mariadb/sql/ha_heap.cc
guilhem@mysql.com 0071749595 WL#2977 and WL#2712 global and session-level variable to set the binlog format (row/statement),
and new binlog format called "mixed" (which is statement-based except if only row-based is correct,
in this cset it means if UDF or UUID is used; more cases could be added in later 5.1 release):
SET GLOBAL|SESSION BINLOG_FORMAT=row|statement|mixed|default;
the global default is statement unless cluster is enabled (then it's row) as in 5.1-alpha.
It's not possible to use SET on this variable if a session is currently in row-based mode and has open temporary tables (because CREATE
TEMPORARY TABLE was not binlogged so temp table is not known on slave),  or if NDB is enabled (because
NDB does not support such change on-the-fly, though it will later), of if in a stored function (see below).
The added tests test the possibility or impossibility to SET, their effects, and the mixed mode,
including in prepared statements and in stored procedures and functions.
Caveats:
a) The mixed mode will not work for stored functions: in mixed mode, a stored function will
always be binlogged as one call and in a statement-based way (e.g. INSERT VALUES(myfunc()) or SELECT myfunc()).
b) for the same reason, changing the thread's binlog format inside a stored function is
refused with an error message.
c) the same problems apply to triggers; implementing b) for triggers will be done later (will ask
Dmitri).
Additionally, as the binlog format is now changeable by each user for his session, I remove the implication
which was done at startup, where row-based automatically set log-bin-trust-routine-creators to 1
(not possible anymore as a user can now switch to stmt-based and do nasty things again), and automatically
set --innodb-locks-unsafe-for-binlog to 1 (was anyway theoretically incorrect as it disabled
phantom protection).
Plus fixes for compiler warnings.
2006-02-25 22:21:03 +01:00

708 lines
19 KiB
C++

/* Copyright (C) 2000,2004 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
#include <myisampack.h>
#include "ha_heap.h"
static handler *heap_create_handler(TABLE_SHARE *table);
handlerton heap_hton= {
MYSQL_HANDLERTON_INTERFACE_VERSION,
"MEMORY",
SHOW_OPTION_YES,
"Hash based, stored in memory, useful for temporary tables",
DB_TYPE_HEAP,
NULL,
0, /* slot */
0, /* savepoint size. */
NULL, /* close_connection */
NULL, /* savepoint */
NULL, /* rollback to savepoint */
NULL, /* release savepoint */
NULL, /* commit */
NULL, /* rollback */
NULL, /* prepare */
NULL, /* recover */
NULL, /* commit_by_xid */
NULL, /* rollback_by_xid */
NULL, /* create_cursor_read_view */
NULL, /* set_cursor_read_view */
NULL, /* close_cursor_read_view */
heap_create_handler, /* Create a new handler */
NULL, /* Drop a database */
heap_panic, /* Panic call */
NULL, /* Start Consistent Snapshot */
NULL, /* Flush logs */
NULL, /* Show status */
NULL, /* Partition flags */
NULL, /* Alter table flags */
NULL, /* Alter Tablespace */
NULL, /* Fill Files Table */
HTON_CAN_RECREATE,
NULL, /* binlog_func */
NULL /* binlog_log_query */
};
static handler *heap_create_handler(TABLE_SHARE *table)
{
return new ha_heap(table);
}
/*****************************************************************************
** HEAP tables
*****************************************************************************/
ha_heap::ha_heap(TABLE_SHARE *table_arg)
:handler(&heap_hton, table_arg), file(0), records_changed(0),
key_stat_version(0)
{}
static const char *ha_heap_exts[] = {
NullS
};
const char **ha_heap::bas_ext() const
{
return ha_heap_exts;
}
/*
Hash index statistics is updated (copied from HP_KEYDEF::hash_buckets to
rec_per_key) after 1/HEAP_STATS_UPDATE_THRESHOLD fraction of table records
have been inserted/updated/deleted. delete_all_rows() and table flush cause
immediate update.
NOTE
hash index statistics must be updated when number of table records changes
from 0 to non-zero value and vice versa. Otherwise records_in_range may
erroneously return 0 and 'range' may miss records.
*/
#define HEAP_STATS_UPDATE_THRESHOLD 10
int ha_heap::open(const char *name, int mode, uint test_if_locked)
{
if (!(file= heap_open(name, mode)) && my_errno == ENOENT)
{
HA_CREATE_INFO create_info;
bzero(&create_info, sizeof(create_info));
if (!create(name, table, &create_info))
{
file= heap_open(name, mode);
implicit_emptied= 1;
}
}
ref_length= sizeof(HEAP_PTR);
if (file)
{
/* Initialize variables for the opened table */
set_keys_for_scanning();
/*
We cannot run update_key_stats() here because we do not have a
lock on the table. The 'records' count might just be changed
temporarily at this moment and we might get wrong statistics (Bug
#10178). Instead we request for update. This will be done in
ha_heap::info(), which is always called before key statistics are
used.
*/
key_stat_version= file->s->key_stat_version-1;
}
return (file ? 0 : 1);
}
int ha_heap::close(void)
{
return heap_close(file);
}
/*
Compute which keys to use for scanning
SYNOPSIS
set_keys_for_scanning()
no parameter
DESCRIPTION
Set the bitmap btree_keys, which is used when the upper layers ask
which keys to use for scanning. For each btree index the
corresponding bit is set.
RETURN
void
*/
void ha_heap::set_keys_for_scanning(void)
{
btree_keys.clear_all();
for (uint i= 0 ; i < table->s->keys ; i++)
{
if (table->key_info[i].algorithm == HA_KEY_ALG_BTREE)
btree_keys.set_bit(i);
}
}
void ha_heap::update_key_stats()
{
for (uint i= 0; i < table->s->keys; i++)
{
KEY *key=table->key_info+i;
if (!key->rec_per_key)
continue;
if (key->algorithm != HA_KEY_ALG_BTREE)
{
if (key->flags & HA_NOSAME)
key->rec_per_key[key->key_parts-1]= 1;
else
{
ha_rows hash_buckets= file->s->keydef[i].hash_buckets;
uint no_records= hash_buckets ? file->s->records/hash_buckets : 2;
if (no_records < 2)
no_records= 2;
key->rec_per_key[key->key_parts-1]= no_records;
}
}
}
records_changed= 0;
/* At the end of update_key_stats() we can proudly claim they are OK. */
key_stat_version= file->s->key_stat_version;
}
int ha_heap::write_row(byte * buf)
{
int res;
statistic_increment(table->in_use->status_var.ha_write_count,&LOCK_status);
if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_INSERT)
table->timestamp_field->set_time();
if (table->next_number_field && buf == table->record[0])
update_auto_increment();
res= heap_write(file,buf);
if (!res && (++records_changed*HEAP_STATS_UPDATE_THRESHOLD >
file->s->records))
{
/*
We can perform this safely since only one writer at the time is
allowed on the table.
*/
file->s->key_stat_version++;
}
return res;
}
int ha_heap::update_row(const byte * old_data, byte * new_data)
{
int res;
statistic_increment(table->in_use->status_var.ha_update_count,&LOCK_status);
if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_UPDATE)
table->timestamp_field->set_time();
res= heap_update(file,old_data,new_data);
if (!res && ++records_changed*HEAP_STATS_UPDATE_THRESHOLD >
file->s->records)
{
/*
We can perform this safely since only one writer at the time is
allowed on the table.
*/
file->s->key_stat_version++;
}
return res;
}
int ha_heap::delete_row(const byte * buf)
{
int res;
statistic_increment(table->in_use->status_var.ha_delete_count,&LOCK_status);
res= heap_delete(file,buf);
if (!res && table->s->tmp_table == NO_TMP_TABLE &&
++records_changed*HEAP_STATS_UPDATE_THRESHOLD > file->s->records)
{
/*
We can perform this safely since only one writer at the time is
allowed on the table.
*/
file->s->key_stat_version++;
}
return res;
}
int ha_heap::index_read(byte * buf, const byte * key, uint key_len,
enum ha_rkey_function find_flag)
{
DBUG_ASSERT(inited==INDEX);
statistic_increment(table->in_use->status_var.ha_read_key_count,
&LOCK_status);
int error = heap_rkey(file,buf,active_index, key, key_len, find_flag);
table->status = error ? STATUS_NOT_FOUND : 0;
return error;
}
int ha_heap::index_read_last(byte *buf, const byte *key, uint key_len)
{
DBUG_ASSERT(inited==INDEX);
statistic_increment(table->in_use->status_var.ha_read_key_count,
&LOCK_status);
int error= heap_rkey(file, buf, active_index, key, key_len,
HA_READ_PREFIX_LAST);
table->status= error ? STATUS_NOT_FOUND : 0;
return error;
}
int ha_heap::index_read_idx(byte * buf, uint index, const byte * key,
uint key_len, enum ha_rkey_function find_flag)
{
statistic_increment(table->in_use->status_var.ha_read_key_count,
&LOCK_status);
int error = heap_rkey(file, buf, index, key, key_len, find_flag);
table->status = error ? STATUS_NOT_FOUND : 0;
return error;
}
int ha_heap::index_next(byte * buf)
{
DBUG_ASSERT(inited==INDEX);
statistic_increment(table->in_use->status_var.ha_read_next_count,
&LOCK_status);
int error=heap_rnext(file,buf);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::index_prev(byte * buf)
{
DBUG_ASSERT(inited==INDEX);
statistic_increment(table->in_use->status_var.ha_read_prev_count,
&LOCK_status);
int error=heap_rprev(file,buf);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::index_first(byte * buf)
{
DBUG_ASSERT(inited==INDEX);
statistic_increment(table->in_use->status_var.ha_read_first_count,
&LOCK_status);
int error=heap_rfirst(file, buf, active_index);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::index_last(byte * buf)
{
DBUG_ASSERT(inited==INDEX);
statistic_increment(table->in_use->status_var.ha_read_last_count,
&LOCK_status);
int error=heap_rlast(file, buf, active_index);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::rnd_init(bool scan)
{
return scan ? heap_scan_init(file) : 0;
}
int ha_heap::rnd_next(byte *buf)
{
statistic_increment(table->in_use->status_var.ha_read_rnd_next_count,
&LOCK_status);
int error=heap_scan(file, buf);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::rnd_pos(byte * buf, byte *pos)
{
int error;
HEAP_PTR position;
statistic_increment(table->in_use->status_var.ha_read_rnd_count,
&LOCK_status);
memcpy_fixed((char*) &position,pos,sizeof(HEAP_PTR));
error=heap_rrnd(file, buf, position);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
void ha_heap::position(const byte *record)
{
*(HEAP_PTR*) ref= heap_position(file); // Ref is aligned
}
void ha_heap::info(uint flag)
{
HEAPINFO info;
(void) heap_info(file,&info,flag);
records = info.records;
deleted = info.deleted;
errkey = info.errkey;
mean_rec_length=info.reclength;
data_file_length=info.data_length;
index_file_length=info.index_length;
max_data_file_length= info.max_records* info.reclength;
delete_length= info.deleted * info.reclength;
if (flag & HA_STATUS_AUTO)
auto_increment_value= info.auto_increment;
/*
If info() is called for the first time after open(), we will still
have to update the key statistics. Hoping that a table lock is now
in place.
*/
if (key_stat_version != file->s->key_stat_version)
update_key_stats();
}
int ha_heap::extra(enum ha_extra_function operation)
{
return heap_extra(file,operation);
}
int ha_heap::delete_all_rows()
{
heap_clear(file);
if (table->s->tmp_table == NO_TMP_TABLE)
{
/*
We can perform this safely since only one writer at the time is
allowed on the table.
*/
file->s->key_stat_version++;
}
return 0;
}
int ha_heap::external_lock(THD *thd, int lock_type)
{
return 0; // No external locking
}
/*
Disable indexes.
SYNOPSIS
disable_indexes()
mode mode of operation:
HA_KEY_SWITCH_NONUNIQ disable all non-unique keys
HA_KEY_SWITCH_ALL disable all keys
HA_KEY_SWITCH_NONUNIQ_SAVE dis. non-uni. and make persistent
HA_KEY_SWITCH_ALL_SAVE dis. all keys and make persistent
DESCRIPTION
Disable indexes and clear keys to use for scanning.
IMPLEMENTATION
HA_KEY_SWITCH_NONUNIQ is not implemented.
HA_KEY_SWITCH_NONUNIQ_SAVE is not implemented with HEAP.
HA_KEY_SWITCH_ALL_SAVE is not implemented with HEAP.
RETURN
0 ok
HA_ERR_WRONG_COMMAND mode not implemented.
*/
int ha_heap::disable_indexes(uint mode)
{
int error;
if (mode == HA_KEY_SWITCH_ALL)
{
if (!(error= heap_disable_indexes(file)))
set_keys_for_scanning();
}
else
{
/* mode not implemented */
error= HA_ERR_WRONG_COMMAND;
}
return error;
}
/*
Enable indexes.
SYNOPSIS
enable_indexes()
mode mode of operation:
HA_KEY_SWITCH_NONUNIQ enable all non-unique keys
HA_KEY_SWITCH_ALL enable all keys
HA_KEY_SWITCH_NONUNIQ_SAVE en. non-uni. and make persistent
HA_KEY_SWITCH_ALL_SAVE en. all keys and make persistent
DESCRIPTION
Enable indexes and set keys to use for scanning.
The indexes might have been disabled by disable_index() before.
The function works only if both data and indexes are empty,
since the heap storage engine cannot repair the indexes.
To be sure, call handler::delete_all_rows() before.
IMPLEMENTATION
HA_KEY_SWITCH_NONUNIQ is not implemented.
HA_KEY_SWITCH_NONUNIQ_SAVE is not implemented with HEAP.
HA_KEY_SWITCH_ALL_SAVE is not implemented with HEAP.
RETURN
0 ok
HA_ERR_CRASHED data or index is non-empty. Delete all rows and retry.
HA_ERR_WRONG_COMMAND mode not implemented.
*/
int ha_heap::enable_indexes(uint mode)
{
int error;
if (mode == HA_KEY_SWITCH_ALL)
{
if (!(error= heap_enable_indexes(file)))
set_keys_for_scanning();
}
else
{
/* mode not implemented */
error= HA_ERR_WRONG_COMMAND;
}
return error;
}
/*
Test if indexes are disabled.
SYNOPSIS
indexes_are_disabled()
no parameters
RETURN
0 indexes are not disabled
1 all indexes are disabled
[2 non-unique indexes are disabled - NOT YET IMPLEMENTED]
*/
int ha_heap::indexes_are_disabled(void)
{
return heap_indexes_are_disabled(file);
}
THR_LOCK_DATA **ha_heap::store_lock(THD *thd,
THR_LOCK_DATA **to,
enum thr_lock_type lock_type)
{
if (lock_type != TL_IGNORE && file->lock.type == TL_UNLOCK)
file->lock.type=lock_type;
*to++= &file->lock;
return to;
}
/*
We have to ignore ENOENT entries as the HEAP table is created on open and
not when doing a CREATE on the table.
*/
int ha_heap::delete_table(const char *name)
{
char buff[FN_REFLEN];
int error= heap_delete_table(name);
return error == ENOENT ? 0 : error;
}
void ha_heap::drop_table(const char *name)
{
heap_drop_table(file);
close();
}
int ha_heap::rename_table(const char * from, const char * to)
{
return heap_rename(from,to);
}
ha_rows ha_heap::records_in_range(uint inx, key_range *min_key,
key_range *max_key)
{
KEY *key=table->key_info+inx;
if (key->algorithm == HA_KEY_ALG_BTREE)
return hp_rb_records_in_range(file, inx, min_key, max_key);
if (!min_key || !max_key ||
min_key->length != max_key->length ||
min_key->length != key->key_length ||
min_key->flag != HA_READ_KEY_EXACT ||
max_key->flag != HA_READ_AFTER_KEY)
return HA_POS_ERROR; // Can only use exact keys
if (records <= 1)
return records;
/* Assert that info() did run. We need current statistics here. */
DBUG_ASSERT(key_stat_version);
return key->rec_per_key[key->key_parts-1];
}
int ha_heap::create(const char *name, TABLE *table_arg,
HA_CREATE_INFO *create_info)
{
uint key, parts, mem_per_row= 0, keys= table_arg->s->keys;
uint auto_key= 0, auto_key_type= 0;
ha_rows max_rows;
HP_KEYDEF *keydef;
HA_KEYSEG *seg;
int error;
TABLE_SHARE *share= table_arg->s;
bool found_real_auto_increment= 0;
for (key= parts= 0; key < keys; key++)
parts+= table_arg->key_info[key].key_parts;
if (!(keydef= (HP_KEYDEF*) my_malloc(keys * sizeof(HP_KEYDEF) +
parts * sizeof(HA_KEYSEG),
MYF(MY_WME))))
return my_errno;
seg= my_reinterpret_cast(HA_KEYSEG*) (keydef + keys);
for (key= 0; key < keys; key++)
{
KEY *pos= table_arg->key_info+key;
KEY_PART_INFO *key_part= pos->key_part;
KEY_PART_INFO *key_part_end= key_part + pos->key_parts;
keydef[key].keysegs= (uint) pos->key_parts;
keydef[key].flag= (pos->flags & (HA_NOSAME | HA_NULL_ARE_EQUAL));
keydef[key].seg= seg;
switch (pos->algorithm) {
case HA_KEY_ALG_UNDEF:
case HA_KEY_ALG_HASH:
keydef[key].algorithm= HA_KEY_ALG_HASH;
mem_per_row+= sizeof(char*) * 2; // = sizeof(HASH_INFO)
break;
case HA_KEY_ALG_BTREE:
keydef[key].algorithm= HA_KEY_ALG_BTREE;
mem_per_row+=sizeof(TREE_ELEMENT)+pos->key_length+sizeof(char*);
break;
default:
DBUG_ASSERT(0); // cannot happen
}
for (; key_part != key_part_end; key_part++, seg++)
{
Field *field= key_part->field;
if (pos->algorithm == HA_KEY_ALG_BTREE)
seg->type= field->key_type();
else
{
if ((seg->type = field->key_type()) != (int) HA_KEYTYPE_TEXT &&
seg->type != HA_KEYTYPE_VARTEXT1 &&
seg->type != HA_KEYTYPE_VARTEXT2 &&
seg->type != HA_KEYTYPE_VARBINARY1 &&
seg->type != HA_KEYTYPE_VARBINARY2)
seg->type= HA_KEYTYPE_BINARY;
}
seg->start= (uint) key_part->offset;
seg->length= (uint) key_part->length;
seg->flag= key_part->key_part_flag;
seg->charset= field->charset();
if (field->null_ptr)
{
seg->null_bit= field->null_bit;
seg->null_pos= (uint) (field->null_ptr - (uchar*) table_arg->record[0]);
}
else
{
seg->null_bit= 0;
seg->null_pos= 0;
}
if (field->flags & AUTO_INCREMENT_FLAG &&
table_arg->found_next_number_field &&
key == share->next_number_index)
{
/*
Store key number and type for found auto_increment key
We have to store type as seg->type can differ from it
*/
auto_key= key+ 1;
auto_key_type= field->key_type();
}
}
}
mem_per_row+= MY_ALIGN(share->reclength + 1, sizeof(char*));
max_rows = (ha_rows) (table_arg->in_use->variables.max_heap_table_size /
mem_per_row);
if (table_arg->found_next_number_field)
{
keydef[share->next_number_index].flag|= HA_AUTO_KEY;
found_real_auto_increment= share->next_number_key_offset == 0;
}
HP_CREATE_INFO hp_create_info;
hp_create_info.auto_key= auto_key;
hp_create_info.auto_key_type= auto_key_type;
hp_create_info.auto_increment= (create_info->auto_increment_value ?
create_info->auto_increment_value - 1 : 0);
hp_create_info.max_table_size=current_thd->variables.max_heap_table_size;
hp_create_info.with_auto_increment= found_real_auto_increment;
max_rows = (ha_rows) (hp_create_info.max_table_size / mem_per_row);
error= heap_create(name,
keys, keydef, share->reclength,
(ulong) ((share->max_rows < max_rows &&
share->max_rows) ?
share->max_rows : max_rows),
(ulong) share->min_rows, &hp_create_info);
my_free((gptr) keydef, MYF(0));
if (file)
info(HA_STATUS_NO_LOCK | HA_STATUS_CONST | HA_STATUS_VARIABLE);
return (error);
}
void ha_heap::update_create_info(HA_CREATE_INFO *create_info)
{
table->file->info(HA_STATUS_AUTO);
if (!(create_info->used_fields & HA_CREATE_USED_AUTO))
create_info->auto_increment_value= auto_increment_value;
}
ulonglong ha_heap::get_auto_increment()
{
ha_heap::info(HA_STATUS_AUTO);
return auto_increment_value;
}
bool ha_heap::check_if_incompatible_data(HA_CREATE_INFO *info,
uint table_changes)
{
/* Check that auto_increment value was not changed */
if ((table_changes != IS_EQUAL_YES &&
info->used_fields & HA_CREATE_USED_AUTO) &&
info->auto_increment_value != 0)
return COMPATIBLE_DATA_NO;
return COMPATIBLE_DATA_YES;
}