mirror of
				https://github.com/MariaDB/server.git
				synced 2025-10-31 19:06:14 +01:00 
			
		
		
		
	 4ebac0fc86
			
		
	
	
	4ebac0fc86
	
	
	
		
			
			MariaDB server crashes on ARM (weak memory model architecture) while concurrently executing l_find to load node->key and add_to_purgatory to store node->key = NULL. l_find then uses key (which is NULL), to pass it to a comparison function. The specific problem is the out-of-order execution that happens on a weak memory model architecture. Two essential reorderings are possible, which need to be prevented. a) As l_find has no barriers in place between the optimistic read of the key field lf_hash.cc#L117 and the verification of link lf_hash.cc#L124, the processor can reorder the load to happen after the while-loop. In that case, a concurrent thread executing add_to_purgatory on the same node can be scheduled to store NULL at the key field lf_alloc-pin.c#L253 before key is loaded in l_find. b) A node is marked as deleted by a CAS in l_delete lf_hash.cc#L247 and taken off the list with an upfollowing CAS lf_hash.cc#L252. Only if both CAS succeed, the key field is written to by add_to_purgatory. However, due to a missing barrier, the relaxed store of key lf_alloc-pin.c#L253 can be moved ahead of the two CAS operations, which makes the value of the local purgatory list stored by add_to_purgatory visible to all threads operating on the list. As the node is not marked as deleted yet, the same error occurs in l_find. This change three accesses to be atomic. * optimistic read of key in l_find lf_hash.cc#L117 * read of link for verification lf_hash.cc#L124 * write of key in add_to_purgatory lf_alloc-pin.c#L253 Reviewers: Sergei Vojtovich, Sergei Golubchik Fixes: MDEV-23510 / d30c1331a18d875e553f3fcf544997e4f33fb943
		
			
				
	
	
		
			591 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			591 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* Copyright (c) 2006, 2018, Oracle and/or its affiliates.
 | |
|    Copyright (c) 2009, 2020, MariaDB
 | |
| 
 | |
|    This program is free software; you can redistribute it and/or modify
 | |
|    it under the terms of the GNU General Public License as published by
 | |
|    the Free Software Foundation; version 2 of the License.
 | |
| 
 | |
|    This program is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|    GNU General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU General Public License
 | |
|    along with this program; if not, write to the Free Software
 | |
|    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335  USA */
 | |
| 
 | |
| /*
 | |
|   extensible hash
 | |
| 
 | |
|   TODO
 | |
|      try to get rid of dummy nodes ?
 | |
|      for non-unique hash, count only _distinct_ values
 | |
|      (but how to do it in lf_hash_delete ?)
 | |
| */
 | |
| #include "mysys_priv.h"
 | |
| #include <m_string.h>
 | |
| #include <mysys_err.h>
 | |
| #include <my_bit.h>
 | |
| #include <lf.h>
 | |
| #include "my_cpu.h"
 | |
| #include "assume_aligned.h"
 | |
| 
 | |
| /* An element of the list */
 | |
| typedef struct {
 | |
|   intptr link;   /* a pointer to the next element in a list and a flag */
 | |
|   const uchar *key;
 | |
|   size_t keylen;
 | |
|   uint32 hashnr; /* reversed hash number, for sorting */
 | |
|   /*
 | |
|     data is stored here, directly after the keylen.
 | |
|     thus the pointer to data is (void*)(slist_element_ptr+1)
 | |
|   */
 | |
| } LF_SLIST;
 | |
| 
 | |
| const int LF_HASH_OVERHEAD= sizeof(LF_SLIST);
 | |
| 
 | |
| /*
 | |
|   a structure to pass the context (pointers two the three successive elements
 | |
|   in a list) from l_find to l_insert/l_delete
 | |
| */
 | |
| typedef struct {
 | |
|   intptr *prev;
 | |
|   LF_SLIST *curr, *next;
 | |
| } CURSOR;
 | |
| 
 | |
| /*
 | |
|   the last bit in LF_SLIST::link is a "deleted" flag.
 | |
|   the helper macros below convert it to a pure pointer or a pure flag
 | |
| */
 | |
| #define PTR(V)      (LF_SLIST *)((V) & (~(intptr)1))
 | |
| #define DELETED(V)  ((V) & 1)
 | |
| 
 | |
| /** walk the list, searching for an element or invoking a callback
 | |
| 
 | |
|     Search for hashnr/key/keylen in the list starting from 'head' and
 | |
|     position the cursor. The list is ORDER BY hashnr, key
 | |
| 
 | |
|     @param head         start walking the list from this node
 | |
|     @param cs           charset for comparing keys, NULL if callback is used
 | |
|     @param hashnr       hash number to search for
 | |
|     @param key          key to search for OR data for the callback
 | |
|     @param keylen       length of the key to compare, 0 if callback is used
 | |
|     @param cursor       for returning the found element
 | |
|     @param pins         see lf_alloc-pin.c
 | |
|     @param callback     callback action, invoked for every element
 | |
| 
 | |
|   @note
 | |
|     cursor is positioned in either case
 | |
|     pins[0..2] are used, they are NOT removed on return
 | |
|     callback might see some elements twice (because of retries)
 | |
| 
 | |
|   @return
 | |
|     if find: 0 - not found
 | |
|              1 - found
 | |
|     if callback:
 | |
|              0 - ok
 | |
|              1 - error (callbck returned 1)
 | |
| */
 | |
| static int l_find(LF_SLIST **head, CHARSET_INFO *cs, uint32 hashnr,
 | |
|                  const uchar *key, size_t keylen, CURSOR *cursor, LF_PINS *pins,
 | |
|                  my_hash_walk_action callback)
 | |
| {
 | |
|   uint32       cur_hashnr;
 | |
|   const uchar  *cur_key;
 | |
|   size_t       cur_keylen;
 | |
|   intptr       link;
 | |
| 
 | |
|   DBUG_ASSERT(!cs || !callback);        /* should not be set both */
 | |
|   DBUG_ASSERT(!keylen || !callback);    /* should not be set both */
 | |
| 
 | |
| retry:
 | |
|   cursor->prev= (intptr *) my_assume_aligned<sizeof(intptr)>(head);
 | |
|   do { /* PTR() isn't necessary below, head is a dummy node */
 | |
|     cursor->curr= my_assume_aligned<sizeof(LF_SLIST *)>((LF_SLIST *)(*cursor->prev));
 | |
|     lf_pin(pins, 1, cursor->curr);
 | |
|   } while (my_atomic_loadptr(
 | |
|            (void **)my_assume_aligned<sizeof(LF_SLIST *)>(cursor->prev))
 | |
|              != cursor->curr && LF_BACKOFF());
 | |
|   for (;;)
 | |
|   {
 | |
|     if (unlikely(!cursor->curr))
 | |
|       return 0; /* end of the list */
 | |
| 
 | |
|     cur_hashnr= cursor->curr->hashnr;
 | |
|     cur_keylen= cursor->curr->keylen;
 | |
|     /* The key element needs to be aligned, not necessary what it points to */
 | |
|     my_assume_aligned<sizeof(const uchar *)>(&cursor->curr->key);
 | |
|     cur_key= (const uchar *) my_atomic_loadptr_explicit((void **) &cursor->curr->key,
 | |
|                                         MY_MEMORY_ORDER_ACQUIRE);
 | |
| 
 | |
|     do {
 | |
|       /* attempting to my_assume_aligned onlink below broke the implementation */
 | |
|       link= (intptr) my_atomic_loadptr_explicit((void **) &cursor->curr->link,
 | |
|                                                 MY_MEMORY_ORDER_RELAXED);
 | |
|       cursor->next= my_assume_aligned<sizeof(LF_SLIST *)>(PTR(link));
 | |
|       lf_pin(pins, 0, cursor->next);
 | |
|     } while (link != (intptr) my_atomic_loadptr((void *volatile *) &cursor->curr->link)
 | |
|              && LF_BACKOFF());
 | |
| 
 | |
|     if (!DELETED(link))
 | |
|     {
 | |
|       if (unlikely(callback))
 | |
|       {
 | |
|         if (cur_hashnr & 1 && callback(cursor->curr + 1, (void*)key))
 | |
|           return 1;
 | |
|       }
 | |
|       else if (cur_hashnr >= hashnr)
 | |
|       {
 | |
|         int r= 1;
 | |
|         if (cur_hashnr > hashnr ||
 | |
|             (r= my_strnncoll(cs, cur_key, cur_keylen, key, keylen)) >= 0)
 | |
|           return !r;
 | |
|       }
 | |
|       cursor->prev= &(cursor->curr->link);
 | |
|       if (!(cur_hashnr & 1)) /* dummy node */
 | |
|         head= (LF_SLIST **)cursor->prev;
 | |
|       lf_pin(pins, 2, cursor->curr);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       /*
 | |
|         we found a deleted node - be nice, help the other thread
 | |
|         and remove this deleted node
 | |
|       */
 | |
|       if (my_atomic_casptr((void **) cursor->prev,
 | |
|                            (void **) &cursor->curr, cursor->next) && LF_BACKOFF())
 | |
|         lf_alloc_free(pins, cursor->curr);
 | |
|       else
 | |
|         goto retry;
 | |
|     }
 | |
|     cursor->curr= cursor->next;
 | |
|     lf_pin(pins, 1, cursor->curr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* static l_find is the only user my_assume_aligned, keep the rest as c scoped */
 | |
| C_MODE_START
 | |
| 
 | |
| /*
 | |
|   DESCRIPTION
 | |
|     insert a 'node' in the list that starts from 'head' in the correct
 | |
|     position (as found by l_find)
 | |
| 
 | |
|   RETURN
 | |
|     0     - inserted
 | |
|     not 0 - a pointer to a duplicate (not pinned and thus unusable)
 | |
| 
 | |
|   NOTE
 | |
|     it uses pins[0..2], on return all pins are removed.
 | |
|     if there're nodes with the same key value, a new node is added before them.
 | |
| */
 | |
| static LF_SLIST *l_insert(LF_SLIST **head, CHARSET_INFO *cs,
 | |
|                          LF_SLIST *node, LF_PINS *pins, uint flags)
 | |
| {
 | |
|   CURSOR         cursor;
 | |
|   int            res;
 | |
| 
 | |
|   for (;;)
 | |
|   {
 | |
|     if (l_find(head, cs, node->hashnr, node->key, node->keylen,
 | |
|               &cursor, pins, 0) &&
 | |
|         (flags & LF_HASH_UNIQUE))
 | |
|     {
 | |
|       res= 0; /* duplicate found */
 | |
|       break;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       node->link= (intptr)cursor.curr;
 | |
|       DBUG_ASSERT(node->link != (intptr)node); /* no circular references */
 | |
|       DBUG_ASSERT(cursor.prev != &node->link); /* no circular references */
 | |
|       if (my_atomic_casptr((void **) cursor.prev,
 | |
|                            (void **)(char*) &cursor.curr, node))
 | |
|       {
 | |
|         res= 1; /* inserted ok */
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   lf_unpin(pins, 0);
 | |
|   lf_unpin(pins, 1);
 | |
|   lf_unpin(pins, 2);
 | |
|   /*
 | |
|     Note that cursor.curr is not pinned here and the pointer is unreliable,
 | |
|     the object may disappear anytime. But if it points to a dummy node, the
 | |
|     pointer is safe, because dummy nodes are never freed - initialize_bucket()
 | |
|     uses this fact.
 | |
|   */
 | |
|   return res ? 0 : cursor.curr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   DESCRIPTION
 | |
|     deletes a node as identified by hashnr/keey/keylen from the list
 | |
|     that starts from 'head'
 | |
| 
 | |
|   RETURN
 | |
|     0 - ok
 | |
|     1 - not found
 | |
| 
 | |
|   NOTE
 | |
|     it uses pins[0..2], on return all pins are removed.
 | |
| */
 | |
| static int l_delete(LF_SLIST **head, CHARSET_INFO *cs, uint32 hashnr,
 | |
|                    const uchar *key, uint keylen, LF_PINS *pins)
 | |
| {
 | |
|   CURSOR cursor;
 | |
|   int res;
 | |
| 
 | |
|   for (;;)
 | |
|   {
 | |
|     if (!l_find(head, cs, hashnr, key, keylen, &cursor, pins, 0))
 | |
|     {
 | |
|       res= 1; /* not found */
 | |
|       break;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       /* mark the node deleted */
 | |
|       if (my_atomic_casptr((void **) (char*) &(cursor.curr->link),
 | |
|                            (void **) (char*) &cursor.next,
 | |
|                            (void *)(((intptr)cursor.next) | 1)))
 | |
|       {
 | |
|         /* and remove it from the list */
 | |
|         if (my_atomic_casptr((void **)cursor.prev,
 | |
|                              (void **)(char*)&cursor.curr, cursor.next))
 | |
|           lf_alloc_free(pins, cursor.curr);
 | |
|         else
 | |
|         {
 | |
|           /*
 | |
|             somebody already "helped" us and removed the node ?
 | |
|             Let's check if we need to help that someone too!
 | |
|             (to ensure the number of "set DELETED flag" actions
 | |
|             is equal to the number of "remove from the list" actions)
 | |
|           */
 | |
|           l_find(head, cs, hashnr, key, keylen, &cursor, pins, 0);
 | |
|         }
 | |
|         res= 0;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   lf_unpin(pins, 0);
 | |
|   lf_unpin(pins, 1);
 | |
|   lf_unpin(pins, 2);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   DESCRIPTION
 | |
|     searches for a node as identified by hashnr/keey/keylen in the list
 | |
|     that starts from 'head'
 | |
| 
 | |
|   RETURN
 | |
|     0 - not found
 | |
|     node - found
 | |
| 
 | |
|   NOTE
 | |
|     it uses pins[0..2], on return the pin[2] keeps the node found
 | |
|     all other pins are removed.
 | |
| */
 | |
| static LF_SLIST *l_search(LF_SLIST **head, CHARSET_INFO *cs,
 | |
|                          uint32 hashnr, const uchar *key, uint keylen,
 | |
|                          LF_PINS *pins)
 | |
| {
 | |
|   CURSOR cursor;
 | |
|   int res= l_find(head, cs, hashnr, key, keylen, &cursor, pins, 0);
 | |
|   if (res)
 | |
|     lf_pin(pins, 2, cursor.curr);
 | |
|   else
 | |
|     lf_unpin(pins, 2);
 | |
|   lf_unpin(pins, 1);
 | |
|   lf_unpin(pins, 0);
 | |
|   return res ? cursor.curr : 0;
 | |
| }
 | |
| 
 | |
| static inline const uchar* hash_key(const LF_HASH *hash,
 | |
|                                     const uchar *record, size_t *length)
 | |
| {
 | |
|   if (hash->get_key)
 | |
|     return (*hash->get_key)(record, length, 0);
 | |
|   *length= hash->key_length;
 | |
|   return record + hash->key_offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Compute the hash key value from the raw key.
 | |
| 
 | |
|   @note, that the hash value is limited to 2^31, because we need one
 | |
|   bit to distinguish between normal and dummy nodes.
 | |
| */
 | |
| static inline my_hash_value_type calc_hash(CHARSET_INFO *cs,
 | |
|                                            const uchar *key,
 | |
|                                            size_t keylen)
 | |
| {
 | |
|   ulong nr1= 1, nr2= 4;
 | |
|   my_ci_hash_sort(cs, (uchar*) key, keylen, &nr1, &nr2);
 | |
|   return nr1;
 | |
| }
 | |
| 
 | |
| #define MAX_LOAD 1.0    /* average number of elements in a bucket */
 | |
| 
 | |
| static int initialize_bucket(LF_HASH *, LF_SLIST **, uint, LF_PINS *);
 | |
| 
 | |
| static void default_initializer(LF_HASH *hash, void *dst, const void *src)
 | |
| {
 | |
|   memcpy(dst, src, hash->element_size);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Initializes lf_hash, the arguments are compatible with hash_init
 | |
| 
 | |
|   @note element_size sets both the size of allocated memory block for
 | |
|   lf_alloc and a size of memcpy'ed block size in lf_hash_insert. Typically
 | |
|   they are the same, indeed. But LF_HASH::element_size can be decreased
 | |
|   after lf_hash_init, and then lf_alloc will allocate larger block that
 | |
|   lf_hash_insert will copy over. It is desirable if part of the element
 | |
|   is expensive to initialize - for example if there is a mutex or
 | |
|   DYNAMIC_ARRAY. In this case they should be initialize in the
 | |
|   LF_ALLOCATOR::constructor, and lf_hash_insert should not overwrite them.
 | |
| 
 | |
|   The above works well with PODS. For more complex cases (e.g. C++ classes
 | |
|   with private members) use initializer function.
 | |
| */
 | |
| void lf_hash_init(LF_HASH *hash, uint element_size, uint flags,
 | |
|                   uint key_offset, uint key_length, my_hash_get_key get_key,
 | |
|                   CHARSET_INFO *charset)
 | |
| {
 | |
|   lf_alloc_init(&hash->alloc, sizeof(LF_SLIST)+element_size,
 | |
|                 offsetof(LF_SLIST, key));
 | |
|   lf_dynarray_init(&hash->array, sizeof(LF_SLIST *));
 | |
|   hash->size= 1;
 | |
|   hash->count= 0;
 | |
|   hash->element_size= element_size;
 | |
|   hash->flags= flags;
 | |
|   hash->charset= charset ? charset : &my_charset_bin;
 | |
|   hash->key_offset= key_offset;
 | |
|   hash->key_length= key_length;
 | |
|   hash->get_key= get_key;
 | |
|   hash->initializer= default_initializer;
 | |
|   hash->hash_function= calc_hash;
 | |
|   DBUG_ASSERT(get_key ? !key_offset && !key_length : key_length);
 | |
| }
 | |
| 
 | |
| void lf_hash_destroy(LF_HASH *hash)
 | |
| {
 | |
|   LF_SLIST *el, **head= (LF_SLIST **)lf_dynarray_value(&hash->array, 0);
 | |
| 
 | |
|   if (head)
 | |
|   {
 | |
|     el= *head;
 | |
|     while (el)
 | |
|     {
 | |
|       intptr next= el->link;
 | |
|       if (el->hashnr & 1)
 | |
|         lf_alloc_direct_free(&hash->alloc, el); /* normal node */
 | |
|       else
 | |
|         my_free(el); /* dummy node */
 | |
|       el= (LF_SLIST *)next;
 | |
|     }
 | |
|   }
 | |
|   lf_alloc_destroy(&hash->alloc);
 | |
|   lf_dynarray_destroy(&hash->array);
 | |
| }
 | |
| 
 | |
| /*
 | |
|   DESCRIPTION
 | |
|     inserts a new element to a hash. it will have a _copy_ of
 | |
|     data, not a pointer to it.
 | |
| 
 | |
|   RETURN
 | |
|     0 - inserted
 | |
|     1 - didn't (unique key conflict)
 | |
|    -1 - out of memory
 | |
| 
 | |
|   NOTE
 | |
|     see l_insert() for pin usage notes
 | |
| */
 | |
| int lf_hash_insert(LF_HASH *hash, LF_PINS *pins, const void *data)
 | |
| {
 | |
|   int csize, bucket, hashnr;
 | |
|   LF_SLIST *node, **el;
 | |
| 
 | |
|   node= (LF_SLIST *)lf_alloc_new(pins);
 | |
|   if (unlikely(!node))
 | |
|     return -1;
 | |
|   hash->initializer(hash, node + 1, data);
 | |
|   node->key= hash_key(hash, (uchar *)(node+1), &node->keylen);
 | |
|   hashnr= hash->hash_function(hash->charset, node->key, node->keylen) & INT_MAX32;
 | |
|   bucket= hashnr % hash->size;
 | |
|   el= (LF_SLIST **)lf_dynarray_lvalue(&hash->array, bucket);
 | |
|   if (unlikely(!el))
 | |
|     return -1;
 | |
|   if (*el == NULL && unlikely(initialize_bucket(hash, el, bucket, pins)))
 | |
|     return -1;
 | |
|   node->hashnr= my_reverse_bits(hashnr) | 1; /* normal node */
 | |
|   if (l_insert(el, hash->charset, node, pins, hash->flags))
 | |
|   {
 | |
|     lf_alloc_free(pins, node);
 | |
|     return 1;
 | |
|   }
 | |
|   csize= hash->size;
 | |
|   if ((my_atomic_add32(&hash->count, 1)+1.0) / csize > MAX_LOAD)
 | |
|     my_atomic_cas32(&hash->size, &csize, csize*2);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   DESCRIPTION
 | |
|     deletes an element with the given key from the hash (if a hash is
 | |
|     not unique and there're many elements with this key - the "first"
 | |
|     matching element is deleted)
 | |
|   RETURN
 | |
|     0 - deleted
 | |
|     1 - didn't (not found)
 | |
|   NOTE
 | |
|     see l_delete() for pin usage notes
 | |
| */
 | |
| int lf_hash_delete(LF_HASH *hash, LF_PINS *pins, const void *key, uint keylen)
 | |
| {
 | |
|   LF_SLIST **el;
 | |
|   uint bucket, hashnr;
 | |
| 
 | |
|   hashnr= hash->hash_function(hash->charset, (uchar *)key, keylen) & INT_MAX32;
 | |
| 
 | |
|   /* hide OOM errors - if we cannot initialize a bucket, try the previous one */
 | |
|   for (bucket= hashnr % hash->size; ;bucket= my_clear_highest_bit(bucket))
 | |
|   {
 | |
|     el= (LF_SLIST **)lf_dynarray_lvalue(&hash->array, bucket);
 | |
|     if (el && (*el || initialize_bucket(hash, el, bucket, pins) == 0))
 | |
|       break;
 | |
|     if (unlikely(bucket == 0))
 | |
|       return 1; /* if there's no bucket==0, the hash is empty */
 | |
|   }
 | |
|   if (l_delete(el, hash->charset, my_reverse_bits(hashnr) | 1,
 | |
|               (uchar *)key, keylen, pins))
 | |
|   {
 | |
|     return 1;
 | |
|   }
 | |
|   my_atomic_add32(&hash->count, -1);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   RETURN
 | |
|     a pointer to an element with the given key (if a hash is not unique and
 | |
|     there're many elements with this key - the "first" matching element)
 | |
|     NULL         if nothing is found
 | |
| 
 | |
|   NOTE
 | |
|     see l_search() for pin usage notes
 | |
| */
 | |
| void *lf_hash_search_using_hash_value(LF_HASH *hash, LF_PINS *pins,
 | |
|                                       my_hash_value_type hashnr,
 | |
|                                       const void *key, uint keylen)
 | |
| {
 | |
|   LF_SLIST **el, *found;
 | |
|   uint bucket;
 | |
| 
 | |
|   /* hide OOM errors - if we cannot initialize a bucket, try the previous one */
 | |
|   for (bucket= hashnr % hash->size; ;bucket= my_clear_highest_bit(bucket))
 | |
|   {
 | |
|     el= (LF_SLIST **)lf_dynarray_lvalue(&hash->array, bucket);
 | |
|     if (el && (*el || initialize_bucket(hash, el, bucket, pins) == 0))
 | |
|       break;
 | |
|     if (unlikely(bucket == 0))
 | |
|       return 0; /* if there's no bucket==0, the hash is empty */
 | |
|   }
 | |
|   found= l_search(el, hash->charset, my_reverse_bits(hashnr) | 1,
 | |
|                  (uchar *)key, keylen, pins);
 | |
|   return found ? found+1 : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|    Iterate over all elements in hash and call function with the element
 | |
| 
 | |
|    @note
 | |
|    If one of 'action' invocations returns 1 the iteration aborts.
 | |
|    'action' might see some elements twice!
 | |
| 
 | |
|    @retval 0    ok
 | |
|    @retval 1    error (action returned 1)
 | |
| */
 | |
| int lf_hash_iterate(LF_HASH *hash, LF_PINS *pins,
 | |
|                     my_hash_walk_action action, void *argument)
 | |
| {
 | |
|   CURSOR cursor;
 | |
|   uint bucket= 0;
 | |
|   int res;
 | |
|   LF_SLIST **el;
 | |
| 
 | |
|   el= (LF_SLIST **)lf_dynarray_lvalue(&hash->array, bucket);
 | |
|   if (unlikely(!el))
 | |
|     return 0; /* if there's no bucket==0, the hash is empty */
 | |
|   if (*el == NULL && unlikely(initialize_bucket(hash, el, bucket, pins)))
 | |
|     return 0; /* if there's no bucket==0, the hash is empty */
 | |
| 
 | |
|   res= l_find(el, 0, 0, (uchar*)argument, 0, &cursor, pins, action);
 | |
| 
 | |
|   lf_unpin(pins, 2);
 | |
|   lf_unpin(pins, 1);
 | |
|   lf_unpin(pins, 0);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| void *lf_hash_search(LF_HASH *hash, LF_PINS *pins, const void *key, uint keylen)
 | |
| {
 | |
|   return lf_hash_search_using_hash_value(hash, pins,
 | |
|                                          hash->hash_function(hash->charset,
 | |
|                                                              (uchar*) key,
 | |
|                                                              keylen) & INT_MAX32,
 | |
|                                          key, keylen);
 | |
| }
 | |
| 
 | |
| static const uchar *dummy_key= (uchar*)"";
 | |
| 
 | |
| /*
 | |
|   RETURN
 | |
|     0 - ok
 | |
|    -1 - out of memory
 | |
| */
 | |
| static int initialize_bucket(LF_HASH *hash, LF_SLIST **node,
 | |
|                               uint bucket, LF_PINS *pins)
 | |
| {
 | |
|   uint parent= my_clear_highest_bit(bucket);
 | |
|   LF_SLIST *dummy= (LF_SLIST *)my_malloc(key_memory_lf_slist,
 | |
|                                          sizeof(LF_SLIST), MYF(MY_WME));
 | |
|   LF_SLIST **tmp= 0, *cur;
 | |
|   LF_SLIST **el= (LF_SLIST **)lf_dynarray_lvalue(&hash->array, parent);
 | |
|   if (unlikely(!el || !dummy))
 | |
|     return -1;
 | |
|   if (*el == NULL && bucket &&
 | |
|       unlikely(initialize_bucket(hash, el, parent, pins)))
 | |
|   {
 | |
|     my_free(dummy);
 | |
|     return -1;
 | |
|   }
 | |
|   dummy->hashnr= my_reverse_bits(bucket) | 0; /* dummy node */
 | |
|   dummy->key= dummy_key;
 | |
|   dummy->keylen= 0;
 | |
|   if ((cur= l_insert(el, hash->charset, dummy, pins, LF_HASH_UNIQUE)))
 | |
|   {
 | |
|     my_free(dummy);
 | |
|     dummy= cur;
 | |
|   }
 | |
|   my_atomic_casptr((void **)node, (void **)(char*) &tmp, dummy);
 | |
|   /*
 | |
|     note that if the CAS above failed (after l_insert() succeeded),
 | |
|     it would mean that some other thread has executed l_insert() for
 | |
|     the same dummy node, its l_insert() failed, it picked up our
 | |
|     dummy node (in "dummy= cur") and executed the same CAS as above.
 | |
|     Which means that even if CAS above failed we don't need to retry,
 | |
|     and we should not free(dummy) - there's no memory leak here
 | |
|   */
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| C_MODE_END
 |