mirror of
https://github.com/MariaDB/server.git
synced 2025-01-15 19:42:28 +01:00
775cba4d0f
- FLUSH GLOBAL STATUS now resets most global_status_vars. At this stage, this is mainly to be used for testing. - FLUSH SESSION STATUS added as an alias for FLUSH STATUS. - FLUSH STATUS does not require any privilege (before required RELOAD). - FLUSH GLOBAL STATUS requires RELOAD privilege. - All global status reset moved to FLUSH GLOBAL STATUS. - Replication semisync status variables are now reset by FLUSH GLOBAL STATUS. - In test cases, the only changes are: - Replace FLUSH STATUS with FLUSH GLOBAL STATUS - Replace FLUSH STATUS with FLUSH STATUS; FLUSH GLOBAL STATUS. This was only done in a few tests where the test was using SHOW STATUS for both local and global variables. - Uptime_since_flush_status is now always provided, independent if ENABLED_PROFILING is enabled when compiling MariaDB. - @@global.Uptime_since_flush_status is reset on FLUSH GLOBAL STATUS and @@session.Uptime_since_flush_status is reset on FLUSH SESSION STATUS. - When connected, @@session.Uptime_since_flush_status is set to 0.
146 lines
4.3 KiB
C
146 lines
4.3 KiB
C
/* Copyright (c) 2004, 2011, Oracle and/or its affiliates.
|
|
Copyright (c) 2009-2011 Monty Program Ab
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
|
|
|
|
|
|
#include "mysys_priv.h"
|
|
#include "my_static.h"
|
|
|
|
#ifdef _WIN32
|
|
#define OFFSET_TO_EPOC 116444736000000000LL
|
|
static ulonglong query_performance_frequency=1;
|
|
#endif
|
|
|
|
#ifdef HAVE_LINUX_UNISTD_H
|
|
#include <linux/unistd.h>
|
|
#endif
|
|
|
|
/* For CYGWIN */
|
|
#if !defined(CLOCK_THREAD_CPUTIME_ID) && defined(CLOCK_THREAD_CPUTIME)
|
|
#define CLOCK_THREAD_CPUTIME_ID CLOCK_THREAD_CPUTIME
|
|
#endif
|
|
|
|
/*
|
|
return number of nanoseconds since unspecified (but always the same)
|
|
point in the past
|
|
|
|
NOTE:
|
|
Thus to get the current time we should use the system function
|
|
with the highest possible resolution
|
|
|
|
The value is not anchored to any specific point in time (e.g. epoch) nor
|
|
is it subject to resetting or drifting by way of adjtime() or settimeofday(),
|
|
and thus it is *NOT* appropriate for getting the current timestamp. It can be
|
|
used for calculating time intervals, though.
|
|
*/
|
|
|
|
ulonglong my_interval_timer()
|
|
{
|
|
#ifdef HAVE_CLOCK_GETTIME
|
|
struct timespec tp;
|
|
clock_gettime(CLOCK_MONOTONIC, &tp);
|
|
return tp.tv_sec*1000000000ULL+tp.tv_nsec;
|
|
#elif defined(HAVE_GETHRTIME)
|
|
return gethrtime();
|
|
#elif defined(_WIN32)
|
|
DBUG_ASSERT(query_performance_frequency);
|
|
LARGE_INTEGER t_cnt;
|
|
QueryPerformanceCounter(&t_cnt);
|
|
return (t_cnt.QuadPart / query_performance_frequency * 1000000000ULL) +
|
|
((t_cnt.QuadPart % query_performance_frequency) * 1000000000ULL /
|
|
query_performance_frequency);
|
|
#else
|
|
/* TODO: check for other possibilities for hi-res timestamping */
|
|
struct timeval tv;
|
|
gettimeofday(&tv,NULL);
|
|
return tv.tv_sec*1000000000ULL+tv.tv_usec*1000ULL;
|
|
#endif
|
|
}
|
|
|
|
|
|
/* Return current time in HRTIME_RESOLUTION (microseconds) since epoch */
|
|
|
|
my_hrtime_t my_hrtime()
|
|
{
|
|
my_hrtime_t hrtime;
|
|
#if defined(_WIN32)
|
|
ulonglong newtime;
|
|
GetSystemTimePreciseAsFileTime((FILETIME*)&newtime);
|
|
hrtime.val= (newtime - OFFSET_TO_EPOC)/10;
|
|
#elif defined(HAVE_CLOCK_GETTIME)
|
|
struct timespec tp;
|
|
clock_gettime(CLOCK_REALTIME, &tp);
|
|
hrtime.val= tp.tv_sec*1000000ULL+tp.tv_nsec/1000ULL;
|
|
#else
|
|
struct timeval t;
|
|
/* The following loop is here because gettimeofday may fail */
|
|
while (gettimeofday(&t, NULL) != 0) {}
|
|
hrtime.val= t.tv_sec*1000000ULL + t.tv_usec;
|
|
#endif
|
|
DBUG_EXECUTE_IF("system_time_plus_one_hour", hrtime.val += 3600*1000000ULL;);
|
|
DBUG_EXECUTE_IF("system_time_minus_one_hour", hrtime.val -= 3600*1000000ULL;);
|
|
return hrtime;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
|
|
/*
|
|
Low accuracy, "coarse" timer.
|
|
Has lower latency than my_hrtime(). Used in situations, where microsecond
|
|
precision is not needed, e.g in Windows pthread_cond_timedwait, where POSIX
|
|
interface needs nanoseconds, yet the underlying Windows function only
|
|
accepts milliseconds.
|
|
*/
|
|
my_hrtime_t my_hrtime_coarse()
|
|
{
|
|
my_hrtime_t hrtime;
|
|
ulonglong t;
|
|
GetSystemTimeAsFileTime((FILETIME*)&t);
|
|
hrtime.val= (t - OFFSET_TO_EPOC)/10;
|
|
return hrtime;
|
|
}
|
|
|
|
#endif
|
|
|
|
void my_time_init()
|
|
{
|
|
#ifdef _WIN32
|
|
compile_time_assert(sizeof(LARGE_INTEGER) ==
|
|
sizeof(query_performance_frequency));
|
|
QueryPerformanceFrequency((LARGE_INTEGER *)&query_performance_frequency);
|
|
DBUG_ASSERT(query_performance_frequency);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
Return cpu time in 1/10th on a microsecond (1e-7 s)
|
|
*/
|
|
|
|
ulonglong my_getcputime()
|
|
{
|
|
#ifdef CLOCK_THREAD_CPUTIME_ID
|
|
struct timespec tp;
|
|
if (clock_gettime(CLOCK_THREAD_CPUTIME_ID, &tp))
|
|
return 0;
|
|
return (ulonglong)tp.tv_sec*10000000+(ulonglong)tp.tv_nsec/100;
|
|
#elif defined(__NR_clock_gettime)
|
|
struct timespec tp;
|
|
if (syscall(__NR_clock_gettime, CLOCK_THREAD_CPUTIME_ID, &tp))
|
|
return 0;
|
|
return (ulonglong)tp.tv_sec*10000000+(ulonglong)tp.tv_nsec/100;
|
|
#endif /* CLOCK_THREAD_CPUTIME_ID */
|
|
return 0;
|
|
}
|