = row_build_index_entry(
row, save_ext, index, heap);
mtr_start(mtr);
mtr->set_named_space(index->space);
btr_pcur_open(index, entry, PAGE_CUR_LE,
BTR_MODIFY_TREE | BTR_LATCH_FOR_DELETE,
pcur, mtr);
#ifdef UNIV_DEBUG
switch (btr_pcur_get_btr_cur(pcur)->flag) {
case BTR_CUR_DELETE_REF:
case BTR_CUR_DEL_MARK_IBUF:
case BTR_CUR_DELETE_IBUF:
case BTR_CUR_INSERT_TO_IBUF:
/* We did not request buffering. */
break;
case BTR_CUR_HASH:
case BTR_CUR_HASH_FAIL:
case BTR_CUR_BINARY:
goto flag_ok;
}
ut_ad(0);
flag_ok:
#endif /* UNIV_DEBUG */
if (page_rec_is_infimum(btr_pcur_get_rec(pcur))
|| btr_pcur_get_low_match(pcur) < index->n_uniq) {
/* All secondary index entries should be
found, because new_table is being modified by
this thread only, and all indexes should be
updated in sync. */
mtr_commit(mtr);
return(DB_INDEX_CORRUPT);
}
btr_cur_pessimistic_delete(&error, FALSE,
btr_pcur_get_btr_cur(pcur),
BTR_CREATE_FLAG, false, mtr);
mtr_commit(mtr);
}
return(error);
}
/******************************************************//**
Replays a delete operation on a table that was rebuilt.
@return DB_SUCCESS or error code */
static MY_ATTRIBUTE((nonnull(1, 3, 4, 5, 6, 7), warn_unused_result))
dberr_t
row_log_table_apply_delete(
/*=======================*/
que_thr_t* thr, /*!< in: query graph */
ulint trx_id_col, /*!< in: position of
DB_TRX_ID in the new
clustered index */
const mrec_t* mrec, /*!< in: merge record */
const ulint* moffsets, /*!< in: offsets of mrec */
mem_heap_t* offsets_heap, /*!< in/out: memory heap
that can be emptied */
mem_heap_t* heap, /*!< in/out: memory heap */
const row_log_t* log, /*!< in: online log */
const row_ext_t* save_ext, /*!< in: saved external field
info, or NULL */
ulint ext_size) /*!< in: external field size */
{
dict_table_t* new_table = log->table;
dict_index_t* index = dict_table_get_first_index(new_table);
dtuple_t* old_pk;
mtr_t mtr;
btr_pcur_t pcur;
ulint* offsets;
ulint num_v = new_table->n_v_cols;
ut_ad(rec_offs_n_fields(moffsets)
== dict_index_get_n_unique(index) + 2);
ut_ad(!rec_offs_any_extern(moffsets));
/* Convert the row to a search tuple. */
old_pk = dtuple_create_with_vcol(heap, index->n_uniq, num_v);
dict_index_copy_types(old_pk, index, index->n_uniq);
if (num_v) {
dict_table_copy_v_types(old_pk, index->table);
}
for (ulint i = 0; i < index->n_uniq; i++) {
ulint len;
const void* field;
field = rec_get_nth_field(mrec, moffsets, i, &len);
ut_ad(len != UNIV_SQL_NULL);
dfield_set_data(dtuple_get_nth_field(old_pk, i),
field, len);
}
mtr_start(&mtr);
mtr.set_named_space(index->space);
btr_pcur_open(index, old_pk, PAGE_CUR_LE,
BTR_MODIFY_TREE | BTR_LATCH_FOR_DELETE,
&pcur, &mtr);
#ifdef UNIV_DEBUG
switch (btr_pcur_get_btr_cur(&pcur)->flag) {
case BTR_CUR_DELETE_REF:
case BTR_CUR_DEL_MARK_IBUF:
case BTR_CUR_DELETE_IBUF:
case BTR_CUR_INSERT_TO_IBUF:
/* We did not request buffering. */
break;
case BTR_CUR_HASH:
case BTR_CUR_HASH_FAIL:
case BTR_CUR_BINARY:
goto flag_ok;
}
ut_ad(0);
flag_ok:
#endif /* UNIV_DEBUG */
if (page_rec_is_infimum(btr_pcur_get_rec(&pcur))
|| btr_pcur_get_low_match(&pcur) < index->n_uniq) {
all_done:
mtr_commit(&mtr);
/* The record was not found. All done. */
/* This should only happen when an earlier
ROW_T_INSERT was skipped or
ROW_T_UPDATE was interpreted as ROW_T_DELETE
due to BLOBs having been freed by rollback. */
return(DB_SUCCESS);
}
offsets = rec_get_offsets(btr_pcur_get_rec(&pcur), index, NULL,
ULINT_UNDEFINED, &offsets_heap);
#if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG
ut_a(!rec_offs_any_null_extern(btr_pcur_get_rec(&pcur), offsets));
#endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */
/* Only remove the record if DB_TRX_ID,DB_ROLL_PTR match. */
{
ulint len;
const byte* mrec_trx_id
= rec_get_nth_field(mrec, moffsets, trx_id_col, &len);
ut_ad(len == DATA_TRX_ID_LEN);
const byte* rec_trx_id
= rec_get_nth_field(btr_pcur_get_rec(&pcur), offsets,
trx_id_col, &len);
ut_ad(len == DATA_TRX_ID_LEN);
ut_ad(rec_get_nth_field(mrec, moffsets, trx_id_col + 1, &len)
== mrec_trx_id + DATA_TRX_ID_LEN);
ut_ad(len == DATA_ROLL_PTR_LEN);
ut_ad(rec_get_nth_field(btr_pcur_get_rec(&pcur), offsets,
trx_id_col + 1, &len)
== rec_trx_id + DATA_TRX_ID_LEN);
ut_ad(len == DATA_ROLL_PTR_LEN);
if (memcmp(mrec_trx_id, rec_trx_id,
DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN)) {
/* The ROW_T_DELETE was logged for a different
PRIMARY KEY,DB_TRX_ID,DB_ROLL_PTR.
This is possible if a ROW_T_INSERT was skipped
or a ROW_T_UPDATE was interpreted as ROW_T_DELETE
because some BLOBs were missing due to
(1) rolling back the initial insert, or
(2) purging the BLOB for a later ROW_T_DELETE
(3) purging 'old values' for a later ROW_T_UPDATE
or ROW_T_DELETE. */
ut_ad(!log->same_pk);
goto all_done;
}
}
if (num_v) {
byte* b = (byte*)mrec + rec_offs_data_size(moffsets)
+ ext_size;
trx_undo_read_v_cols(log->table, b, old_pk, false,
&(log->col_map[log->n_old_col]));
}
return(row_log_table_apply_delete_low(&pcur, old_pk,
offsets, save_ext,
heap, &mtr));
}
/******************************************************//**
Replays an update operation on a table that was rebuilt.
@return DB_SUCCESS or error code */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_log_table_apply_update(
/*=======================*/
que_thr_t* thr, /*!< in: query graph */
ulint new_trx_id_col, /*!< in: position of
DB_TRX_ID in the new
clustered index */
const mrec_t* mrec, /*!< in: new value */
const ulint* offsets, /*!< in: offsets of mrec */
mem_heap_t* offsets_heap, /*!< in/out: memory heap
that can be emptied */
mem_heap_t* heap, /*!< in/out: memory heap */
row_merge_dup_t* dup, /*!< in/out: for reporting
duplicate key errors */
trx_id_t trx_id, /*!< in: DB_TRX_ID of mrec */
const dtuple_t* old_pk) /*!< in: PRIMARY KEY and
DB_TRX_ID,DB_ROLL_PTR
of the old value,
or PRIMARY KEY if same_pk */
{
const row_log_t*log = dup->index->online_log;
const dtuple_t* row;
dict_index_t* index = dict_table_get_first_index(log->table);
mtr_t mtr;
btr_pcur_t pcur;
dberr_t error;
ulint n_index = 0;
ut_ad(dtuple_get_n_fields_cmp(old_pk)
== dict_index_get_n_unique(index));
ut_ad(dtuple_get_n_fields(old_pk)
== dict_index_get_n_unique(index)
+ (log->same_pk ? 0 : 2));
row = row_log_table_apply_convert_mrec(
mrec, dup->index, offsets, log, heap, trx_id, &error);
switch (error) {
case DB_MISSING_HISTORY:
/* The record contained BLOBs that are now missing. */
ut_ad(log->blobs);
/* Whether or not we are updating the PRIMARY KEY, we
know that there should be a subsequent
ROW_T_DELETE for rolling back a preceding ROW_T_INSERT,
overriding this ROW_T_UPDATE record. (*1)
This allows us to interpret this ROW_T_UPDATE
as ROW_T_DELETE.
When applying the subsequent ROW_T_DELETE, no matching
record will be found. */
case DB_SUCCESS:
ut_ad(row != NULL);
break;
default:
ut_ad(0);
case DB_INVALID_NULL:
ut_ad(row == NULL);
return(error);
}
mtr_start(&mtr);
mtr.set_named_space(index->space);
btr_pcur_open(index, old_pk, PAGE_CUR_LE,
BTR_MODIFY_TREE, &pcur, &mtr);
#ifdef UNIV_DEBUG
switch (btr_pcur_get_btr_cur(&pcur)->flag) {
case BTR_CUR_DELETE_REF:
case BTR_CUR_DEL_MARK_IBUF:
case BTR_CUR_DELETE_IBUF:
case BTR_CUR_INSERT_TO_IBUF:
ut_ad(0);/* We did not request buffering. */
case BTR_CUR_HASH:
case BTR_CUR_HASH_FAIL:
case BTR_CUR_BINARY:
break;
}
#endif /* UNIV_DEBUG */
if (page_rec_is_infimum(btr_pcur_get_rec(&pcur))
|| btr_pcur_get_low_match(&pcur) < index->n_uniq) {
/* The record was not found. This should only happen
when an earlier ROW_T_INSERT or ROW_T_UPDATE was
diverted because BLOBs were freed when the insert was
later rolled back. */
ut_ad(log->blobs);
if (error == DB_SUCCESS) {
/* An earlier ROW_T_INSERT could have been
skipped because of a missing BLOB, like this:
BEGIN;
INSERT INTO t SET blob_col='blob value';
UPDATE t SET blob_col='';
ROLLBACK;
This would generate the following records:
ROW_T_INSERT (referring to 'blob value')
ROW_T_UPDATE
ROW_T_UPDATE (referring to 'blob value')
ROW_T_DELETE
[ROLLBACK removes the 'blob value']
The ROW_T_INSERT would have been skipped
because of a missing BLOB. Now we are
executing the first ROW_T_UPDATE.
The second ROW_T_UPDATE (for the ROLLBACK)
would be interpreted as ROW_T_DELETE, because
the BLOB would be missing.
We could probably assume that the transaction
has been rolled back and simply skip the
'insert' part of this ROW_T_UPDATE record.
However, there might be some complex scenario
that could interfere with such a shortcut.
So, we will insert the row (and risk
introducing a bogus duplicate key error
for the ALTER TABLE), and a subsequent
ROW_T_UPDATE or ROW_T_DELETE will delete it. */
mtr_commit(&mtr);
error = row_log_table_apply_insert_low(
thr, row, trx_id, offsets_heap, heap, dup);
} else {
/* Some BLOBs are missing, so we are interpreting
this ROW_T_UPDATE as ROW_T_DELETE (see *1).
Because the record was not found, we do nothing. */
ut_ad(error == DB_MISSING_HISTORY);
error = DB_SUCCESS;
func_exit:
mtr_commit(&mtr);
}
func_exit_committed:
ut_ad(mtr.has_committed());
if (error != DB_SUCCESS) {
/* Report the erroneous row using the new
version of the table. */
innobase_row_to_mysql(dup->table, log->table, row);
}
return(error);
}
/* Prepare to update (or delete) the record. */
ulint* cur_offsets = rec_get_offsets(
btr_pcur_get_rec(&pcur),
index, NULL, ULINT_UNDEFINED, &offsets_heap);
if (!log->same_pk) {
/* Only update the record if DB_TRX_ID,DB_ROLL_PTR match what
was buffered. */
ulint len;
const void* rec_trx_id
= rec_get_nth_field(btr_pcur_get_rec(&pcur),
cur_offsets, index->n_uniq, &len);
ut_ad(len == DATA_TRX_ID_LEN);
ut_ad(dtuple_get_nth_field(old_pk, index->n_uniq)->len
== DATA_TRX_ID_LEN);
ut_ad(dtuple_get_nth_field(old_pk, index->n_uniq + 1)->len
== DATA_ROLL_PTR_LEN);
ut_ad(DATA_TRX_ID_LEN + static_cast<const char*>(
dtuple_get_nth_field(old_pk,
index->n_uniq)->data)
== dtuple_get_nth_field(old_pk,
index->n_uniq + 1)->data);
if (memcmp(rec_trx_id,
dtuple_get_nth_field(old_pk, index->n_uniq)->data,
DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN)) {
/* The ROW_T_UPDATE was logged for a different
DB_TRX_ID,DB_ROLL_PTR. This is possible if an
earlier ROW_T_INSERT or ROW_T_UPDATE was diverted
because some BLOBs were missing due to rolling
back the initial insert or due to purging
the old BLOB values of an update. */
ut_ad(log->blobs);
if (error != DB_SUCCESS) {
ut_ad(error == DB_MISSING_HISTORY);
/* Some BLOBs are missing, so we are
interpreting this ROW_T_UPDATE as
ROW_T_DELETE (see *1).
Because this is a different row,
we will do nothing. */
error = DB_SUCCESS;
} else {
/* Because the user record is missing due to
BLOBs that were missing when processing
an earlier log record, we should
interpret the ROW_T_UPDATE as ROW_T_INSERT.
However, there is a different user record
with the same PRIMARY KEY value already. */
error = DB_DUPLICATE_KEY;
}
goto func_exit;
}
}
if (error != DB_SUCCESS) {
ut_ad(error == DB_MISSING_HISTORY);
ut_ad(log->blobs);
/* Some BLOBs are missing, so we are interpreting
this ROW_T_UPDATE as ROW_T_DELETE (see *1). */
error = row_log_table_apply_delete_low(
&pcur, old_pk, cur_offsets, NULL, heap, &mtr);
goto func_exit_committed;
}
dtuple_t* entry = row_build_index_entry(
row, NULL, index, heap);
upd_t* update = row_upd_build_difference_binary(
index, entry, btr_pcur_get_rec(&pcur), cur_offsets,
false, NULL, heap, dup->table);
if (!update->n_fields) {
/* Nothing to do. */
goto func_exit;
}
const bool pk_updated
= upd_get_nth_field(update, 0)->field_no < new_trx_id_col;
if (pk_updated || rec_offs_any_extern(cur_offsets)) {
/* If the record contains any externally stored
columns, perform the update by delete and insert,
because we will not write any undo log that would
allow purge to free any orphaned externally stored
columns. */
if (pk_updated && log->same_pk) {
/* The ROW_T_UPDATE log record should only be
written when the PRIMARY KEY fields of the
record did not change in the old table. We
can only get a change of PRIMARY KEY columns
in the rebuilt table if the PRIMARY KEY was
redefined (!same_pk). */
ut_ad(0);
error = DB_CORRUPTION;
goto func_exit;
}
error = row_log_table_apply_delete_low(
&pcur, old_pk, cur_offsets, NULL, heap, &mtr);
ut_ad(mtr.has_committed());
if (error == DB_SUCCESS) {
error = row_log_table_apply_insert_low(
thr, row, trx_id, offsets_heap, heap, dup);
}
goto func_exit_committed;
}
dtuple_t* old_row;
row_ext_t* old_ext;
if (dict_table_get_next_index(index)) {
/* Construct the row corresponding to the old value of
the record. */
old_row = row_build(
ROW_COPY_DATA, index, btr_pcur_get_rec(&pcur),
cur_offsets, NULL, NULL, NULL, &old_ext, heap);
ut_ad(old_row);
DBUG_LOG("ib_alter_table",
"update table " << index->table->id
<< " (index " << index->id
<< ": " << rec_printer(old_row).str()
<< " to " << rec_printer(row).str());
} else {
old_row = NULL;
old_ext = NULL;
}
big_rec_t* big_rec;
error = btr_cur_pessimistic_update(
BTR_CREATE_FLAG | BTR_NO_LOCKING_FLAG
| BTR_NO_UNDO_LOG_FLAG | BTR_KEEP_SYS_FLAG
| BTR_KEEP_POS_FLAG,
btr_pcur_get_btr_cur(&pcur),
&cur_offsets, &offsets_heap, heap, &big_rec,
update, 0, thr, 0, &mtr);
if (big_rec) {
if (error == DB_SUCCESS) {
error = btr_store_big_rec_extern_fields(
&pcur, update, cur_offsets, big_rec, &mtr,
BTR_STORE_UPDATE);
}
dtuple_big_rec_free(big_rec);
}
while ((index = dict_table_get_next_index(index)) != NULL) {
if (error != DB_SUCCESS) {
break;
}
n_index++;
if (index->type & DICT_FTS) {
continue;
}
if (!row_upd_changes_ord_field_binary(
index, update, thr, old_row, NULL)) {
continue;
}
if (dict_index_has_virtual(index)) {
dtuple_copy_v_fields(old_row, old_pk);
}
mtr_commit(&mtr);
entry = row_build_index_entry(old_row, old_ext, index, heap);
if (!entry) {
ut_ad(0);
return(DB_CORRUPTION);
}
mtr_start(&mtr);
mtr.set_named_space(index->space);
if (ROW_FOUND != row_search_index_entry(
index, entry, BTR_MODIFY_TREE, &pcur, &mtr)) {
ut_ad(0);
error = DB_CORRUPTION;
break;
}
btr_cur_pessimistic_delete(
&error, FALSE, btr_pcur_get_btr_cur(&pcur),
BTR_CREATE_FLAG, false, &mtr);
if (error != DB_SUCCESS) {
break;
}
mtr_commit(&mtr);
entry = row_build_index_entry(row, NULL, index, heap);
error = row_ins_sec_index_entry_low(
BTR_CREATE_FLAG | BTR_NO_LOCKING_FLAG
| BTR_NO_UNDO_LOG_FLAG | BTR_KEEP_SYS_FLAG,
BTR_MODIFY_TREE, index, offsets_heap, heap,
entry, trx_id, thr, false);
/* Report correct index name for duplicate key error. */
if (error == DB_DUPLICATE_KEY) {
thr_get_trx(thr)->error_key_num = n_index;
}
mtr_start(&mtr);
mtr.set_named_space(index->space);
}
goto func_exit;
}
/******************************************************//**
Applies an operation to a table that was rebuilt.
@return NULL on failure (mrec corruption) or when out of data;
pointer to next record on success */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
const mrec_t*
row_log_table_apply_op(
/*===================*/
que_thr_t* thr, /*!< in: query graph */
ulint trx_id_col, /*!< in: position of
DB_TRX_ID in old index */
ulint new_trx_id_col, /*!< in: position of
DB_TRX_ID in new index */
row_merge_dup_t* dup, /*!< in/out: for reporting
duplicate key errors */
dberr_t* error, /*!< out: DB_SUCCESS
or error code */
mem_heap_t* offsets_heap, /*!< in/out: memory heap
that can be emptied */
mem_heap_t* heap, /*!< in/out: memory heap */
const mrec_t* mrec, /*!< in: merge record */
const mrec_t* mrec_end, /*!< in: end of buffer */
ulint* offsets) /*!< in/out: work area
for parsing mrec */
{
row_log_t* log = dup->index->online_log;
dict_index_t* new_index = dict_table_get_first_index(log->table);
ulint extra_size;
const mrec_t* next_mrec;
dtuple_t* old_pk;
row_ext_t* ext;
ulint ext_size;
ut_ad(dict_index_is_clust(dup->index));
ut_ad(dup->index->table != log->table);
ut_ad(log->head.total <= log->tail.total);
*error = DB_SUCCESS;
/* 3 = 1 (op type) + 1 (ext_size) + at least 1 byte payload */
if (mrec + 3 >= mrec_end) {
return(NULL);
}
const mrec_t* const mrec_start = mrec;
switch (*mrec++) {
default:
ut_ad(0);
*error = DB_CORRUPTION;
return(NULL);
case ROW_T_INSERT:
extra_size = *mrec++;
if (extra_size >= 0x80) {
/* Read another byte of extra_size. */
extra_size = (extra_size & 0x7f) << 8;
extra_size |= *mrec++;
}
mrec += extra_size;
if (mrec > mrec_end) {
return(NULL);
}
rec_offs_set_n_fields(offsets, dup->index->n_fields);
rec_init_offsets_temp(mrec, dup->index, offsets);
next_mrec = mrec + rec_offs_data_size(offsets);
if (log->table->n_v_cols) {
next_mrec += mach_read_from_2(next_mrec);
}
if (next_mrec > mrec_end) {
return(NULL);
} else {
log->head.total += next_mrec - mrec_start;
ulint len;
const byte* db_trx_id
= rec_get_nth_field(
mrec, offsets, trx_id_col, &len);
ut_ad(len == DATA_TRX_ID_LEN);
*error = row_log_table_apply_insert(
thr, mrec, offsets, offsets_heap,
heap, dup, trx_read_trx_id(db_trx_id));
}
break;
case ROW_T_DELETE:
/* 1 (extra_size) + 2 (ext_size) + at least 1 (payload) */
if (mrec + 4 >= mrec_end) {
return(NULL);
}
extra_size = *mrec++;
ext_size = mach_read_from_2(mrec);
mrec += 2;
ut_ad(mrec < mrec_end);
/* We assume extra_size < 0x100 for the PRIMARY KEY prefix.
For fixed-length PRIMARY key columns, it is 0. */
mrec += extra_size;
rec_offs_set_n_fields(offsets, new_index->n_uniq + 2);
rec_init_offsets_temp(mrec, new_index, offsets);
next_mrec = mrec + rec_offs_data_size(offsets) + ext_size;
if (log->table->n_v_cols) {
next_mrec += mach_read_from_2(next_mrec);
}
if (next_mrec > mrec_end) {
return(NULL);
}
log->head.total += next_mrec - mrec_start;
/* If there are external fields, retrieve those logged
prefix info and reconstruct the row_ext_t */
if (ext_size) {
/* We use memcpy to avoid unaligned
access on some non-x86 platforms.*/
ext = static_cast<row_ext_t*>(
mem_heap_dup(heap,
mrec + rec_offs_data_size(offsets),
ext_size));
byte* ext_start = reinterpret_cast<byte*>(ext);
ulint ext_len = sizeof(*ext)
+ (ext->n_ext - 1) * sizeof ext->len;
ext->ext = reinterpret_cast<ulint*>(ext_start + ext_len);
ext_len += ext->n_ext * sizeof(*ext->ext);
ext->buf = static_cast<byte*>(ext_start + ext_len);
} else {
ext = NULL;
}
*error = row_log_table_apply_delete(
thr, new_trx_id_col,
mrec, offsets, offsets_heap, heap,
log, ext, ext_size);
break;
case ROW_T_UPDATE:
/* Logically, the log entry consists of the
(PRIMARY KEY,DB_TRX_ID) of the old value (converted
to the new primary key definition) followed by
the new value in the old table definition. If the
definition of the columns belonging to PRIMARY KEY
is not changed, the log will only contain
DB_TRX_ID,new_row. */
ulint num_v = new_index->table->n_v_cols;
if (dup->index->online_log->same_pk) {
ut_ad(new_index->n_uniq == dup->index->n_uniq);
extra_size = *mrec++;
if (extra_size >= 0x80) {
/* Read another byte of extra_size. */
extra_size = (extra_size & 0x7f) << 8;
extra_size |= *mrec++;
}
mrec += extra_size;
if (mrec > mrec_end) {
return(NULL);
}
rec_offs_set_n_fields(offsets, dup->index->n_fields);
rec_init_offsets_temp(mrec, dup->index, offsets);
next_mrec = mrec + rec_offs_data_size(offsets);
if (next_mrec > mrec_end) {
return(NULL);
}
old_pk = dtuple_create_with_vcol(
heap, new_index->n_uniq, num_v);
dict_index_copy_types(
old_pk, new_index, old_pk->n_fields);
if (num_v) {
dict_table_copy_v_types(
old_pk, new_index->table);
}
/* Copy the PRIMARY KEY fields from mrec to old_pk. */
for (ulint i = 0; i < new_index->n_uniq; i++) {
const void* field;
ulint len;
dfield_t* dfield;
ut_ad(!rec_offs_nth_extern(offsets, i));
field = rec_get_nth_field(
mrec, offsets, i, &len);
ut_ad(len != UNIV_SQL_NULL);
dfield = dtuple_get_nth_field(old_pk, i);
dfield_set_data(dfield, field, len);
}
} else {
/* We assume extra_size < 0x100
for the PRIMARY KEY prefix. */
mrec += *mrec + 1;
if (mrec > mrec_end) {
return(NULL);
}
/* Get offsets for PRIMARY KEY,
DB_TRX_ID, DB_ROLL_PTR. */
rec_offs_set_n_fields(offsets, new_index->n_uniq + 2);
rec_init_offsets_temp(mrec, new_index, offsets);
next_mrec = mrec + rec_offs_data_size(offsets);
if (next_mrec + 2 > mrec_end) {
return(NULL);
}
/* Copy the PRIMARY KEY fields and
DB_TRX_ID, DB_ROLL_PTR from mrec to old_pk. */
old_pk = dtuple_create_with_vcol(
heap, new_index->n_uniq + 2, num_v);
dict_index_copy_types(old_pk, new_index,
old_pk->n_fields);
if (num_v) {
dict_table_copy_v_types(
old_pk, new_index->table);
}
for (ulint i = 0;
i < dict_index_get_n_unique(new_index) + 2;
i++) {
const void* field;
ulint len;
dfield_t* dfield;
ut_ad(!rec_offs_nth_extern(offsets, i));
field = rec_get_nth_field(
mrec, offsets, i, &len);
ut_ad(len != UNIV_SQL_NULL);
dfield = dtuple_get_nth_field(old_pk, i);
dfield_set_data(dfield, field, len);
}
mrec = next_mrec;
/* Fetch the new value of the row as it was
in the old table definition. */
extra_size = *mrec++;
if (extra_size >= 0x80) {
/* Read another byte of extra_size. */
extra_size = (extra_size & 0x7f) << 8;
extra_size |= *mrec++;
}
mrec += extra_size;
if (mrec > mrec_end) {
return(NULL);
}
rec_offs_set_n_fields(offsets, dup->index->n_fields);
rec_init_offsets_temp(mrec, dup->index, offsets);
next_mrec = mrec + rec_offs_data_size(offsets);
if (next_mrec > mrec_end) {
return(NULL);
}
}
/* Read virtual column info from log */
if (num_v) {
ulint o_v_size = 0;
ulint n_v_size = 0;
n_v_size = mach_read_from_2(next_mrec);
next_mrec += n_v_size;
if (next_mrec > mrec_end) {
return(NULL);
}
/* if there is more than 2 bytes length info */
if (n_v_size > 2) {
trx_undo_read_v_cols(
log->table, const_cast<byte*>(
next_mrec), old_pk, false,
&(log->col_map[log->n_old_col]));
o_v_size = mach_read_from_2(next_mrec);
}
next_mrec += o_v_size;
if (next_mrec > mrec_end) {
return(NULL);
}
}
ut_ad(next_mrec <= mrec_end);
log->head.total += next_mrec - mrec_start;
dtuple_set_n_fields_cmp(old_pk, new_index->n_uniq);
{
ulint len;
const byte* db_trx_id
= rec_get_nth_field(
mrec, offsets, trx_id_col, &len);
ut_ad(len == DATA_TRX_ID_LEN);
*error = row_log_table_apply_update(
thr, new_trx_id_col,
mrec, offsets, offsets_heap,
heap, dup, trx_read_trx_id(db_trx_id), old_pk);
}
break;
}
ut_ad(log->head.total <= log->tail.total);
mem_heap_empty(offsets_heap);
mem_heap_empty(heap);
return(next_mrec);
}
#ifdef HAVE_PSI_STAGE_INTERFACE
/** Estimate how much an ALTER TABLE progress should be incremented per
one block of log applied.
For the other phases of ALTER TABLE we increment the progress with 1 per
page processed.
@return amount of abstract units to add to work_completed when one block
of log is applied.
*/
inline
ulint
row_log_progress_inc_per_block()
{
/* We must increment the progress once per page (as in
univ_page_size, usually 16KiB). One block here is srv_sort_buf_size
(usually 1MiB). */
const ulint pages_per_block = std::max(
static_cast<unsigned long>(
srv_sort_buf_size / univ_page_size.physical()),
1UL);
/* Multiply by an artificial factor of 6 to even the pace with
the rest of the ALTER TABLE phases, they process page_size amount
of data faster. */
return(pages_per_block * 6);
}
/** Estimate how much work is to be done by the log apply phase
of an ALTER TABLE for this index.
@param[in] index index whose log to assess
@return work to be done by log-apply in abstract units
*/
ulint
row_log_estimate_work(
const dict_index_t* index)
{
if (index == NULL || index->online_log == NULL) {
return(0);
}
const row_log_t* l = index->online_log;
const ulint bytes_left =
static_cast<ulint>(l->tail.total - l->head.total);
const ulint blocks_left = bytes_left / srv_sort_buf_size;
return(blocks_left * row_log_progress_inc_per_block());
}
#else /* HAVE_PSI_STAGE_INTERFACE */
inline
ulint
row_log_progress_inc_per_block()
{
return(0);
}
#endif /* HAVE_PSI_STAGE_INTERFACE */
/** Applies operations to a table was rebuilt.
@param[in] thr query graph
@param[in,out] dup for reporting duplicate key errors
@param[in,out] stage performance schema accounting object, used by
ALTER TABLE. If not NULL, then stage->inc() will be called for each block
of log that is applied.
@return DB_SUCCESS, or error code on failure */
static MY_ATTRIBUTE((warn_unused_result))
dberr_t
row_log_table_apply_ops(
que_thr_t* thr,
row_merge_dup_t* dup,
ut_stage_alter_t* stage)
{
dberr_t error;
const mrec_t* mrec = NULL;
const mrec_t* next_mrec;
const mrec_t* mrec_end = NULL; /* silence bogus warning */
const mrec_t* next_mrec_end;
mem_heap_t* heap;
mem_heap_t* offsets_heap;
ulint* offsets;
bool has_index_lock;
dict_index_t* index = const_cast<dict_index_t*>(
dup->index);
dict_table_t* new_table = index->online_log->table;
dict_index_t* new_index = dict_table_get_first_index(
new_table);
const ulint i = 1 + REC_OFFS_HEADER_SIZE
+ ut_max(dict_index_get_n_fields(index),
dict_index_get_n_unique(new_index) + 2);
const ulint trx_id_col = dict_col_get_clust_pos(
dict_table_get_sys_col(index->table, DATA_TRX_ID), index);
const ulint new_trx_id_col = dict_col_get_clust_pos(
dict_table_get_sys_col(new_table, DATA_TRX_ID), new_index);
trx_t* trx = thr_get_trx(thr);
ut_ad(dict_index_is_clust(index));
ut_ad(dict_index_is_online_ddl(index));
ut_ad(trx->mysql_thd);
ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_X));
ut_ad(!dict_index_is_online_ddl(new_index));
ut_ad(trx_id_col > 0);
ut_ad(trx_id_col != ULINT_UNDEFINED);
ut_ad(new_trx_id_col > 0);
ut_ad(new_trx_id_col != ULINT_UNDEFINED);
UNIV_MEM_INVALID(&mrec_end, sizeof mrec_end);
offsets = static_cast<ulint*>(ut_malloc_nokey(i * sizeof *offsets));
offsets[0] = i;
offsets[1] = dict_index_get_n_fields(index);
heap = mem_heap_create(UNIV_PAGE_SIZE);
offsets_heap = mem_heap_create(UNIV_PAGE_SIZE);
has_index_lock = true;
next_block:
ut_ad(has_index_lock);
ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_X));
ut_ad(index->online_log->head.bytes == 0);
stage->inc(row_log_progress_inc_per_block());
if (trx_is_interrupted(trx)) {
goto interrupted;
}
if (dict_index_is_corrupted(index)) {
error = DB_INDEX_CORRUPT;
goto func_exit;
}
ut_ad(dict_index_is_online_ddl(index));
error = index->online_log->error;
if (error != DB_SUCCESS) {
goto func_exit;
}
if (UNIV_UNLIKELY(index->online_log->head.blocks
> index->online_log->tail.blocks)) {
unexpected_eof:
ib::error() << "Unexpected end of temporary file for table "
<< index->table->name;
corruption:
error = DB_CORRUPTION;
goto func_exit;
}
if (index->online_log->head.blocks
== index->online_log->tail.blocks) {
if (index->online_log->head.blocks) {
#ifdef HAVE_FTRUNCATE
/* Truncate the file in order to save space. */
if (index->online_log->fd > 0
&& ftruncate(index->online_log->fd, 0) == -1) {
ib::error()
<< "\'" << index->name + 1
<< "\' failed with error "
<< errno << ":" << strerror(errno);
goto corruption;
}
#endif /* HAVE_FTRUNCATE */
index->online_log->head.blocks
= index->online_log->tail.blocks = 0;
}
next_mrec = index->online_log->tail.block;
next_mrec_end = next_mrec + index->online_log->tail.bytes;
if (next_mrec_end == next_mrec) {
/* End of log reached. */
all_done:
ut_ad(has_index_lock);
ut_ad(index->online_log->head.blocks == 0);
ut_ad(index->online_log->tail.blocks == 0);
index->online_log->head.bytes = 0;
index->online_log->tail.bytes = 0;
error = DB_SUCCESS;
goto func_exit;
}
} else {
os_offset_t ofs;
ofs = (os_offset_t) index->online_log->head.blocks
* srv_sort_buf_size;
ut_ad(has_index_lock);
has_index_lock = false;
rw_lock_x_unlock(dict_index_get_lock(index));
log_free_check();
ut_ad(dict_index_is_online_ddl(index));
if (!row_log_block_allocate(index->online_log->head)) {
error = DB_OUT_OF_MEMORY;
goto func_exit;
}
IORequest request;
dberr_t err = os_file_read_no_error_handling(
request,
OS_FILE_FROM_FD(index->online_log->fd),
index->online_log->head.block, ofs,
srv_sort_buf_size,
NULL);
if (err != DB_SUCCESS) {
ib::error()
<< "Unable to read temporary file"
" for table " << index->table_name;
goto corruption;
}
#ifdef POSIX_FADV_DONTNEED
/* Each block is read exactly once. Free up the file cache. */
posix_fadvise(index->online_log->fd,
ofs, srv_sort_buf_size, POSIX_FADV_DONTNEED);
#endif /* POSIX_FADV_DONTNEED */
next_mrec = index->online_log->head.block;
next_mrec_end = next_mrec + srv_sort_buf_size;
}
/* This read is not protected by index->online_log->mutex for
performance reasons. We will eventually notice any error that
was flagged by a DML thread. */
error = index->online_log->error;
if (error != DB_SUCCESS) {
goto func_exit;
}
if (mrec) {
/* A partial record was read from the previous block.
Copy the temporary buffer full, as we do not know the
length of the record. Parse subsequent records from
the bigger buffer index->online_log->head.block
or index->online_log->tail.block. */
ut_ad(mrec == index->online_log->head.buf);
ut_ad(mrec_end > mrec);
ut_ad(mrec_end < (&index->online_log->head.buf)[1]);
memcpy((mrec_t*) mrec_end, next_mrec,
(&index->online_log->head.buf)[1] - mrec_end);
mrec = row_log_table_apply_op(
thr, trx_id_col, new_trx_id_col,
dup, &error, offsets_heap, heap,
index->online_log->head.buf,
(&index->online_log->head.buf)[1], offsets);
if (error != DB_SUCCESS) {
goto func_exit;
} else if (UNIV_UNLIKELY(mrec == NULL)) {
/* The record was not reassembled properly. */
goto corruption;
}
/* The record was previously found out to be
truncated. Now that the parse buffer was extended,
it should proceed beyond the old end of the buffer. */
ut_a(mrec > mrec_end);
index->online_log->head.bytes = mrec - mrec_end;
next_mrec += index->online_log->head.bytes;
}
ut_ad(next_mrec <= next_mrec_end);
/* The following loop must not be parsing the temporary
buffer, but head.block or tail.block. */
/* mrec!=NULL means that the next record starts from the
middle of the block */
ut_ad((mrec == NULL) == (index->online_log->head.bytes == 0));
#ifdef UNIV_DEBUG
if (next_mrec_end == index->online_log->head.block
+ srv_sort_buf_size) {
/* If tail.bytes == 0, next_mrec_end can also be at
the end of tail.block. */
if (index->online_log->tail.bytes == 0) {
ut_ad(next_mrec == next_mrec_end);
ut_ad(index->online_log->tail.blocks == 0);
ut_ad(index->online_log->head.blocks == 0);
ut_ad(index->online_log->head.bytes == 0);
} else {
ut_ad(next_mrec == index->online_log->head.block
+ index->online_log->head.bytes);
ut_ad(index->online_log->tail.blocks
> index->online_log->head.blocks);
}
} else if (next_mrec_end == index->online_log->tail.block
+ index->online_log->tail.bytes) {
ut_ad(next_mrec == index->online_log->tail.block
+ index->online_log->head.bytes);
ut_ad(index->online_log->tail.blocks == 0);
ut_ad(index->online_log->head.blocks == 0);
ut_ad(index->online_log->head.bytes
<= index->online_log->tail.bytes);
} else {
ut_error;
}
#endif /* UNIV_DEBUG */
mrec_end = next_mrec_end;
while (!trx_is_interrupted(trx)) {
mrec = next_mrec;
ut_ad(mrec < mrec_end);
if (!has_index_lock) {
/* We are applying operations from a different
block than the one that is being written to.
We do not hold index->lock in order to
allow other threads to concurrently buffer
modifications. */
ut_ad(mrec >= index->online_log->head.block);
ut_ad(mrec_end == index->online_log->head.block
+ srv_sort_buf_size);
ut_ad(index->online_log->head.bytes
< srv_sort_buf_size);
/* Take the opportunity to do a redo log
checkpoint if needed. */
log_free_check();
} else {
/* We are applying operations from the last block.
Do not allow other threads to buffer anything,
so that we can finally catch up and synchronize. */
ut_ad(index->online_log->head.blocks == 0);
ut_ad(index->online_log->tail.blocks == 0);
ut_ad(mrec_end == index->online_log->tail.block
+ index->online_log->tail.bytes);
ut_ad(mrec >= index->online_log->tail.block);
}
/* This read is not protected by index->online_log->mutex
for performance reasons. We will eventually notice any
error that was flagged by a DML thread. */
error = index->online_log->error;
if (error != DB_SUCCESS) {
goto func_exit;
}
next_mrec = row_log_table_apply_op(
thr, trx_id_col, new_trx_id_col,
dup, &error, offsets_heap, heap,
mrec, mrec_end, offsets);
if (error != DB_SUCCESS) {
goto func_exit;
} else if (next_mrec == next_mrec_end) {
/* The record happened to end on a block boundary.
Do we have more blocks left? */
if (has_index_lock) {
/* The index will be locked while
applying the last block. */
goto all_done;
}
mrec = NULL;
process_next_block:
rw_lock_x_lock(dict_index_get_lock(index));
has_index_lock = true;
index->online_log->head.bytes = 0;
index->online_log->head.blocks++;
goto next_block;
} else if (next_mrec != NULL) {
ut_ad(next_mrec < next_mrec_end);
index->online_log->head.bytes += next_mrec - mrec;
} else if (has_index_lock) {
/* When mrec is within tail.block, it should
be a complete record, because we are holding
index->lock and thus excluding the writer. */
ut_ad(index->online_log->tail.blocks == 0);
ut_ad(mrec_end == index->online_log->tail.block
+ index->online_log->tail.bytes);
ut_ad(0);
goto unexpected_eof;
} else {
memcpy(index->online_log->head.buf, mrec,
mrec_end - mrec);
mrec_end += index->online_log->head.buf - mrec;
mrec = index->online_log->head.buf;
goto process_next_block;
}
}
interrupted:
error = DB_INTERRUPTED;
func_exit:
if (!has_index_lock) {
rw_lock_x_lock(dict_index_get_lock(index));
}
mem_heap_free(offsets_heap);
mem_heap_free(heap);
row_log_block_free(index->online_log->head);
ut_free(offsets);
return(error);
}
/** Apply the row_log_table log to a table upon completing rebuild.
@param[in] thr query graph
@param[in] old_table old table
@param[in,out] table MySQL table (for reporting duplicates)
@param[in,out] stage performance schema accounting object, used by
ALTER TABLE. stage->begin_phase_log_table() will be called initially and then
stage->inc() will be called for each block of log that is applied.
@return DB_SUCCESS, or error code on failure */
dberr_t
row_log_table_apply(
que_thr_t* thr,
dict_table_t* old_table,
struct TABLE* table,
ut_stage_alter_t* stage)
{
dberr_t error;
dict_index_t* clust_index;
thr_get_trx(thr)->error_key_num = 0;
DBUG_EXECUTE_IF("innodb_trx_duplicates",
thr_get_trx(thr)->duplicates = TRX_DUP_REPLACE;);
stage->begin_phase_log_table();
ut_ad(!rw_lock_own(dict_operation_lock, RW_LOCK_S));
clust_index = dict_table_get_first_index(old_table);
rw_lock_x_lock(dict_index_get_lock(clust_index));
if (!clust_index->online_log) {
ut_ad(dict_index_get_online_status(clust_index)
== ONLINE_INDEX_COMPLETE);
/* This function should not be called unless
rebuilding a table online. Build in some fault
tolerance. */
ut_ad(0);
error = DB_ERROR;
} else {
row_merge_dup_t dup = {
clust_index, table,
clust_index->online_log->col_map, 0
};
error = row_log_table_apply_ops(thr, &dup, stage);
ut_ad(error != DB_SUCCESS
|| clust_index->online_log->head.total
== clust_index->online_log->tail.total);
}
rw_lock_x_unlock(dict_index_get_lock(clust_index));
DBUG_EXECUTE_IF("innodb_trx_duplicates",
thr_get_trx(thr)->duplicates = 0;);
return(error);
}
/******************************************************//**
Allocate the row log for an index and flag the index
for online creation.
@retval true if success, false if not */
bool
row_log_allocate(
/*=============*/
dict_index_t* index, /*!< in/out: index */
dict_table_t* table, /*!< in/out: new table being rebuilt,
or NULL when creating a secondary index */
bool same_pk,/*!< in: whether the definition of the
PRIMARY KEY has remained the same */
const dtuple_t* add_cols,
/*!< in: default values of
added columns, or NULL */
const ulint* col_map,/*!< in: mapping of old column
numbers to new ones, or NULL if !table */
const char* path) /*!< in: where to create temporary file */
{
row_log_t* log;
DBUG_ENTER("row_log_allocate");
ut_ad(!dict_index_is_online_ddl(index));
ut_ad(dict_index_is_clust(index) == !!table);
ut_ad(!table || index->table != table);
ut_ad(same_pk || table);
ut_ad(!table || col_map);
ut_ad(!add_cols || col_map);
ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_X));
log = static_cast<row_log_t*>(ut_malloc_nokey(sizeof *log));
if (log == NULL) {
DBUG_RETURN(false);
}
log->fd = -1;
mutex_create(LATCH_ID_INDEX_ONLINE_LOG, &log->mutex);
log->blobs = NULL;
log->table = table;
log->same_pk = same_pk;
log->add_cols = add_cols;
log->col_map = col_map;
log->error = DB_SUCCESS;
log->max_trx = 0;
log->tail.blocks = log->tail.bytes = 0;
log->tail.total = 0;
log->tail.block = log->head.block = NULL;
log->head.blocks = log->head.bytes = 0;
log->head.total = 0;
log->path = path;
log->n_old_col = index->table->n_cols;
log->n_old_vcol = index->table->n_v_cols;
dict_index_set_online_status(index, ONLINE_INDEX_CREATION);
index->online_log = log;
/* While we might be holding an exclusive data dictionary lock
here, in row_log_abort_sec() we will not always be holding it. Use
atomic operations in both cases. */
MONITOR_ATOMIC_INC(MONITOR_ONLINE_CREATE_INDEX);
DBUG_RETURN(true);
}
/******************************************************//**
Free the row log for an index that was being created online. */
void
row_log_free(
/*=========*/
row_log_t*& log) /*!< in,own: row log */
{
MONITOR_ATOMIC_DEC(MONITOR_ONLINE_CREATE_INDEX);
UT_DELETE(log->blobs);
row_log_block_free(log->tail);
row_log_block_free(log->head);
row_merge_file_destroy_low(log->fd);
mutex_free(&log->mutex);
ut_free(log);
log = NULL;
}
/******************************************************//**
Get the latest transaction ID that has invoked row_log_online_op()
during online creation.
@return latest transaction ID, or 0 if nothing was logged */
trx_id_t
row_log_get_max_trx(
/*================*/
dict_index_t* index) /*!< in: index, must be locked */
{
ut_ad(dict_index_get_online_status(index) == ONLINE_INDEX_CREATION);
ut_ad((rw_lock_own(dict_index_get_lock(index), RW_LOCK_S)
&& mutex_own(&index->online_log->mutex))
|| rw_lock_own(dict_index_get_lock(index), RW_LOCK_X));
return(index->online_log->max_trx);
}
/******************************************************//**
Applies an operation to a secondary index that was being created. */
static MY_ATTRIBUTE((nonnull))
void
row_log_apply_op_low(
/*=================*/
dict_index_t* index, /*!< in/out: index */
row_merge_dup_t*dup, /*!< in/out: for reporting
duplicate key errors */
dberr_t* error, /*!< out: DB_SUCCESS or error code */
mem_heap_t* offsets_heap, /*!< in/out: memory heap for
allocating offsets; can be emptied */
bool has_index_lock, /*!< in: true if holding index->lock
in exclusive mode */
enum row_op op, /*!< in: operation being applied */
trx_id_t trx_id, /*!< in: transaction identifier */
const dtuple_t* entry) /*!< in: row */
{
mtr_t mtr;
btr_cur_t cursor;
ulint* offsets = NULL;
ut_ad(!dict_index_is_clust(index));
ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_X)
== has_index_lock);
ut_ad(!dict_index_is_corrupted(index));
ut_ad(trx_id != 0 || op == ROW_OP_DELETE);
DBUG_LOG("ib_create_index",
(op == ROW_OP_INSERT ? "insert " : "delete ")
<< (has_index_lock ? "locked index " : "unlocked index ")
<< index->id << ',' << ib::hex(trx_id) << ": "
<< rec_printer(entry).str());
mtr_start(&mtr);
mtr.set_named_space(index->space);
/* We perform the pessimistic variant of the operations if we
already hold index->lock exclusively. First, search the
record. The operation may already have been performed,
depending on when the row in the clustered index was
scanned. */
btr_cur_search_to_nth_level(index, 0, entry, PAGE_CUR_LE,
has_index_lock
? BTR_MODIFY_TREE
: BTR_MODIFY_LEAF,
&cursor, 0, __FILE__, __LINE__,
&mtr);
ut_ad(dict_index_get_n_unique(index) > 0);
/* This test is somewhat similar to row_ins_must_modify_rec(),
but not identical for unique secondary indexes. */
if (cursor.low_match >= dict_index_get_n_unique(index)
&& !page_rec_is_infimum(btr_cur_get_rec(&cursor))) {
/* We have a matching record. */
bool exists = (cursor.low_match
== dict_index_get_n_fields(index));
#ifdef UNIV_DEBUG
rec_t* rec = btr_cur_get_rec(&cursor);
ut_ad(page_rec_is_user_rec(rec));
ut_ad(!rec_get_deleted_flag(rec, page_rec_is_comp(rec)));
#endif /* UNIV_DEBUG */
ut_ad(exists || dict_index_is_unique(index));
switch (op) {
case ROW_OP_DELETE:
if (!exists) {
/* The existing record matches the
unique secondary index key, but the
PRIMARY KEY columns differ. So, this
exact record does not exist. For
example, we could detect a duplicate
key error in some old index before
logging an ROW_OP_INSERT for our
index. This ROW_OP_DELETE could have
been logged for rolling back
TRX_UNDO_INSERT_REC. */
goto func_exit;
}
if (btr_cur_optimistic_delete(
&cursor, BTR_CREATE_FLAG, &mtr)) {
*error = DB_SUCCESS;
break;
}
if (!has_index_lock) {
/* This needs a pessimistic operation.
Lock the index tree exclusively. */
mtr_commit(&mtr);
mtr_start(&mtr);
mtr.set_named_space(index->space);
btr_cur_search_to_nth_level(
index, 0, entry, PAGE_CUR_LE,
BTR_MODIFY_TREE, &cursor, 0,
__FILE__, __LINE__, &mtr);
/* No other thread than the current one
is allowed to modify the index tree.
Thus, the record should still exist. */
ut_ad(cursor.low_match
>= dict_index_get_n_fields(index));
ut_ad(page_rec_is_user_rec(
btr_cur_get_rec(&cursor)));
}
/* As there are no externally stored fields in
a secondary index record, the parameter
rollback=false will be ignored. */
btr_cur_pessimistic_delete(
error, FALSE, &cursor,
BTR_CREATE_FLAG, false, &mtr);
break;
case ROW_OP_INSERT:
if (exists) {
/* The record already exists. There
is nothing to be inserted.
This could happen when processing
TRX_UNDO_DEL_MARK_REC in statement
rollback:
UPDATE of PRIMARY KEY can lead to
statement rollback if the updated
value of the PRIMARY KEY already
exists. In this case, the UPDATE would
be mapped to DELETE;INSERT, and we
only wrote undo log for the DELETE
part. The duplicate key error would be
triggered before logging the INSERT
part.
Theoretically, we could also get a
similar situation when a DELETE operation
is blocked by a FOREIGN KEY constraint. */
goto func_exit;
}
if (dtuple_contains_null(entry)) {
/* The UNIQUE KEY columns match, but
there is a NULL value in the key, and
NULL!=NULL. */
goto insert_the_rec;
}
goto duplicate;
}
} else {
switch (op) {
rec_t* rec;
big_rec_t* big_rec;
case ROW_OP_DELETE:
/* The record does not exist. For example, we
could detect a duplicate key error in some old
index before logging an ROW_OP_INSERT for our
index. This ROW_OP_DELETE could be logged for
rolling back TRX_UNDO_INSERT_REC. */
goto func_exit;
case ROW_OP_INSERT:
if (dict_index_is_unique(index)
&& (cursor.up_match
>= dict_index_get_n_unique(index)
|| cursor.low_match
>= dict_index_get_n_unique(index))
&& (!index->n_nullable
|| !dtuple_contains_null(entry))) {
duplicate:
/* Duplicate key */
ut_ad(dict_index_is_unique(index));
row_merge_dup_report(dup, entry->fields);
*error = DB_DUPLICATE_KEY;
goto func_exit;
}
insert_the_rec:
/* Insert the record. As we are inserting into
a secondary index, there cannot be externally
stored columns (!big_rec). */
*error = btr_cur_optimistic_insert(
BTR_NO_UNDO_LOG_FLAG
| BTR_NO_LOCKING_FLAG
| BTR_CREATE_FLAG,
&cursor, &offsets, &offsets_heap,
const_cast<dtuple_t*>(entry),
&rec, &big_rec, 0, NULL, &mtr);
ut_ad(!big_rec);
if (*error != DB_FAIL) {
break;
}
if (!has_index_lock) {
/* This needs a pessimistic operation.
Lock the index tree exclusively. */
mtr_commit(&mtr);
mtr_start(&mtr);
mtr.set_named_space(index->space);
btr_cur_search_to_nth_level(
index, 0, entry, PAGE_CUR_LE,
BTR_MODIFY_TREE, &cursor, 0,
__FILE__, __LINE__, &mtr);
}
/* We already determined that the
record did not exist. No other thread
than the current one is allowed to
modify the index tree. Thus, the
record should still not exist. */
*error = btr_cur_pessimistic_insert(
BTR_NO_UNDO_LOG_FLAG
| BTR_NO_LOCKING_FLAG
| BTR_CREATE_FLAG,
&cursor, &offsets, &offsets_heap,
const_cast<dtuple_t*>(entry),
&rec, &big_rec,
0, NULL, &mtr);
ut_ad(!big_rec);
break;
}
mem_heap_empty(offsets_heap);
}
if (*error == DB_SUCCESS && trx_id) {
page_update_max_trx_id(btr_cur_get_block(&cursor),
btr_cur_get_page_zip(&cursor),
trx_id, &mtr);
}
func_exit:
mtr_commit(&mtr);
}
/******************************************************//**
Applies an operation to a secondary index that was being created.
@return NULL on failure (mrec corruption) or when out of data;
pointer to next record on success */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
const mrec_t*
row_log_apply_op(
/*=============*/
dict_index_t* index, /*!< in/out: index */
row_merge_dup_t*dup, /*!< in/out: for reporting
duplicate key errors */
dberr_t* error, /*!< out: DB_SUCCESS or error code */
mem_heap_t* offsets_heap, /*!< in/out: memory heap for
allocating offsets; can be emptied */
mem_heap_t* heap, /*!< in/out: memory heap for
allocating data tuples */
bool has_index_lock, /*!< in: true if holding index->lock
in exclusive mode */
const mrec_t* mrec, /*!< in: merge record */
const mrec_t* mrec_end, /*!< in: end of buffer */
ulint* offsets) /*!< in/out: work area for
rec_init_offsets_temp() */
{
enum row_op op;
ulint extra_size;
ulint data_size;
ulint n_ext;
dtuple_t* entry;
trx_id_t trx_id;
/* Online index creation is only used for secondary indexes. */
ut_ad(!dict_index_is_clust(index));
ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_X)
== has_index_lock);
if (dict_index_is_corrupted(index)) {
*error = DB_INDEX_CORRUPT;
return(NULL);
}
*error = DB_SUCCESS;
if (mrec + ROW_LOG_HEADER_SIZE >= mrec_end) {
return(NULL);
}
switch (*mrec) {
case ROW_OP_INSERT:
if (ROW_LOG_HEADER_SIZE + DATA_TRX_ID_LEN + mrec >= mrec_end) {
return(NULL);
}
op = static_cast<enum row_op>(*mrec++);
trx_id = trx_read_trx_id(mrec);
mrec += DATA_TRX_ID_LEN;
break;
case ROW_OP_DELETE:
op = static_cast<enum row_op>(*mrec++);
trx_id = 0;
break;
default:
corrupted:
ut_ad(0);
*error = DB_CORRUPTION;
return(NULL);
}
extra_size = *mrec++;
ut_ad(mrec < mrec_end);
if (extra_size >= 0x80) {
/* Read another byte of extra_size. */
extra_size = (extra_size & 0x7f) << 8;
extra_size |= *mrec++;
}
mrec += extra_size;
if (mrec > mrec_end) {
return(NULL);
}
rec_init_offsets_temp(mrec, index, offsets);
if (rec_offs_any_extern(offsets)) {
/* There should never be any externally stored fields
in a secondary index, which is what online index
creation is used for. Therefore, the log file must be
corrupted. */
goto corrupted;
}
data_size = rec_offs_data_size(offsets);
mrec += data_size;
if (mrec > mrec_end) {
return(NULL);
}
entry = row_rec_to_index_entry_low(
mrec - data_size, index, offsets, &n_ext, heap);
/* Online index creation is only implemented for secondary
indexes, which never contain off-page columns. */
ut_ad(n_ext == 0);
row_log_apply_op_low(index, dup, error, offsets_heap,
has_index_lock, op, trx_id, entry);
return(mrec);
}
/** Applies operations to a secondary index that was being created.
@param[in] trx transaction (for checking if the operation was
interrupted)
@param[in,out] index index
@param[in,out] dup for reporting duplicate key errors
@param[in,out] stage performance schema accounting object, used by
ALTER TABLE. If not NULL, then stage->inc() will be called for each block
of log that is applied.
@return DB_SUCCESS, or error code on failure */
static
dberr_t
row_log_apply_ops(
const trx_t* trx,
dict_index_t* index,
row_merge_dup_t* dup,
ut_stage_alter_t* stage)
{
dberr_t error;
const mrec_t* mrec = NULL;
const mrec_t* next_mrec;
const mrec_t* mrec_end= NULL; /* silence bogus warning */
const mrec_t* next_mrec_end;
mem_heap_t* offsets_heap;
mem_heap_t* heap;
ulint* offsets;
bool has_index_lock;
const ulint i = 1 + REC_OFFS_HEADER_SIZE
+ dict_index_get_n_fields(index);
ut_ad(dict_index_is_online_ddl(index));
ut_ad(!index->is_committed());
ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_X));
ut_ad(index->online_log);
UNIV_MEM_INVALID(&mrec_end, sizeof mrec_end);
offsets = static_cast<ulint*>(ut_malloc_nokey(i * sizeof *offsets));
offsets[0] = i;
offsets[1] = dict_index_get_n_fields(index);
offsets_heap = mem_heap_create(UNIV_PAGE_SIZE);
heap = mem_heap_create(UNIV_PAGE_SIZE);
has_index_lock = true;
next_block:
ut_ad(has_index_lock);
ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_X));
ut_ad(index->online_log->head.bytes == 0);
stage->inc(row_log_progress_inc_per_block());
if (trx_is_interrupted(trx)) {
goto interrupted;
}
error = index->online_log->error;
if (error != DB_SUCCESS) {
goto func_exit;
}
if (dict_index_is_corrupted(index)) {
error = DB_INDEX_CORRUPT;
goto func_exit;
}
if (UNIV_UNLIKELY(index->online_log->head.blocks
> index->online_log->tail.blocks)) {
unexpected_eof:
ib::error() << "Unexpected end of temporary file for index "
<< index->name;
corruption:
error = DB_CORRUPTION;
goto func_exit;
}
if (index->online_log->head.blocks
== index->online_log->tail.blocks) {
if (index->online_log->head.blocks) {
#ifdef HAVE_FTRUNCATE
/* Truncate the file in order to save space. */
if (index->online_log->fd > 0
&& ftruncate(index->online_log->fd, 0) == -1) {
ib::error()
<< "\'" << index->name + 1
<< "\' failed with error "
<< errno << ":" << strerror(errno);
goto corruption;
}
#endif /* HAVE_FTRUNCATE */
index->online_log->head.blocks
= index->online_log->tail.blocks = 0;
}
next_mrec = index->online_log->tail.block;
next_mrec_end = next_mrec + index->online_log->tail.bytes;
if (next_mrec_end == next_mrec) {
/* End of log reached. */
all_done:
ut_ad(has_index_lock);
ut_ad(index->online_log->head.blocks == 0);
ut_ad(index->online_log->tail.blocks == 0);
error = DB_SUCCESS;
goto func_exit;
}
} else {
os_offset_t ofs;
ofs = (os_offset_t) index->online_log->head.blocks
* srv_sort_buf_size;
ut_ad(has_index_lock);
has_index_lock = false;
rw_lock_x_unlock(dict_index_get_lock(index));
log_free_check();
if (!row_log_block_allocate(index->online_log->head)) {
error = DB_OUT_OF_MEMORY;
goto func_exit;
}
IORequest request;
dberr_t err = os_file_read_no_error_handling(
request,
OS_FILE_FROM_FD(index->online_log->fd),
index->online_log->head.block, ofs,
srv_sort_buf_size,
NULL);
if (err != DB_SUCCESS) {
ib::error()
<< "Unable to read temporary file"
" for index " << index->name;
goto corruption;
}
#ifdef POSIX_FADV_DONTNEED
/* Each block is read exactly once. Free up the file cache. */
posix_fadvise(index->online_log->fd,
ofs, srv_sort_buf_size, POSIX_FADV_DONTNEED);
#endif /* POSIX_FADV_DONTNEED */
next_mrec = index->online_log->head.block;
next_mrec_end = next_mrec + srv_sort_buf_size;
}
if (mrec) {
/* A partial record was read from the previous block.
Copy the temporary buffer full, as we do not know the
length of the record. Parse subsequent records from
the bigger buffer index->online_log->head.block
or index->online_log->tail.block. */
ut_ad(mrec == index->online_log->head.buf);
ut_ad(mrec_end > mrec);
ut_ad(mrec_end < (&index->online_log->head.buf)[1]);
memcpy((mrec_t*) mrec_end, next_mrec,
(&index->online_log->head.buf)[1] - mrec_end);
mrec = row_log_apply_op(
index, dup, &error, offsets_heap, heap,
has_index_lock, index->online_log->head.buf,
(&index->online_log->head.buf)[1], offsets);
if (error != DB_SUCCESS) {
goto func_exit;
} else if (UNIV_UNLIKELY(mrec == NULL)) {
/* The record was not reassembled properly. */
goto corruption;
}
/* The record was previously found out to be
truncated. Now that the parse buffer was extended,
it should proceed beyond the old end of the buffer. */
ut_a(mrec > mrec_end);
index->online_log->head.bytes = mrec - mrec_end;
next_mrec += index->online_log->head.bytes;
}
ut_ad(next_mrec <= next_mrec_end);
/* The following loop must not be parsing the temporary
buffer, but head.block or tail.block. */
/* mrec!=NULL means that the next record starts from the
middle of the block */
ut_ad((mrec == NULL) == (index->online_log->head.bytes == 0));
#ifdef UNIV_DEBUG
if (next_mrec_end == index->online_log->head.block
+ srv_sort_buf_size) {
/* If tail.bytes == 0, next_mrec_end can also be at
the end of tail.block. */
if (index->online_log->tail.bytes == 0) {
ut_ad(next_mrec == next_mrec_end);
ut_ad(index->online_log->tail.blocks == 0);
ut_ad(index->online_log->head.blocks == 0);
ut_ad(index->online_log->head.bytes == 0);
} else {
ut_ad(next_mrec == index->online_log->head.block
+ index->online_log->head.bytes);
ut_ad(index->online_log->tail.blocks
> index->online_log->head.blocks);
}
} else if (next_mrec_end == index->online_log->tail.block
+ index->online_log->tail.bytes) {
ut_ad(next_mrec == index->online_log->tail.block
+ index->online_log->head.bytes);
ut_ad(index->online_log->tail.blocks == 0);
ut_ad(index->online_log->head.blocks == 0);
ut_ad(index->online_log->head.bytes
<= index->online_log->tail.bytes);
} else {
ut_error;
}
#endif /* UNIV_DEBUG */
mrec_end = next_mrec_end;
while (!trx_is_interrupted(trx)) {
mrec = next_mrec;
ut_ad(mrec < mrec_end);
if (!has_index_lock) {
/* We are applying operations from a different
block than the one that is being written to.
We do not hold index->lock in order to
allow other threads to concurrently buffer
modifications. */
ut_ad(mrec >= index->online_log->head.block);
ut_ad(mrec_end == index->online_log->head.block
+ srv_sort_buf_size);
ut_ad(index->online_log->head.bytes
< srv_sort_buf_size);
/* Take the opportunity to do a redo log
checkpoint if needed. */
log_free_check();
} else {
/* We are applying operations from the last block.
Do not allow other threads to buffer anything,
so that we can finally catch up and synchronize. */
ut_ad(index->online_log->head.blocks == 0);
ut_ad(index->online_log->tail.blocks == 0);
ut_ad(mrec_end == index->online_log->tail.block
+ index->online_log->tail.bytes);
ut_ad(mrec >= index->online_log->tail.block);
}
next_mrec = row_log_apply_op(
index, dup, &error, offsets_heap, heap,
has_index_lock, mrec, mrec_end, offsets);
if (error != DB_SUCCESS) {
goto func_exit;
} else if (next_mrec == next_mrec_end) {
/* The record happened to end on a block boundary.
Do we have more blocks left? */
if (has_index_lock) {
/* The index will be locked while
applying the last block. */
goto all_done;
}
mrec = NULL;
process_next_block:
rw_lock_x_lock(dict_index_get_lock(index));
has_index_lock = true;
index->online_log->head.bytes = 0;
index->online_log->head.blocks++;
goto next_block;
} else if (next_mrec != NULL) {
ut_ad(next_mrec < next_mrec_end);
index->online_log->head.bytes += next_mrec - mrec;
} else if (has_index_lock) {
/* When mrec is within tail.block, it should
be a complete record, because we are holding
index->lock and thus excluding the writer. */
ut_ad(index->online_log->tail.blocks == 0);
ut_ad(mrec_end == index->online_log->tail.block
+ index->online_log->tail.bytes);
ut_ad(0);
goto unexpected_eof;
} else {
memcpy(index->online_log->head.buf, mrec,
mrec_end - mrec);
mrec_end += index->online_log->head.buf - mrec;
mrec = index->online_log->head.buf;
goto process_next_block;
}
}
interrupted:
error = DB_INTERRUPTED;
func_exit:
if (!has_index_lock) {
rw_lock_x_lock(dict_index_get_lock(index));
}
switch (error) {
case DB_SUCCESS:
break;
case DB_INDEX_CORRUPT:
if (((os_offset_t) index->online_log->tail.blocks + 1)
* srv_sort_buf_size >= srv_online_max_size) {
/* The log file grew too big. */
error = DB_ONLINE_LOG_TOO_BIG;
}
/* fall through */
default:
/* We set the flag directly instead of invoking
dict_set_corrupted_index_cache_only(index) here,
because the index is not "public" yet. */
index->type |= DICT_CORRUPT;
}
mem_heap_free(heap);
mem_heap_free(offsets_heap);
row_log_block_free(index->online_log->head);
ut_free(offsets);
return(error);
}
/** Apply the row log to the index upon completing index creation.
@param[in] trx transaction (for checking if the operation was
interrupted)
@param[in,out] index secondary index
@param[in,out] table MySQL table (for reporting duplicates)
@param[in,out] stage performance schema accounting object, used by
ALTER TABLE. stage->begin_phase_log_index() will be called initially and then
stage->inc() will be called for each block of log that is applied.
@return DB_SUCCESS, or error code on failure */
dberr_t
row_log_apply(
const trx_t* trx,
dict_index_t* index,
struct TABLE* table,
ut_stage_alter_t* stage)
{
dberr_t error;
row_log_t* log;
row_merge_dup_t dup = { index, table, NULL, 0 };
DBUG_ENTER("row_log_apply");
ut_ad(dict_index_is_online_ddl(index));
ut_ad(!dict_index_is_clust(index));
stage->begin_phase_log_index();
log_free_check();
rw_lock_x_lock(dict_index_get_lock(index));
if (!dict_table_is_corrupted(index->table)) {
error = row_log_apply_ops(trx, index, &dup, stage);
} else {
error = DB_SUCCESS;
}
if (error != DB_SUCCESS) {
ut_a(!dict_table_is_discarded(index->table));
/* We set the flag directly instead of invoking
dict_set_corrupted_index_cache_only(index) here,
because the index is not "public" yet. */
index->type |= DICT_CORRUPT;
index->table->drop_aborted = TRUE;
dict_index_set_online_status(index, ONLINE_INDEX_ABORTED);
} else {
ut_ad(dup.n_dup == 0);
dict_index_set_online_status(index, ONLINE_INDEX_COMPLETE);
}
log = index->online_log;
index->online_log = NULL;
rw_lock_x_unlock(dict_index_get_lock(index));
row_log_free(log);
DBUG_RETURN(error);
}