mariadb/storage/innobase/include/btr0pcur.inl
Marko Mäkelä 4dcb1b575b MDEV-35049: Use CRC-32C and avoid allocating heap
For the adaptive hash index, dtuple_fold() and rec_fold() were employing
a slow rolling hash algorithm, computing hash values ("fold") for one
field and one byte at a time, while depending on calls to
rec_get_offsets().

We already have optimized implementations of CRC-32C and have been
successfully using that function in some other InnoDB tables, but not
yet in the adaptive hash index.

Any linear function such as any CRC will fail the avalanche test that
any cryptographically secure hash function is expected to pass:
any single-bit change in the input key should affect on average half
the bits in the output.

But we always were happy with less than cryptographically secure:
in fact, ut_fold_ulint_pair() or ut_fold_binary() are just about as
linear as any CRC, using a combination of multiplication and addition,
partly carry-less. It is worth noting that exclusive-or corresponds to
carry-less subtraction or addition in a binary Galois field, or GF(2).

We only need some way of reducing key prefixes into hash values.
The CRC-32C should be better than a Rabin–Karp rolling hash algorithm.
Compared to the old hash algorithm, it has the drawback that there will
be only 32 bits of entropy before we choose the hash table cell by a
modulus operation. The size of each adaptive hash index array is
(innodb_buffer_pool_size / 512) / innodb_adaptive_hash_index_parts.
With the maximum number of partitions (512), we would not exceed 1<<32
elements per array until the buffer pool size exceeds 1<<50 bytes (1 PiB).
We would hit other limits before that: the virtual address space on many
contemporary 64-bit processor implementations is only 48 bits (256 TiB).
So, we can simply go for the SIMD accelerated CRC-32C.

rec_fold(): Take a combined parameter n_bytes_fields. Determine the
length of each field on the fly, and compute CRC-32C over a single
contiguous range of bytes, from the start of the record payload area
to the end of the last full or partial field. For secondary index records
in ROW_FORMAT=REDUNDANT, also the data area that is reserved for NULL
values (to facilitate in-place updates between NULL and NOT NULL values)
will be included in the count. Luckily, InnoDB always zero-initialized
such unused area; refer to data_write_sql_null() in
rec_convert_dtuple_to_rec_old(). For other than ROW_FORMAT=REDUNDANT,
no space is allocated for NULL values, and therefore the CRC-32C will
only cover the actual payload of the key prefix.

dtuple_fold(): For ROW_FORMAT=REDUNDANT, include the dummy NULL values
in the CRC-32C, so that the values will be comparable with rec_fold().

innodb_ahi-t: A unit test for rec_fold() and dtuple_fold().

btr_search_build_page_hash_index(), btr_search_drop_page_hash_index():
Use a fixed-size stack buffer for computing the fold values, to avoid
dynamic memory allocation.

btr_search_drop_page_hash_index(): Do not release part.latch if we
need to invoke multiple batches of rec_fold().

dtuple_t: Allocate fewer bits for the fields. The maximum number of
data fields is about 1023, so uint16_t will be fine for them. The
info_bits is stored in less than 1 byte.

ut_pair_min(), ut_pair_cmp(): Remove. We can actually combine and compare
int(n_fields << 16 | n_bytes).

PAGE_CUR_LE_OR_EXTENDS, PAGE_CUR_DBG: Remove. These were never defined,
because they would only work with latin1_swedish_ci if at all.

btr_cur_t::check_mismatch(): Replaces !btr_search_check_guess().

cmp_dtuple_rec_bytes(): Replaces cmp_dtuple_rec_with_match_bytes().
Determine the offsets of fields on the fly.

page_cur_try_search_shortcut_bytes(): This caller of
cmp_dtuple_rec_bytes() will not be invoked on the change buffer tree.

cmp_dtuple_rec_leaf(): Replaces cmp_dtuple_rec_with_match()
for comparing leaf-page records.

buf_block_t::ahi_left_bytes_fields: Consolidated Atomic_relaxed<uint32_t>
of curr_left_side << 31 | curr_n_bytes << 16 | curr_n_fields.
The other set of parameters (n_fields, n_bytes, left_side) was removed
as redundant.

btr_search_update_hash_node_on_insert(): Merged to
btr_search_update_hash_on_insert().

btr_search_build_page_hash_index(): Take combined left_bytes_fields
instead of n_fields, n_bytes, left_side.

btr_search_update_block_hash_info(), btr_search_update_hash_ref():
Merged to btr_search_info_update_hash().

btr_cur_t::n_bytes_fields: Replaces n_bytes << 16 | n_fields.

We also remove many redundant checks of btr_search.enabled.
If we are holding any btr_sea::partition::latch, then a nonnull pointer
in buf_block_t::index must imply that the adaptive hash index is enabled.

Reviewed by: Vladislav Lesin
2025-01-10 16:39:44 +02:00

372 lines
12 KiB
C++

/*****************************************************************************
Copyright (c) 1996, 2015, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2015, 2023, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file include/btr0pcur.ic
The index tree persistent cursor
Created 2/23/1996 Heikki Tuuri
*******************************************************/
/*********************************************************//**
Gets the rel_pos field for a cursor whose position has been stored.
@return BTR_PCUR_ON, ... */
UNIV_INLINE
ulint
btr_pcur_get_rel_pos(
/*=================*/
const btr_pcur_t* cursor) /*!< in: persistent cursor */
{
ut_ad(cursor);
ut_ad(cursor->old_rec);
ut_ad(cursor->pos_state == BTR_PCUR_WAS_POSITIONED
|| cursor->pos_state == BTR_PCUR_IS_POSITIONED);
return(cursor->rel_pos);
}
/**************************************************************//**
Gets the up_match value for a pcur after a search.
@return number of matched fields at the cursor or to the right if
search mode was PAGE_CUR_GE, otherwise undefined */
UNIV_INLINE
ulint
btr_pcur_get_up_match(
/*==================*/
const btr_pcur_t* cursor) /*!< in: persistent cursor */
{
const btr_cur_t* btr_cursor;
ut_ad((cursor->pos_state == BTR_PCUR_WAS_POSITIONED)
|| (cursor->pos_state == BTR_PCUR_IS_POSITIONED));
btr_cursor = btr_pcur_get_btr_cur(cursor);
ut_ad(btr_cursor->up_match != uint16_t(~0U));
return(btr_cursor->up_match);
}
/**************************************************************//**
Gets the low_match value for a pcur after a search.
@return number of matched fields at the cursor or to the right if
search mode was PAGE_CUR_LE, otherwise undefined */
UNIV_INLINE
ulint
btr_pcur_get_low_match(
/*===================*/
const btr_pcur_t* cursor) /*!< in: persistent cursor */
{
const btr_cur_t* btr_cursor;
ut_ad((cursor->pos_state == BTR_PCUR_WAS_POSITIONED)
|| (cursor->pos_state == BTR_PCUR_IS_POSITIONED));
btr_cursor = btr_pcur_get_btr_cur(cursor);
ut_ad(btr_cursor->low_match != uint16_t(~0U));
return(btr_cursor->low_match);
}
/*********************************************************//**
Checks if the persistent cursor is after the last user record on
a page. */
UNIV_INLINE
ibool
btr_pcur_is_after_last_on_page(
/*===========================*/
const btr_pcur_t* cursor) /*!< in: persistent cursor */
{
ut_ad(cursor->pos_state == BTR_PCUR_IS_POSITIONED);
ut_ad(cursor->latch_mode != BTR_NO_LATCHES);
return(page_cur_is_after_last(btr_pcur_get_page_cur(cursor)));
}
/*********************************************************//**
Checks if the persistent cursor is before the first user record on
a page. */
UNIV_INLINE
ibool
btr_pcur_is_before_first_on_page(
/*=============================*/
const btr_pcur_t* cursor) /*!< in: persistent cursor */
{
ut_ad(cursor->pos_state == BTR_PCUR_IS_POSITIONED);
ut_ad(cursor->latch_mode != BTR_NO_LATCHES);
return(page_cur_is_before_first(btr_pcur_get_page_cur(cursor)));
}
/*********************************************************//**
Checks if the persistent cursor is on a user record. */
UNIV_INLINE
ibool
btr_pcur_is_on_user_rec(
/*====================*/
const btr_pcur_t* cursor) /*!< in: persistent cursor */
{
return !btr_pcur_is_before_first_on_page(cursor) &&
!btr_pcur_is_after_last_on_page(cursor);
}
/*********************************************************//**
Checks if the persistent cursor is before the first user record in
the index tree. */
static inline bool btr_pcur_is_before_first_in_tree(btr_pcur_t* cursor)
{
ut_ad(cursor->pos_state == BTR_PCUR_IS_POSITIONED);
ut_ad(cursor->latch_mode != BTR_NO_LATCHES);
return !page_has_prev(btr_pcur_get_page(cursor))
&& page_cur_is_before_first(btr_pcur_get_page_cur(cursor));
}
/*********************************************************//**
Checks if the persistent cursor is after the last user record in
the index tree. */
static inline bool btr_pcur_is_after_last_in_tree(btr_pcur_t* cursor)
{
ut_ad(cursor->pos_state == BTR_PCUR_IS_POSITIONED);
ut_ad(cursor->latch_mode != BTR_NO_LATCHES);
return !page_has_next(btr_pcur_get_page(cursor))
&& page_cur_is_after_last(btr_pcur_get_page_cur(cursor));
}
/*********************************************************//**
Moves the persistent cursor to the next record on the same page. */
UNIV_INLINE
rec_t*
btr_pcur_move_to_next_on_page(
/*==========================*/
btr_pcur_t* cursor) /*!< in/out: persistent cursor */
{
ut_ad(cursor->pos_state == BTR_PCUR_IS_POSITIONED);
ut_ad(cursor->latch_mode != BTR_NO_LATCHES);
cursor->old_rec = nullptr;
return page_cur_move_to_next(btr_pcur_get_page_cur(cursor));
}
/*********************************************************//**
Moves the persistent cursor to the previous record on the same page. */
UNIV_INLINE
rec_t*
btr_pcur_move_to_prev_on_page(
/*==========================*/
btr_pcur_t* cursor) /*!< in/out: persistent cursor */
{
ut_ad(cursor->pos_state == BTR_PCUR_IS_POSITIONED);
ut_ad(cursor->latch_mode != BTR_NO_LATCHES);
cursor->old_rec = nullptr;
return page_cur_move_to_prev(btr_pcur_get_page_cur(cursor));
}
/*********************************************************//**
Moves the persistent cursor to the next user record in the tree. If no user
records are left, the cursor ends up 'after last in tree'.
@return TRUE if the cursor moved forward, ending on a user record */
UNIV_INLINE
ibool
btr_pcur_move_to_next_user_rec(
/*===========================*/
btr_pcur_t* cursor, /*!< in: persistent cursor; NOTE that the
function may release the page latch */
mtr_t* mtr) /*!< in: mtr */
{
ut_ad(cursor->pos_state == BTR_PCUR_IS_POSITIONED);
ut_ad(cursor->latch_mode != BTR_NO_LATCHES);
cursor->old_rec = nullptr;
loop:
if (btr_pcur_is_after_last_on_page(cursor)) {
if (btr_pcur_is_after_last_in_tree(cursor)
|| btr_pcur_move_to_next_page(cursor, mtr) != DB_SUCCESS) {
return(FALSE);
}
} else if (UNIV_UNLIKELY(!btr_pcur_move_to_next_on_page(cursor))) {
return false;
}
if (btr_pcur_is_on_user_rec(cursor)) {
return(TRUE);
}
goto loop;
}
/*********************************************************//**
Moves the persistent cursor to the next record in the tree. If no records are
left, the cursor stays 'after last in tree'.
@return TRUE if the cursor was not after last in tree */
UNIV_INLINE
ibool
btr_pcur_move_to_next(
/*==================*/
btr_pcur_t* cursor, /*!< in: persistent cursor; NOTE that the
function may release the page latch */
mtr_t* mtr) /*!< in: mtr */
{
ut_ad(cursor->pos_state == BTR_PCUR_IS_POSITIONED);
ut_ad(cursor->latch_mode != BTR_NO_LATCHES);
cursor->old_rec= nullptr;
if (btr_pcur_is_after_last_on_page(cursor))
return !btr_pcur_is_after_last_in_tree(cursor) &&
btr_pcur_move_to_next_page(cursor, mtr) == DB_SUCCESS;
else
return !!btr_pcur_move_to_next_on_page(cursor);
}
/**************************************************************//**
Commits the mtr and sets the pcur latch mode to BTR_NO_LATCHES,
that is, the cursor becomes detached.
Function btr_pcur_store_position should be used before calling this,
if restoration of cursor is wanted later. */
UNIV_INLINE
void
btr_pcur_commit_specify_mtr(
/*========================*/
btr_pcur_t* pcur, /*!< in: persistent cursor */
mtr_t* mtr) /*!< in: mtr to commit */
{
ut_ad(pcur->pos_state == BTR_PCUR_IS_POSITIONED);
pcur->latch_mode = BTR_NO_LATCHES;
mtr_commit(mtr);
pcur->pos_state = BTR_PCUR_WAS_POSITIONED;
}
/** Commits the mtr and sets the clustered index pcur and secondary index
pcur latch mode to BTR_NO_LATCHES, that is, the cursor becomes detached.
Function btr_pcur_store_position should be used for both cursor before
calling this, if restoration of cursor is wanted later.
@param[in] pcur persistent cursor
@param[in] sec_pcur secondary index persistent cursor
@param[in] mtr mtr to commit */
UNIV_INLINE
void
btr_pcurs_commit_specify_mtr(
btr_pcur_t* pcur,
btr_pcur_t* sec_pcur,
mtr_t* mtr)
{
ut_ad(pcur->pos_state == BTR_PCUR_IS_POSITIONED);
ut_ad(sec_pcur->pos_state == BTR_PCUR_IS_POSITIONED);
pcur->latch_mode = BTR_NO_LATCHES;
sec_pcur->latch_mode = BTR_NO_LATCHES;
mtr_commit(mtr);
pcur->pos_state = BTR_PCUR_WAS_POSITIONED;
sec_pcur->pos_state = BTR_PCUR_WAS_POSITIONED;
}
/**************************************************************//**
Sets the old_rec_buf field to NULL. */
UNIV_INLINE
void
btr_pcur_init(
/*==========*/
btr_pcur_t* pcur) /*!< in: persistent cursor */
{
pcur->old_rec_buf = NULL;
pcur->old_rec = NULL;
pcur->btr_cur.rtr_info = NULL;
}
/** Opens an persistent cursor to an index tree without initializing the
cursor.
@param tuple tuple on which search done
@param mode search mode; NOTE that if the search is made using a
unique prefix of a record, mode should be PAGE_CUR_LE, not
PAGE_CUR_GE, as the latter may end up on the previous page of
the record!
@param latch_mode BTR_SEARCH_LEAF, ...
@param cursor memory buffer for persistent cursor
@param mtr mini-transaction
@return DB_SUCCESS on success or error code otherwise. */
inline
dberr_t btr_pcur_open_with_no_init(const dtuple_t *tuple, page_cur_mode_t mode,
btr_latch_mode latch_mode,
btr_pcur_t *cursor, mtr_t *mtr)
{
cursor->latch_mode= BTR_LATCH_MODE_WITHOUT_INTENTION(latch_mode);
cursor->search_mode= mode;
cursor->pos_state= BTR_PCUR_IS_POSITIONED;
cursor->trx_if_known= nullptr;
return cursor->btr_cur.search_leaf(tuple, mode, latch_mode, mtr);
}
/**************************************************************//**
Frees the possible memory heap of a persistent cursor and sets the latch
mode of the persistent cursor to BTR_NO_LATCHES.
WARNING: this function does not release the latch on the page where the
cursor is currently positioned. The latch is acquired by the
"move to next/previous" family of functions. Since recursive shared locks
are not allowed, you must take care (if using the cursor in S-mode) to
manually release the latch by either calling
btr_leaf_page_release(btr_pcur_get_block(&pcur), pcur.latch_mode, mtr)
or by mtr_t::commit(). */
UNIV_INLINE
void
btr_pcur_close(
/*===========*/
btr_pcur_t* cursor) /*!< in: persistent cursor */
{
ut_free(cursor->old_rec_buf);
if (cursor->btr_cur.rtr_info)
rtr_clean_rtr_info(cursor->btr_cur.rtr_info, true);
cursor->btr_cur.rtr_info= nullptr;
cursor->old_rec = nullptr;
cursor->old_rec_buf = nullptr;
cursor->btr_cur.page_cur.rec = nullptr;
cursor->btr_cur.page_cur.block = nullptr;
cursor->latch_mode = BTR_NO_LATCHES;
cursor->pos_state = BTR_PCUR_NOT_POSITIONED;
cursor->trx_if_known = nullptr;
}
/*********************************************************//**
Moves the persistent cursor to the infimum record on the same page. */
UNIV_INLINE
void
btr_pcur_move_before_first_on_page(
/*===============================*/
btr_pcur_t* cursor) /*!< in/out: persistent cursor */
{
ut_ad(cursor->latch_mode != BTR_NO_LATCHES);
page_cur_set_before_first(btr_pcur_get_block(cursor),
btr_pcur_get_page_cur(cursor));
cursor->old_rec = nullptr;
}