mariadb/storage/innobase/lock/lock0wait.cc
Marko Mäkelä a9550c47e4 MDEV-16264 fixup: Remove unused code and data
LATCH_ID_OS_AIO_READ_MUTEX,
LATCH_ID_OS_AIO_WRITE_MUTEX,
LATCH_ID_OS_AIO_LOG_MUTEX,
LATCH_ID_OS_AIO_IBUF_MUTEX,
LATCH_ID_OS_AIO_SYNC_MUTEX: Remove. The tpool is not instrumented.

lock_set_timeout_event(): Remove.

srv_sys_mutex_key, srv_sys_t::mutex, SYNC_THREADS: Remove.

srv_slot_t::suspended: Remove. We only ever assigned this data member
true, so it is redundant.

ib_wqueue_wait(), ib_wqueue_timedwait(): Remove.

os_thread_join(): Remove.

os_thread_create(), os_thread_exit(): Remove redundant parameters.

These were missed in commit 5e62b6a5e0.
2020-09-30 14:28:11 +03:00

510 lines
14 KiB
C++

/*****************************************************************************
Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2014, 2020, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file lock/lock0wait.cc
The transaction lock system
Created 25/5/2010 Sunny Bains
*******************************************************/
#define LOCK_MODULE_IMPLEMENTATION
#include "univ.i"
#include <mysql/service_thd_wait.h>
#include <mysql/service_wsrep.h>
#include "srv0mon.h"
#include "que0que.h"
#include "lock0lock.h"
#include "row0mysql.h"
#include "srv0start.h"
#include "lock0priv.h"
#include "srv0srv.h"
/*********************************************************************//**
Print the contents of the lock_sys_t::waiting_threads array. */
static
void
lock_wait_table_print(void)
/*=======================*/
{
ut_ad(lock_wait_mutex_own());
const srv_slot_t* slot = lock_sys.waiting_threads;
for (ulint i = 0; i < srv_max_n_threads; i++, ++slot) {
fprintf(stderr,
"Slot %lu:"
" in use %lu, timeout %lu, time %lu\n",
(ulong) i,
(ulong) slot->in_use,
slot->wait_timeout,
(ulong) difftime(time(NULL), slot->suspend_time));
}
}
/*********************************************************************//**
Release a slot in the lock_sys_t::waiting_threads. Adjust the array last pointer
if there are empty slots towards the end of the table. */
static
void
lock_wait_table_release_slot(
/*=========================*/
srv_slot_t* slot) /*!< in: slot to release */
{
#ifdef UNIV_DEBUG
srv_slot_t* upper = lock_sys.waiting_threads + srv_max_n_threads;
#endif /* UNIV_DEBUG */
lock_wait_mutex_enter();
ut_ad(slot->in_use);
ut_ad(slot->thr != NULL);
ut_ad(slot->thr->slot != NULL);
ut_ad(slot->thr->slot == slot);
/* Must be within the array boundaries. */
ut_ad(slot >= lock_sys.waiting_threads);
ut_ad(slot < upper);
/* Note: When we reserve the slot we use the trx_t::mutex to update
the slot values to change the state to reserved. Here we are using the
lock mutex to change the state of the slot to free. This is by design,
because when we query the slot state we always hold both the lock and
trx_t::mutex. To reduce contention on the lock mutex when reserving the
slot we avoid acquiring the lock mutex. */
lock_mutex_enter();
slot->thr->slot = NULL;
slot->thr = NULL;
slot->in_use = FALSE;
lock_mutex_exit();
/* Scan backwards and adjust the last free slot pointer. */
for (slot = lock_sys.last_slot;
slot > lock_sys.waiting_threads && !slot->in_use;
--slot) {
/* No op */
}
/* Either the array is empty or the last scanned slot is in use. */
ut_ad(slot->in_use || slot == lock_sys.waiting_threads);
lock_sys.last_slot = slot + 1;
/* The last slot is either outside of the array boundary or it's
on an empty slot. */
ut_ad(lock_sys.last_slot == upper || !lock_sys.last_slot->in_use);
ut_ad(lock_sys.last_slot >= lock_sys.waiting_threads);
ut_ad(lock_sys.last_slot <= upper);
lock_wait_mutex_exit();
}
/*********************************************************************//**
Reserves a slot in the thread table for the current user OS thread.
@return reserved slot */
static
srv_slot_t*
lock_wait_table_reserve_slot(
/*=========================*/
que_thr_t* thr, /*!< in: query thread associated
with the user OS thread */
ulong wait_timeout) /*!< in: lock wait timeout value */
{
ulint i;
srv_slot_t* slot;
ut_ad(lock_wait_mutex_own());
ut_ad(trx_mutex_own(thr_get_trx(thr)));
slot = lock_sys.waiting_threads;
for (i = srv_max_n_threads; i--; ++slot) {
if (!slot->in_use) {
slot->in_use = TRUE;
slot->thr = thr;
slot->thr->slot = slot;
if (slot->event == NULL) {
slot->event = os_event_create(0);
ut_a(slot->event);
}
os_event_reset(slot->event);
slot->suspend_time = time(NULL);
slot->wait_timeout = wait_timeout;
if (slot == lock_sys.last_slot) {
++lock_sys.last_slot;
}
ut_ad(lock_sys.last_slot
<= lock_sys.waiting_threads + srv_max_n_threads);
if (!lock_sys.timeout_timer_active) {
lock_sys.timeout_timer_active = true;
lock_sys.timeout_timer->set_time(1000, 0);
}
return(slot);
}
}
ib::error() << "There appear to be " << srv_max_n_threads << " user"
" threads currently waiting inside InnoDB, which is the upper"
" limit. Cannot continue operation. Before aborting, we print"
" a list of waiting threads.";
lock_wait_table_print();
ut_error;
return(NULL);
}
#ifdef WITH_WSREP
/*********************************************************************//**
check if lock timeout was for priority thread,
as a side effect trigger lock monitor
@param[in] trx transaction owning the lock
@param[in] locked true if trx and lock_sys.mutex is ownd
@return false for regular lock timeout */
static
bool
wsrep_is_BF_lock_timeout(
const trx_t* trx,
bool locked = true)
{
if (trx->error_state != DB_DEADLOCK && trx->is_wsrep() &&
srv_monitor_timer && wsrep_thd_is_BF(trx->mysql_thd, FALSE)) {
ib::info() << "WSREP: BF lock wait long for trx:" << ib::hex(trx->id)
<< " query: " << wsrep_thd_query(trx->mysql_thd);
if (!locked) {
lock_mutex_enter();
}
ut_ad(lock_mutex_own());
trx_print_latched(stderr, trx, 3000);
if (!locked) {
lock_mutex_exit();
}
srv_print_innodb_monitor = TRUE;
srv_print_innodb_lock_monitor = TRUE;
srv_monitor_timer_schedule_now();
return true;
}
return false;
}
#endif /* WITH_WSREP */
/***************************************************************//**
Puts a user OS thread to wait for a lock to be released. If an error
occurs during the wait trx->error_state associated with thr is
!= DB_SUCCESS when we return. DB_LOCK_WAIT_TIMEOUT and DB_DEADLOCK
are possible errors. DB_DEADLOCK is returned if selective deadlock
resolution chose this transaction as a victim. */
void
lock_wait_suspend_thread(
/*=====================*/
que_thr_t* thr) /*!< in: query thread associated with the
user OS thread */
{
srv_slot_t* slot;
trx_t* trx;
ulong lock_wait_timeout;
ut_a(lock_sys.timeout_timer.get());
trx = thr_get_trx(thr);
if (trx->mysql_thd != 0) {
DEBUG_SYNC_C("lock_wait_suspend_thread_enter");
}
/* InnoDB system transactions (such as the purge, and
incomplete transactions that are being rolled back after crash
recovery) will use the global value of
innodb_lock_wait_timeout, because trx->mysql_thd == NULL. */
lock_wait_timeout = trx_lock_wait_timeout_get(trx);
lock_wait_mutex_enter();
trx_mutex_enter(trx);
trx->error_state = DB_SUCCESS;
if (thr->state == QUE_THR_RUNNING) {
ut_ad(thr->is_active);
/* The lock has already been released or this transaction
was chosen as a deadlock victim: no need to suspend */
if (trx->lock.was_chosen_as_deadlock_victim) {
trx->error_state = DB_DEADLOCK;
trx->lock.was_chosen_as_deadlock_victim = false;
}
lock_wait_mutex_exit();
trx_mutex_exit(trx);
return;
}
ut_ad(!thr->is_active);
slot = lock_wait_table_reserve_slot(thr, lock_wait_timeout);
lock_wait_mutex_exit();
trx_mutex_exit(trx);
ulonglong start_time = 0;
if (thr->lock_state == QUE_THR_LOCK_ROW) {
srv_stats.n_lock_wait_count.inc();
srv_stats.n_lock_wait_current_count++;
start_time = my_interval_timer();
}
ulint lock_type = ULINT_UNDEFINED;
/* The wait_lock can be cleared by another thread when the
lock is released. But the wait can only be initiated by the
current thread which owns the transaction. Only acquire the
mutex if the wait_lock is still active. */
if (const lock_t* wait_lock = trx->lock.wait_lock) {
lock_mutex_enter();
wait_lock = trx->lock.wait_lock;
if (wait_lock) {
lock_type = lock_get_type_low(wait_lock);
}
lock_mutex_exit();
}
ulint had_dict_lock = trx->dict_operation_lock_mode;
switch (had_dict_lock) {
case 0:
break;
case RW_S_LATCH:
/* Release foreign key check latch */
row_mysql_unfreeze_data_dictionary(trx);
DEBUG_SYNC_C("lock_wait_release_s_latch_before_sleep");
break;
default:
/* There should never be a lock wait when the
dictionary latch is reserved in X mode. Dictionary
transactions should only acquire locks on dictionary
tables, not other tables. All access to dictionary
tables should be covered by dictionary
transactions. */
ut_error;
}
ut_a(trx->dict_operation_lock_mode == 0);
/* Suspend this thread and wait for the event. */
/* Unknown is also treated like a record lock */
if (lock_type == ULINT_UNDEFINED || lock_type == LOCK_REC) {
thd_wait_begin(trx->mysql_thd, THD_WAIT_ROW_LOCK);
} else {
ut_ad(lock_type == LOCK_TABLE);
thd_wait_begin(trx->mysql_thd, THD_WAIT_TABLE_LOCK);
}
os_event_wait(slot->event);
thd_wait_end(trx->mysql_thd);
/* After resuming, reacquire the data dictionary latch if
necessary. */
if (had_dict_lock) {
row_mysql_freeze_data_dictionary(trx);
}
double wait_time = difftime(time(NULL), slot->suspend_time);
/* Release the slot for others to use */
lock_wait_table_release_slot(slot);
if (thr->lock_state == QUE_THR_LOCK_ROW) {
const ulonglong finish_time = my_interval_timer();
if (finish_time >= start_time) {
const ulint diff_time = static_cast<ulint>
((finish_time - start_time) / 1000);
srv_stats.n_lock_wait_time.add(diff_time);
/* Only update the variable if we successfully
retrieved the start and finish times. See Bug#36819. */
if (diff_time > lock_sys.n_lock_max_wait_time) {
lock_sys.n_lock_max_wait_time = diff_time;
}
/* Record the lock wait time for this thread */
thd_storage_lock_wait(trx->mysql_thd, diff_time);
}
srv_stats.n_lock_wait_current_count--;
DBUG_EXECUTE_IF("lock_instrument_slow_query_log",
os_thread_sleep(1000););
}
/* The transaction is chosen as deadlock victim during sleep. */
if (trx->error_state == DB_DEADLOCK) {
return;
}
if (lock_wait_timeout < 100000000
&& wait_time > (double) lock_wait_timeout
#ifdef WITH_WSREP
&& (!trx->is_wsrep()
|| (!wsrep_is_BF_lock_timeout(trx, false)
&& trx->error_state != DB_DEADLOCK))
#endif /* WITH_WSREP */
) {
trx->error_state = DB_LOCK_WAIT_TIMEOUT;
MONITOR_INC(MONITOR_TIMEOUT);
}
if (trx_is_interrupted(trx)) {
trx->error_state = DB_INTERRUPTED;
}
}
/********************************************************************//**
Releases a user OS thread waiting for a lock to be released, if the
thread is already suspended. */
void
lock_wait_release_thread_if_suspended(
/*==================================*/
que_thr_t* thr) /*!< in: query thread associated with the
user OS thread */
{
ut_ad(lock_mutex_own());
ut_ad(trx_mutex_own(thr_get_trx(thr)));
/* We own both the lock mutex and the trx_t::mutex but not the
lock wait mutex. This is OK because other threads will see the state
of this slot as being in use and no other thread can change the state
of the slot to free unless that thread also owns the lock mutex. */
if (thr->slot != NULL && thr->slot->in_use && thr->slot->thr == thr) {
trx_t* trx = thr_get_trx(thr);
if (trx->lock.was_chosen_as_deadlock_victim) {
trx->error_state = DB_DEADLOCK;
trx->lock.was_chosen_as_deadlock_victim = false;
}
os_event_set(thr->slot->event);
}
}
/*********************************************************************//**
Check if the thread lock wait has timed out. Release its locks if the
wait has actually timed out. */
static
void
lock_wait_check_and_cancel(
/*=======================*/
const srv_slot_t* slot) /*!< in: slot reserved by a user
thread when the wait started */
{
ut_ad(lock_wait_mutex_own());
ut_ad(slot->in_use);
double wait_time = difftime(time(NULL), slot->suspend_time);
trx_t* trx = thr_get_trx(slot->thr);
if (trx_is_interrupted(trx)
|| (slot->wait_timeout < 100000000
&& (wait_time > (double) slot->wait_timeout
|| wait_time < 0))) {
/* Timeout exceeded or a wrap-around in system
time counter: cancel the lock request queued
by the transaction and release possible
other transactions waiting behind; it is
possible that the lock has already been
granted: in that case do nothing */
lock_mutex_enter();
trx_mutex_enter(trx);
if (trx->lock.wait_lock != NULL) {
ut_a(trx->lock.que_state == TRX_QUE_LOCK_WAIT);
#ifdef WITH_WSREP
if (!wsrep_is_BF_lock_timeout(trx)) {
#endif /* WITH_WSREP */
lock_cancel_waiting_and_release(trx->lock.wait_lock);
#ifdef WITH_WSREP
}
#endif /* WITH_WSREP */
}
lock_mutex_exit();
trx_mutex_exit(trx);
}
}
/** A task which wakes up threads whose lock wait may have lasted too long */
void lock_wait_timeout_task(void*)
{
lock_wait_mutex_enter();
/* Check all slots for user threads that are waiting
on locks, and if they have exceeded the time limit. */
bool any_slot_in_use= false;
for (srv_slot_t *slot= lock_sys.waiting_threads;
slot < lock_sys.last_slot; ++slot)
{
/* We are doing a read without the lock mutex and/or the trx
mutex. This is OK because a slot can't be freed or reserved
without the lock wait mutex. */
if (slot->in_use)
{
any_slot_in_use= true;
lock_wait_check_and_cancel(slot);
}
}
if (any_slot_in_use)
lock_sys.timeout_timer->set_time(1000, 0);
else
lock_sys.timeout_timer_active= false;
lock_wait_mutex_exit();
}