mirror of
https://github.com/MariaDB/server.git
synced 2025-01-27 01:04:19 +01:00
744 lines
23 KiB
C
744 lines
23 KiB
C
/*-
|
|
* See the file LICENSE for redistribution information.
|
|
*
|
|
* Copyright (c) 1996, 1997, 1998, 1999, 2000
|
|
* Sleepycat Software. All rights reserved.
|
|
*
|
|
* $Id: mutex.h,v 11.41 2000/12/22 19:28:15 bostic Exp $
|
|
*/
|
|
|
|
/*
|
|
* Some of the Berkeley DB ports require single-threading at various
|
|
* places in the code. In those cases, these #defines will be set.
|
|
*/
|
|
#define DB_BEGIN_SINGLE_THREAD
|
|
#define DB_END_SINGLE_THREAD
|
|
|
|
/*
|
|
* When the underlying system mutexes require system resources, we have
|
|
* to clean up after application failure. This violates the rule that
|
|
* we never look at a shared region after a failure, but there's no other
|
|
* choice. In those cases, this #define is set.
|
|
*/
|
|
#ifdef HAVE_QNX
|
|
#define MUTEX_SYSTEM_RESOURCES
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* POSIX.1 pthreads interface.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_PTHREADS
|
|
#include <pthread.h>
|
|
|
|
#define MUTEX_FIELDS \
|
|
pthread_mutex_t mutex; /* Mutex. */ \
|
|
pthread_cond_t cond; /* Condition variable. */
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* Solaris lwp threads interface.
|
|
*
|
|
* !!!
|
|
* We use LWP mutexes on Solaris instead of UI or POSIX mutexes (both of
|
|
* which are available), for two reasons. First, the Solaris C library
|
|
* includes versions of the both UI and POSIX thread mutex interfaces, but
|
|
* they are broken in that they don't support inter-process locking, and
|
|
* there's no way to detect it, e.g., calls to configure the mutexes for
|
|
* inter-process locking succeed without error. So, we use LWP mutexes so
|
|
* that we don't fail in fairly undetectable ways because the application
|
|
* wasn't linked with the appropriate threads library. Second, there were
|
|
* bugs in SunOS 5.7 (Solaris 7) where if an application loaded the C library
|
|
* before loading the libthread/libpthread threads libraries (e.g., by using
|
|
* dlopen to load the DB library), the pwrite64 interface would be translated
|
|
* into a call to pwrite and DB would drop core.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_SOLARIS_LWP
|
|
/*
|
|
* XXX
|
|
* Don't change <synch.h> to <sys/lwp.h> -- although lwp.h is listed in the
|
|
* Solaris manual page as the correct include to use, it causes the Solaris
|
|
* compiler on SunOS 2.6 to fail.
|
|
*/
|
|
#include <synch.h>
|
|
|
|
#define MUTEX_FIELDS \
|
|
lwp_mutex_t mutex; /* Mutex. */ \
|
|
lwp_cond_t cond; /* Condition variable. */
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* Solaris/Unixware threads interface.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_UI_THREADS
|
|
#include <thread.h>
|
|
#include <synch.h>
|
|
|
|
#define MUTEX_FIELDS \
|
|
mutex_t mutex; /* Mutex. */ \
|
|
cond_t cond; /* Condition variable. */
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* AIX C library functions.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_AIX_CHECK_LOCK
|
|
#include <sys/atomic_op.h>
|
|
typedef int tsl_t;
|
|
#define MUTEX_ALIGN sizeof(int)
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
#define MUTEX_INIT(x) 0
|
|
#define MUTEX_SET(x) (!_check_lock(x, 0, 1))
|
|
#define MUTEX_UNSET(x) _clear_lock(x, 0)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* General C library functions (msemaphore).
|
|
*
|
|
* !!!
|
|
* Check for HPPA as a special case, because it requires unusual alignment,
|
|
* and doesn't support semaphores in malloc(3) or shmget(2) memory.
|
|
*
|
|
* !!!
|
|
* Do not remove the MSEM_IF_NOWAIT flag. The problem is that if a single
|
|
* process makes two msem_lock() calls in a row, the second one returns an
|
|
* error. We depend on the fact that we can lock against ourselves in the
|
|
* locking subsystem, where we set up a mutex so that we can block ourselves.
|
|
* Tested on OSF1 v4.0.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_HPPA_MSEM_INIT
|
|
#define MUTEX_NO_MALLOC_LOCKS
|
|
#define MUTEX_NO_SHMGET_LOCKS
|
|
|
|
#define MUTEX_ALIGN 16
|
|
#endif
|
|
|
|
#if defined(HAVE_MUTEX_MSEM_INIT) || defined(HAVE_MUTEX_HPPA_MSEM_INIT)
|
|
#include <sys/mman.h>
|
|
typedef msemaphore tsl_t;
|
|
|
|
#ifndef MUTEX_ALIGN
|
|
#define MUTEX_ALIGN sizeof(int)
|
|
#endif
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
#define MUTEX_INIT(x) (msem_init(x, MSEM_UNLOCKED) <= (msemaphore *)0)
|
|
#define MUTEX_SET(x) (!msem_lock(x, MSEM_IF_NOWAIT))
|
|
#define MUTEX_UNSET(x) msem_unlock(x, 0)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* Plan 9 library functions.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_PLAN9
|
|
typedef Lock tsl_t;
|
|
|
|
#define MUTEX_ALIGN sizeof(int)
|
|
|
|
#define MUTEX_INIT(x) (memset(x, 0, sizeof(Lock)), 0)
|
|
#define MUTEX_SET(x) canlock(x)
|
|
#define MUTEX_UNSET(x) unlock(x)
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* Reliant UNIX C library functions.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_RELIANTUNIX_INITSPIN
|
|
#include <ulocks.h>
|
|
typedef spinlock_t tsl_t;
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
#define MUTEX_INIT(x) (initspin(x, 1), 0)
|
|
#define MUTEX_SET(x) (cspinlock(x) == 0)
|
|
#define MUTEX_UNSET(x) spinunlock(x)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* General C library functions (POSIX 1003.1 sema_XXX).
|
|
*
|
|
* !!!
|
|
* Never selected by autoconfig in this release (semaphore calls are known
|
|
* to not work in Solaris 5.5).
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_SEMA_INIT
|
|
#include <synch.h>
|
|
typedef sema_t tsl_t;
|
|
#define MUTEX_ALIGN sizeof(int)
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
#define MUTEX_DESTROY(x) sema_destroy(x)
|
|
#define MUTEX_INIT(x) (sema_init(x, 1, USYNC_PROCESS, NULL) != 0)
|
|
#define MUTEX_SET(x) (sema_wait(x) == 0)
|
|
#define MUTEX_UNSET(x) sema_post(x)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* SGI C library functions.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_SGI_INIT_LOCK
|
|
#include <abi_mutex.h>
|
|
typedef abilock_t tsl_t;
|
|
#define MUTEX_ALIGN sizeof(int)
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
#define MUTEX_INIT(x) (init_lock(x) != 0)
|
|
#define MUTEX_SET(x) (!acquire_lock(x))
|
|
#define MUTEX_UNSET(x) release_lock(x)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* Solaris C library functions.
|
|
*
|
|
* !!!
|
|
* These are undocumented functions, but they're the only ones that work
|
|
* correctly as far as we know.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_SOLARIS_LOCK_TRY
|
|
#include <sys/machlock.h>
|
|
typedef lock_t tsl_t;
|
|
#define MUTEX_ALIGN sizeof(int)
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
#define MUTEX_INIT(x) 0
|
|
#define MUTEX_SET(x) _lock_try(x)
|
|
#define MUTEX_UNSET(x) _lock_clear(x)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* VMS.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_VMS
|
|
#include <sys/mman.h>;
|
|
#include <builtins.h>
|
|
typedef unsigned char tsl_t;
|
|
#define MUTEX_ALIGN sizeof(unsigned int)
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
#ifdef __ALPHA
|
|
#define MUTEX_SET(tsl) (!__TESTBITSSI(tsl, 0))
|
|
#else /* __VAX */
|
|
#define MUTEX_SET(tsl) (!(int)_BBSSI(0, tsl))
|
|
#endif
|
|
#define MUTEX_UNSET(tsl) (*(tsl) = 0)
|
|
#define MUTEX_INIT(tsl) MUTEX_UNSET(tsl)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* VxWorks
|
|
* Use basic binary semaphores in VxWorks, as we currently do not need
|
|
* any special features. We do need the ability to single-thread the
|
|
* entire system, however, because VxWorks doesn't support the open(2)
|
|
* flag O_EXCL, the mechanism we normally use to single thread access
|
|
* when we're first looking for a DB environment.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_VXWORKS
|
|
#define MUTEX_SYSTEM_RESOURCES
|
|
|
|
#include "semLib.h"
|
|
typedef SEM_ID tsl_t;
|
|
#define MUTEX_ALIGN sizeof(unsigned int)
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
#define MUTEX_SET(tsl) (semTake((*tsl), WAIT_FOREVER) == OK)
|
|
#define MUTEX_UNSET(tsl) (semGive((*tsl)) == OK)
|
|
#define MUTEX_INIT(tsl) \
|
|
((*(tsl) = semBCreate(SEM_Q_FIFO, SEM_FULL)) == NULL)
|
|
#define MUTEX_DESTROY(tsl) semDelete(*tsl)
|
|
#endif
|
|
|
|
/*
|
|
* Use the taskLock() mutex to eliminate a race where two tasks are
|
|
* trying to initialize the global lock at the same time.
|
|
*/
|
|
#undef DB_BEGIN_SINGLE_THREAD
|
|
#define DB_BEGIN_SINGLE_THREAD \
|
|
do { \
|
|
if (DB_GLOBAL(db_global_init)) \
|
|
(void)semTake(DB_GLOBAL(db_global_lock), WAIT_FOREVER); \
|
|
else { \
|
|
taskLock(); \
|
|
if (DB_GLOBAL(db_global_init)) { \
|
|
taskUnlock(); \
|
|
(void)semTake(DB_GLOBAL(db_global_lock), \
|
|
WAIT_FOREVER); \
|
|
continue; \
|
|
} \
|
|
DB_GLOBAL(db_global_lock) = \
|
|
semBCreate(SEM_Q_FIFO, SEM_EMPTY); \
|
|
if (DB_GLOBAL(db_global_lock) != NULL) \
|
|
DB_GLOBAL(db_global_init) = 1; \
|
|
taskUnlock(); \
|
|
} \
|
|
} while (DB_GLOBAL(db_global_init) == 0)
|
|
#undef DB_END_SINGLE_THREAD
|
|
#define DB_END_SINGLE_THREAD (void)semGive(DB_GLOBAL(db_global_lock))
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* Win16
|
|
*
|
|
* Win16 spinlocks are simple because we cannot possibly be preempted.
|
|
*
|
|
* !!!
|
|
* We should simplify this by always returning a no-need-to-lock lock
|
|
* when we initialize the mutex.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_WIN16
|
|
typedef unsigned int tsl_t;
|
|
#define MUTEX_ALIGN sizeof(unsigned int)
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
#define MUTEX_INIT(x) 0
|
|
#define MUTEX_SET(tsl) (*(tsl) = 1)
|
|
#define MUTEX_UNSET(tsl) (*(tsl) = 0)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* Win32
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_WIN32
|
|
typedef unsigned int tsl_t;
|
|
#define MUTEX_ALIGN sizeof(unsigned int)
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
#define MUTEX_INIT(x) 0
|
|
#define MUTEX_SET(tsl) (!InterlockedExchange((PLONG)tsl, 1))
|
|
#define MUTEX_UNSET(tsl) (*(tsl) = 0)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* 68K/gcc assembly.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_68K_GCC_ASSEMBLY
|
|
typedef unsigned char tsl_t;
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
/*
|
|
* For gcc/68K, 0 is clear, 1 is set.
|
|
*/
|
|
#define MUTEX_SET(tsl) ({ \
|
|
register tsl_t *__l = (tsl); \
|
|
int __r; \
|
|
asm volatile("tas %1; \n \
|
|
seq %0" \
|
|
: "=dm" (__r), "=m" (*__l) \
|
|
: "1" (*__l) \
|
|
); \
|
|
__r & 1; \
|
|
})
|
|
|
|
#define MUTEX_UNSET(tsl) (*(tsl) = 0)
|
|
#define MUTEX_INIT(tsl) MUTEX_UNSET(tsl)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* ALPHA/gcc assembly.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_ALPHA_GCC_ASSEMBLY
|
|
typedef u_int32_t tsl_t;
|
|
#define MUTEX_ALIGN 4
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
/*
|
|
* For gcc/alpha. Should return 0 if could not acquire the lock, 1 if
|
|
* lock was acquired properly.
|
|
*/
|
|
#ifdef __GNUC__
|
|
static inline int
|
|
MUTEX_SET(tsl_t *tsl) {
|
|
register tsl_t *__l = tsl;
|
|
register tsl_t __r;
|
|
asm volatile(
|
|
"1: ldl_l %0,%2\n"
|
|
" blbs %0,2f\n"
|
|
" or $31,1,%0\n"
|
|
" stl_c %0,%1\n"
|
|
" beq %0,3f\n"
|
|
" mb\n"
|
|
" br 3f\n"
|
|
"2: xor %0,%0\n"
|
|
"3:"
|
|
: "=&r"(__r), "=m"(*__l) : "1"(*__l) : "memory");
|
|
return __r;
|
|
}
|
|
|
|
/*
|
|
* Unset mutex. Judging by Alpha Architecture Handbook, the mb instruction
|
|
* might be necessary before unlocking
|
|
*/
|
|
static inline int
|
|
MUTEX_UNSET(tsl_t *tsl) {
|
|
asm volatile(" mb\n");
|
|
return *tsl = 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef __DECC
|
|
#include <alpha/builtins.h>
|
|
#define MUTEX_SET(tsl) (__LOCK_LONG_RETRY((tsl), 1) != 0)
|
|
#define MUTEX_UNSET(tsl) (*(tsl) = 0)
|
|
#endif
|
|
|
|
#define MUTEX_INIT(tsl) MUTEX_UNSET(tsl)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* HPPA/gcc assembly.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_HPPA_GCC_ASSEMBLY
|
|
typedef u_int32_t tsl_t;
|
|
#define MUTEX_ALIGN 16
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
/*
|
|
* The PA-RISC has a "load and clear" instead of a "test and set" instruction.
|
|
* The 32-bit word used by that instruction must be 16-byte aligned. We could
|
|
* use the "aligned" attribute in GCC but that doesn't work for stack variables.
|
|
*/
|
|
#define MUTEX_SET(tsl) ({ \
|
|
register tsl_t *__l = (tsl); \
|
|
int __r; \
|
|
asm volatile("ldcws 0(%1),%0" : "=r" (__r) : "r" (__l)); \
|
|
__r & 1; \
|
|
})
|
|
|
|
#define MUTEX_UNSET(tsl) (*(tsl) = -1)
|
|
#define MUTEX_INIT(tsl) MUTEX_UNSET(tsl)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* IA64/gcc assembly.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_IA64_GCC_ASSEMBLY
|
|
typedef unsigned char tsl_t;
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
/*
|
|
* For gcc/ia64, 0 is clear, 1 is set.
|
|
*/
|
|
#define MUTEX_SET(tsl) ({ \
|
|
register tsl_t *__l = (tsl); \
|
|
long __r; \
|
|
asm volatile("xchg1 %0=%1,%3" : "=r"(__r), "=m"(*__l) : "1"(*__l), "r"(1));\
|
|
__r ^ 1; \
|
|
})
|
|
|
|
/*
|
|
* Store through a "volatile" pointer so we get a store with "release"
|
|
* semantics.
|
|
*/
|
|
#define MUTEX_UNSET(tsl) (*(volatile unsigned char *)(tsl) = 0)
|
|
#define MUTEX_INIT(tsl) MUTEX_UNSET(tsl)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* PowerPC/gcc assembly.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_PPC_GCC_ASSEMBLY
|
|
typedef u_int32_t tsl_t;
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
/*
|
|
* The PowerPC does a sort of pseudo-atomic locking. You set up a
|
|
* 'reservation' on a chunk of memory containing a mutex by loading the
|
|
* mutex value with LWARX. If the mutex has an 'unlocked' (arbitrary)
|
|
* value, you then try storing into it with STWCX. If no other process or
|
|
* thread broke your 'reservation' by modifying the memory containing the
|
|
* mutex, then the STCWX succeeds; otherwise it fails and you try to get
|
|
* a reservation again.
|
|
*
|
|
* While mutexes are explicitly 4 bytes, a 'reservation' applies to an
|
|
* entire cache line, normally 32 bytes, aligned naturally. If the mutex
|
|
* lives near data that gets changed a lot, there's a chance that you'll
|
|
* see more broken reservations than you might otherwise. The only
|
|
* situation in which this might be a problem is if one processor is
|
|
* beating on a variable in the same cache block as the mutex while another
|
|
* processor tries to acquire the mutex. That's bad news regardless
|
|
* because of the way it bashes caches, but if you can't guarantee that a
|
|
* mutex will reside in a relatively quiescent cache line, you might
|
|
* consider padding the mutex to force it to live in a cache line by
|
|
* itself. No, you aren't guaranteed that cache lines are 32 bytes. Some
|
|
* embedded processors use 16-byte cache lines, while some 64-bit
|
|
* processors use 128-bit cache lines. But assuming a 32-byte cache line
|
|
* won't get you into trouble for now.
|
|
*
|
|
* If mutex locking is a bottleneck, then you can speed it up by adding a
|
|
* regular LWZ load before the LWARX load, so that you can test for the
|
|
* common case of a locked mutex without wasting cycles making a reservation.
|
|
*
|
|
* 'set' mutexes have the value 1, like on Intel; the returned value from
|
|
* MUTEX_SET() is 1 if the mutex previously had its low bit set, 0 otherwise.
|
|
*/
|
|
#define MUTEX_SET(tsl) ({ \
|
|
int __one = 1; \
|
|
int __r; \
|
|
tsl_t *__l = (tsl); \
|
|
asm volatile (" \
|
|
0: \
|
|
lwarx %0,0,%1; \
|
|
cmpwi %0,0; \
|
|
bne 1f; \
|
|
stwcx. %2,0,%1; \
|
|
bne- 0b; \
|
|
1:" \
|
|
: "=&r" (__r) \
|
|
: "r" (__l), "r" (__one)); \
|
|
__r & 1; \
|
|
})
|
|
|
|
#define MUTEX_UNSET(tsl) (*(tsl) = 0)
|
|
#define MUTEX_INIT(tsl) MUTEX_UNSET(tsl)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* SCO/cc assembly.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_SCO_X86_CC_ASSEMBLY
|
|
typedef unsigned char tsl_t;
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
/*
|
|
* UnixWare has threads in libthread, but OpenServer doesn't (yet).
|
|
*
|
|
* For cc/x86, 0 is clear, 1 is set.
|
|
*/
|
|
|
|
#if defined(__USLC__)
|
|
asm int
|
|
_tsl_set(void *tsl)
|
|
{
|
|
%mem tsl
|
|
movl tsl, %ecx
|
|
movl $1, %eax
|
|
lock
|
|
xchgb (%ecx),%al
|
|
xorl $1,%eax
|
|
}
|
|
#endif
|
|
|
|
#define MUTEX_SET(tsl) _tsl_set(tsl)
|
|
#define MUTEX_UNSET(tsl) (*(tsl) = 0)
|
|
#define MUTEX_INIT(tsl) MUTEX_UNSET(tsl)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* Sparc/gcc assembly.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_SPARC_GCC_ASSEMBLY
|
|
typedef unsigned char tsl_t;
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
/*
|
|
*
|
|
* The ldstub instruction takes the location specified by its first argument
|
|
* (a register containing a memory address) and loads its contents into its
|
|
* second argument (a register) and atomically sets the contents the location
|
|
* specified by its first argument to a byte of 1s. (The value in the second
|
|
* argument is never read, but only overwritten.)
|
|
*
|
|
* The stbar is needed for v8, and is implemented as membar #sync on v9,
|
|
+ so is functional there as well. For v7, stbar may generate an illegal
|
|
+ instruction and we have no way to tell what we're running on. Some
|
|
+ operating systems notice and skip this instruction in the fault handler.
|
|
*
|
|
* For gcc/sparc, 0 is clear, 1 is set.
|
|
*/
|
|
#define MUTEX_SET(tsl) ({ \
|
|
register tsl_t *__l = (tsl); \
|
|
register tsl_t __r; \
|
|
__asm__ volatile \
|
|
("ldstub [%1],%0; stbar" \
|
|
: "=r"( __r) : "r" (__l)); \
|
|
!__r; \
|
|
})
|
|
|
|
#define MUTEX_UNSET(tsl) (*(tsl) = 0)
|
|
#define MUTEX_INIT(tsl) MUTEX_UNSET(tsl)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* UTS/cc assembly.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_UTS_CC_ASSEMBLY
|
|
typedef int tsl_t;
|
|
|
|
#define MUTEX_ALIGN sizeof(int)
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
#define MUTEX_INIT(x) 0
|
|
#define MUTEX_SET(x) (!uts_lock(x, 1))
|
|
#define MUTEX_UNSET(x) (*(x) = 0)
|
|
#endif
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* x86/gcc assembly.
|
|
*********************************************************************/
|
|
#ifdef HAVE_MUTEX_X86_GCC_ASSEMBLY
|
|
typedef unsigned char tsl_t;
|
|
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
/*
|
|
* For gcc/x86, 0 is clear, 1 is set.
|
|
*/
|
|
#define MUTEX_SET(tsl) ({ \
|
|
register tsl_t *__l = (tsl); \
|
|
int __r; \
|
|
asm volatile("movl $1,%%eax; lock; xchgb %1,%%al; xorl $1,%%eax"\
|
|
: "=&a" (__r), "=m" (*__l) \
|
|
: "1" (*__l) \
|
|
); \
|
|
__r & 1; \
|
|
})
|
|
|
|
#define MUTEX_UNSET(tsl) (*(tsl) = 0)
|
|
#define MUTEX_INIT(tsl) MUTEX_UNSET(tsl)
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* Mutex alignment defaults to one byte.
|
|
*
|
|
* !!!
|
|
* Various systems require different alignments for mutexes (the worst we've
|
|
* seen so far is 16-bytes on some HP architectures). Malloc(3) is assumed
|
|
* to return reasonable alignment, all other mutex users must ensure proper
|
|
* alignment locally.
|
|
*/
|
|
#ifndef MUTEX_ALIGN
|
|
#define MUTEX_ALIGN 1
|
|
#endif
|
|
|
|
/*
|
|
* Mutex destruction defaults to a no-op.
|
|
*/
|
|
#ifdef LOAD_ACTUAL_MUTEX_CODE
|
|
#ifndef MUTEX_DESTROY
|
|
#define MUTEX_DESTROY(x)
|
|
#endif
|
|
#endif
|
|
|
|
#define MUTEX_IGNORE 0x001 /* Ignore, no lock required. */
|
|
#define MUTEX_INITED 0x002 /* Mutex is successfully initialized */
|
|
#define MUTEX_SELF_BLOCK 0x004 /* Must block self. */
|
|
#define MUTEX_THREAD 0x008 /* Thread-only mutex. */
|
|
|
|
/* Mutex. */
|
|
struct __mutex_t {
|
|
#ifdef HAVE_MUTEX_THREADS
|
|
#ifdef MUTEX_FIELDS
|
|
MUTEX_FIELDS
|
|
#else
|
|
tsl_t tas; /* Test and set. */
|
|
#endif
|
|
u_int32_t spins; /* Spins before block. */
|
|
u_int32_t locked; /* !0 if locked. */
|
|
#else
|
|
u_int32_t off; /* Byte offset to lock. */
|
|
u_int32_t pid; /* Lock holder: 0 or process pid. */
|
|
#endif
|
|
u_int32_t mutex_set_wait; /* Granted after wait. */
|
|
u_int32_t mutex_set_nowait; /* Granted without waiting. */
|
|
#ifdef MUTEX_SYSTEM_RESOURCES
|
|
roff_t reg_off; /* Shared lock info offset. */
|
|
#endif
|
|
|
|
u_int8_t flags; /* MUTEX_XXX */
|
|
};
|
|
|
|
/* Redirect calls to the correct functions. */
|
|
#ifdef HAVE_MUTEX_THREADS
|
|
#if defined(HAVE_MUTEX_PTHREADS) || defined(HAVE_MUTEX_SOLARIS_LWP) || defined(HAVE_MUTEX_UI_THREADS)
|
|
#define __db_mutex_init(a, b, c, d) __db_pthread_mutex_init(a, b, d)
|
|
#define __db_mutex_lock(a, b, c) __db_pthread_mutex_lock(a, b)
|
|
#define __db_mutex_unlock(a, b) __db_pthread_mutex_unlock(a, b)
|
|
#define __db_mutex_destroy(a) __db_pthread_mutex_destroy(a)
|
|
#else
|
|
#define __db_mutex_init(a, b, c, d) __db_tas_mutex_init(a, b, d)
|
|
#define __db_mutex_lock(a, b, c) __db_tas_mutex_lock(a, b)
|
|
#define __db_mutex_unlock(a, b) __db_tas_mutex_unlock(a, b)
|
|
#define __db_mutex_destroy(a) __db_tas_mutex_destroy(a)
|
|
#endif
|
|
#else
|
|
#define __db_mutex_init(a, b, c, d) __db_fcntl_mutex_init(a, b, c)
|
|
#define __db_mutex_lock(a, b, c) __db_fcntl_mutex_lock(a, b, c)
|
|
#define __db_mutex_unlock(a, b) __db_fcntl_mutex_unlock(a, b)
|
|
#define __db_mutex_destroy(a) __db_fcntl_mutex_destroy(a)
|
|
#endif
|
|
|
|
/* Redirect system resource calls to correct functions */
|
|
#ifdef MUTEX_SYSTEM_RESOURCES
|
|
#define __db_maintinit(a, b, c) __db_shreg_maintinit(a, b, c)
|
|
#define __db_shlocks_clear(a, b, c) __db_shreg_locks_clear(a, b, c)
|
|
#define __db_shlocks_destroy(a, b) __db_shreg_locks_destroy(a, b)
|
|
#define __db_shmutex_init(a, b, c, d, e, f) \
|
|
__db_shreg_mutex_init(a, b, c, d, e, f)
|
|
#else
|
|
#define __db_maintinit(a, b, c)
|
|
#define __db_shlocks_clear(a, b, c)
|
|
#define __db_shlocks_destroy(a, b)
|
|
#define __db_shmutex_init(a, b, c, d, e, f) __db_mutex_init(a, b, c, d)
|
|
#endif
|
|
|
|
/*
|
|
* Lock/unlock a mutex. If the mutex was marked as uninteresting, the thread
|
|
* of control can proceed without it.
|
|
*
|
|
* If the lock is for threads-only, then it was optionally not allocated and
|
|
* file handles aren't necessary, as threaded applications aren't supported by
|
|
* fcntl(2) locking.
|
|
*/
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* XXX
|
|
* We want to switch threads as often as possible. Yield every time
|
|
* we get a mutex to ensure contention.
|
|
*/
|
|
#define MUTEX_LOCK(dbenv, mp, fh) \
|
|
if (!F_ISSET((MUTEX *)(mp), MUTEX_IGNORE)) \
|
|
(void)__db_mutex_lock(dbenv, mp, fh); \
|
|
if (DB_GLOBAL(db_pageyield)) \
|
|
__os_yield(NULL, 1);
|
|
#else
|
|
#define MUTEX_LOCK(dbenv, mp, fh) \
|
|
if (!F_ISSET((MUTEX *)(mp), MUTEX_IGNORE)) \
|
|
(void)__db_mutex_lock(dbenv, mp, fh);
|
|
#endif
|
|
#define MUTEX_UNLOCK(dbenv, mp) \
|
|
if (!F_ISSET((MUTEX *)(mp), MUTEX_IGNORE)) \
|
|
(void)__db_mutex_unlock(dbenv, mp);
|
|
#define MUTEX_THREAD_LOCK(dbenv, mp) \
|
|
if (mp != NULL) \
|
|
MUTEX_LOCK(dbenv, mp, NULL)
|
|
#define MUTEX_THREAD_UNLOCK(dbenv, mp) \
|
|
if (mp != NULL) \
|
|
MUTEX_UNLOCK(dbenv, mp)
|
|
|
|
/*
|
|
* We use a single file descriptor for fcntl(2) locking, and (generally) the
|
|
* object's offset in a shared region as the byte that we're locking. So,
|
|
* there's a (remote) possibility that two objects might have the same offsets
|
|
* such that the locks could conflict, resulting in deadlock. To avoid this
|
|
* possibility, we offset the region offset by a small integer value, using a
|
|
* different offset for each subsystem's locks. Since all region objects are
|
|
* suitably aligned, the offset guarantees that we don't collide with another
|
|
* region's objects.
|
|
*/
|
|
#define DB_FCNTL_OFF_GEN 0 /* Everything else. */
|
|
#define DB_FCNTL_OFF_LOCK 1 /* Lock subsystem offset. */
|
|
#define DB_FCNTL_OFF_MPOOL 2 /* Mpool subsystem offset. */
|