mariadb/storage/innobase/include/ut0rnd.h
Marko Mäkelä 4dd6131711 MDEV-35049: Privatize ut_fold_ulint_pair()
Now that ut_fold_ulint_pair() and ut_fold_binary() are no longer needed
for anything else than compatibility with old InnoDB data files that may
use innodb_checksum_algorithm=innodb, let us move the code to a single
compilation unit.

Reviewed by: Vladislav Lesin
2025-01-10 16:40:22 +02:00

87 lines
2.7 KiB
C++

/*****************************************************************************
Copyright (c) 1994, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2019, 2021, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/******************************************************************//**
@file include/ut0rnd.h
Random numbers and hashing
Created 1/20/1994 Heikki Tuuri
***********************************************************************/
#pragma once
#include "ut0byte.h"
#include <my_sys.h>
/** Seed value of ut_rnd_gen() */
extern std::atomic<uint32_t> ut_rnd_current;
/** @return a pseudo-random 32-bit number */
inline uint32_t ut_rnd_gen()
{
/* This is a Galois linear-feedback shift register.
https://en.wikipedia.org/wiki/Linear-feedback_shift_register#Galois_LFSRs
The generating primitive Galois Field polynomial is the Castagnoli
polynomial that was made popular by CRC-32C:
x^32+x^28+x^27+x^26+x^25+x^23+x^22+x^20+
x^19+x^18+x^14+x^13+x^11+x^10+x^9+x^8+x^6+1 */
const uint32_t crc32c= 0x1edc6f41;
uint32_t rnd= ut_rnd_current.load(std::memory_order_relaxed);
if (UNIV_UNLIKELY(rnd == 0))
{
rnd= static_cast<uint32_t>(my_interval_timer());
if (!rnd) rnd= 1;
}
else
{
bool lsb= rnd & 1;
rnd>>= 1;
if (lsb)
rnd^= crc32c;
}
ut_rnd_current.store(rnd, std::memory_order_relaxed);
return rnd;
}
/** @return a random number between 0 and n-1, inclusive */
inline ulint ut_rnd_interval(ulint n)
{
return n > 1 ? static_cast<ulint>(ut_rnd_gen() % n) : 0;
}
# if SIZEOF_SIZE_T < 8
inline size_t ut_fold_ull(uint64_t d) noexcept
{
return size_t(d) * 31 + size_t(d >> (SIZEOF_SIZE_T * CHAR_BIT));
}
# else
# define ut_fold_ull(d) d
# endif
/***********************************************************//**
Looks for a prime number slightly greater than the given argument.
The prime is chosen so that it is not near any power of 2.
@return prime */
ulint
ut_find_prime(
/*==========*/
ulint n) /*!< in: positive number > 100 */
MY_ATTRIBUTE((const));