mariadb/sql/opt_hints_parser.cc
Aleksey Midenkov a518e1dd42 MDEV-20865 Store foreign key info in TABLE_SHARE
1. Access foreign keys via TABLE_SHARE::foreign_keys and
   TABLE_SHARE::referenced_keys;

   foreign_keys and referenced_keys are lists in TABLE_SHARE.

2. Remove handler FK interface:

   - get_foreign_key_list()
   - get_parent_foreign_key_list()
   - referenced_by_foreign_key()

3. Invalidate referenced shares on:

   - RENAME TABLE
   - DROP TABLE
   - RENAME COLUMN
   - ADD FOREIGN KEY

   When foreign table is created or altered by the above operations
   all referenced shares are closed. This blocks the operation while
   any referenced shares are used (when at least one its TABLE
   instance is locked).

4. Update referenced shares on:

   - CREATE TABLE

   On CREATE TABLE add items to referenced_keys of referenced
   shares. States of referenced shares are restored in case of errors.

5. Invalidate foreign shares on:

   - RENAME TABLE
   - RENAME COLUMN

   The above-mentioned blocking takes effect.

6. Check foreign/referenced shares consistency on:

   - CHECK TABLE

7. Temporary change until MDEV-21051:

   InnoDB fill foreign key info at handler open().

FOREIGN_KEY_INFO is refactored to FK_info holding Lex_cstring.

On first TABLE open FK_info is loaded from storage engine into
TABLE_SHARE. All referenced shares (if any exists) are closed. This
leads to blocking of first time foreign table open while referenced
tables are used.

MDEV-21311 Converge Foreign_key and supplemental generated Key together

mysql_prepare_create_table() does data validation and such utilities
as automatic name generation. But it does that only for indexes and
ignores Foreign_key objects. Now as Foreign_key data needs to be
stored in FRM files as well this processing must be done for it like
for any other Key objects.

Replace Key::FOREIGN_KEY type with Key::foreign flag of type
Key::MULTIPLE and Key::generated set to true. Construct one object
with Key::foreign == true instead of two objects of type
Key::FOREIGN_KEY and Key::MULTIPLE.

MDEV-21051 datadict refactorings

- Move read_extra2() to datadict.cc
- Refactored extra2_fields to Extra2_info
- build_frm_image() readability

MDEV-21051 build_table_shadow_filename() refactoring

mysql_prepare_alter_table() leaks fixes

MDEV-21051 amend system tables locking restriction

Table mysql.help_relation has foreign key to mysql.help_keyword. On
bootstrap when help_relation is opened, it preopens help_keyword for
READ and fails in lock_tables_check().

If system table is opened for write then fk references are opened for
write.

Related to: Bug#25422, WL#3984
Tests: main.lock

MDEV-21051 Store and read foreign key info into/from FRM files

1. Introduce Foreign_key_io class which creates/parses binary stream
containing foreign key structures. Referenced tables store there only
hints about foreign tables (their db and name), they restore full info
from the corresponding tables.

Foreign_key_io is stored under new EXTRA2_FOREIGN_KEY_INFO field in
extra2 section of FRM file.

2. Modify mysql_prepare_create_table() to generate names for foreign
keys. Until InnoDB storage of foreign keys is removed, FK names must
be unique across the database: the FK name must be based on table
name.

3. Keep stored data in sync on DDL changes. Referenced tables update
their foreign hints after following operations on foreign tables:

  - RENAME TABLE
  - DROP TABLE
  - CREATE TABLE
  - ADD FOREIGN KEY
  - DROP FOREIGN KEY

Foreign tables update their foreign info after following operations on
referenced tables:

  - RENAME TABLE
  - RENAME COLUMN

4. To achieve 3. there must be ability to rewrite extra2 section of
FRM file without full reparse. FRM binary is built from primary
structures like HA_CREATE_INFO and cannot be built from TABLE_SHARE.

Use shadow write and rename like fast_alter_partition_table()
does. Shadow FRM is new FRM file that replaces the old one.

CREATE TABLE workflow:

  1. Foreign_key is constructed in parser, placed into
     alter_info->key_list;

  2. mysql_prepare_create_table() translates them to FK_info, assigns
     foreign_id if needed;

  3. build_frm_image() writes two FK_info lists into FRM's extra2
     section, for referenced keys it stores only table names (hints);

  4. init_from_binary_frm_image() parses extra2 section and fills
     foreign_keys and referenced_keys of TABLE_SHARE.

     It restores referenced_keys by reading hint list of table names,
     opening corresponding shares and restoring FK_info from their
     foreign_keys. Hints resolution is done only when initializing
     non-temporary shares. Usually temporary share has different
     (temporary) name and it is impossible to resolve foreign keys by
     that name (as we identify them by both foreign and referenced
     table names). Another not unimportant reason is performance: this
     saves spare share acquisitions.

ALTER TABLE workflow:

  1. Foreign_key is constructed in parser, placed into
     alter_info->key_list;

  2. mysql_prepare_alter_table() prepares action lists and share list
     of foreigns/references;

  3. mysql_prepare_alter_table() locks list of foreigns/references by
     MDL_INTENTION_EXCLUSIVE, acquires shares;

  4. prepare_create_table() converts key_list into FK_list, assigns
     foreign_id;

  5. shadow FRM of altered table is created;

  6. data is copied;

  7. altered table is locked by MDL_EXCLUSIVE;

  8. fk_handle_alter() processes action lists, creates FK backups,
     modifies shares, writes shadow FRMs;

  9. altered table is closed;

  10. shadow FRMs are installed;

  11. altered table is renamed, FRM backup deleted;

  12. (TBD in MDEV-21053) shadow FRMs installation log closed, backups
      deleted;

On FK backup system:

In case of failed DDL operation all shares that was modified must be
restored into original state. This is done by FK_ddl_backup (CREATE,
DROP), FK_rename_backup (RENAME), FK_alter_backup (ALTER).

On STL usage:

STL is used for utility not performance-critical algorithms, core
structures hold native List. A wrapper was made to convert STL
exception into bool error status or NULL value.

MDEV-20865 fk_check_consistency() in CHECK TABLE

Self-refs fix

Test table_flags fix: "debug" deviation is now gone.

FIXMEs: +16 -1
2025-09-02 13:24:36 +03:00

1286 lines
39 KiB
C++

/*
Copyright (c) 2024, MariaDB
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; version 2 of
the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA
*/
#include "opt_hints_parser.h"
#include "sql_error.h"
#include "mysqld_error.h"
#include "sql_class.h"
#include "sql_show.h"
#include "opt_hints.h"
using Parser= Optimizer_hint_parser;
extern struct st_opt_hint_info opt_hint_info[];
// Forward declaration of functions
void print_warn(THD *thd, uint err_code, opt_hints_enum hint_type,
bool hint_state,
const Lex_ident_sys *qb_name_arg,
const Lex_ident_sys *table_name_arg,
const Lex_ident_sys *key_name_arg,
const Printable_parser_rule *hint);
Opt_hints_qb *get_qb_hints(Parse_context *pc);
Opt_hints_qb *find_qb_hints(Parse_context *pc,
const Lex_ident_sys &qb_name,
opt_hints_enum hint_type,
bool hint_state);
Opt_hints_global *get_global_hints(Parse_context *pc);
Opt_hints_table *get_table_hints(Parse_context *pc,
const Lex_ident_sys &table_name,
Opt_hints_qb *qb);
void append_table_name(THD *thd, String *str, const LEX_CSTRING &table_name,
const LEX_CSTRING &qb_name);
static const Lex_ident_sys null_ident_sys;
Parse_context::Parse_context(THD *thd, st_select_lex *select)
: thd(thd),
mem_root(thd->mem_root),
select(select)
{}
Optimizer_hint_tokenizer::TokenID
Optimizer_hint_tokenizer::find_keyword(const LEX_CSTRING &str)
{
switch (str.length)
{
case 3:
if ("BKA"_Lex_ident_column.streq(str)) return TokenID::keyword_BKA;
if ("BNL"_Lex_ident_column.streq(str)) return TokenID::keyword_BNL;
if ("MRR"_Lex_ident_column.streq(str)) return TokenID::keyword_MRR;
break;
case 5:
if ("MERGE"_Lex_ident_column.streq(str)) return TokenID::keyword_MERGE;
if ("INDEX"_Lex_ident_column.streq(str)) return TokenID::keyword_INDEX;
break;
case 6:
if ("NO_BKA"_Lex_ident_column.streq(str)) return TokenID::keyword_NO_BKA;
if ("NO_BNL"_Lex_ident_column.streq(str)) return TokenID::keyword_NO_BNL;
if ("NO_ICP"_Lex_ident_column.streq(str)) return TokenID::keyword_NO_ICP;
if ("NO_MRR"_Lex_ident_column.streq(str)) return TokenID::keyword_NO_MRR;
break;
case 7:
if ("QB_NAME"_Lex_ident_column.streq(str))
return TokenID::keyword_QB_NAME;
break;
case 8:
if ("SEMIJOIN"_Lex_ident_column.streq(str))
return TokenID::keyword_SEMIJOIN;
if ("SUBQUERY"_Lex_ident_column.streq(str))
return TokenID::keyword_SUBQUERY;
if ("NO_MERGE"_Lex_ident_column.streq(str))
return TokenID::keyword_NO_MERGE;
if ("NO_INDEX"_Lex_ident_column.streq(str))
return TokenID::keyword_NO_INDEX;
break;
case 9:
if ("LOOSESCAN"_Lex_ident_column.streq(str))
return TokenID::keyword_LOOSESCAN;
break;
case 10:
if ("FIRSTMATCH"_Lex_ident_column.streq(str))
return TokenID::keyword_FIRSTMATCH;
if ("INTOEXISTS"_Lex_ident_column.streq(str))
return TokenID::keyword_INTOEXISTS;
if ("JOIN_ORDER"_Lex_ident_column.streq(str))
return TokenID::keyword_JOIN_ORDER;
if ("JOIN_INDEX"_Lex_ident_column.streq(str))
return TokenID::keyword_JOIN_INDEX;
break;
case 11:
if ("NO_SEMIJOIN"_Lex_ident_column.streq(str))
return TokenID::keyword_NO_SEMIJOIN;
if ("DUPSWEEDOUT"_Lex_ident_column.streq(str))
return TokenID::keyword_DUPSWEEDOUT;
if ("JOIN_PREFIX"_Lex_ident_column.streq(str))
return TokenID::keyword_JOIN_PREFIX;
if ("JOIN_SUFFIX"_Lex_ident_column.streq(str))
return TokenID::keyword_JOIN_SUFFIX;
if ("ORDER_INDEX"_Lex_ident_column.streq(str))
return TokenID::keyword_ORDER_INDEX;
if ("GROUP_INDEX"_Lex_ident_column.streq(str))
return TokenID::keyword_GROUP_INDEX;
break;
case 13:
if ("NO_JOIN_INDEX"_Lex_ident_column.streq(str))
return TokenID::keyword_NO_JOIN_INDEX;
break;
case 14:
if ("NO_ORDER_INDEX"_Lex_ident_column.streq(str))
return TokenID::keyword_NO_ORDER_INDEX;
if ("NO_GROUP_INDEX"_Lex_ident_column.streq(str))
return TokenID::keyword_NO_GROUP_INDEX;
break;
case 15:
if ("MATERIALIZATION"_Lex_ident_column.streq(str))
return TokenID::keyword_MATERIALIZATION;
break;
case 16:
if ("JOIN_FIXED_ORDER"_Lex_ident_column.streq(str))
return TokenID::keyword_JOIN_FIXED_ORDER;
break;
case 18:
if ("MAX_EXECUTION_TIME"_Lex_ident_column.streq(str))
return TokenID::keyword_MAX_EXECUTION_TIME;
if ("SPLIT_MATERIALIZED"_Lex_ident_column.streq(str))
return TokenID::keyword_SPLIT_MATERIALIZED;
break;
case 21:
if ("NO_RANGE_OPTIMIZATION"_Lex_ident_column.streq(str))
return TokenID::keyword_NO_RANGE_OPTIMIZATION;
if ("NO_SPLIT_MATERIALIZED"_Lex_ident_column.streq(str))
return TokenID::keyword_NO_SPLIT_MATERIALIZED;
break;
case 26:
if ("DERIVED_CONDITION_PUSHDOWN"_Lex_ident_column.streq(str))
return TokenID::keyword_DERIVED_CONDITION_PUSHDOWN;
break;
case 29:
if ("NO_DERIVED_CONDITION_PUSHDOWN"_Lex_ident_column.streq(str))
return TokenID::keyword_NO_DERIVED_CONDITION_PUSHDOWN;
break;
}
if (str.length > 0 && (str.str[0] >= '0' && str.str[0] <= '9'))
{
/*
If all characters are digits, qualify the token as a number,
otherwise as an identifier
*/
for(size_t i = 1; i < str.length; i++)
{
if (str.str[i] < '0' || str.str[i] > '9')
return TokenID::tIDENT;
}
return TokenID::tUNSIGNED_NUMBER;
}
return TokenID::tIDENT;
}
Optimizer_hint_tokenizer::Token
Optimizer_hint_tokenizer::get_token(CHARSET_INFO *cs)
{
get_spaces();
if (eof())
return Token(Lex_cstring(m_ptr, m_ptr), TokenID::tEOF);
const char head= m_ptr[0];
if (head == '`' || head=='"')
{
const Token_with_metadata delimited_ident= get_quoted_string();
/*
Consider only non-empty quoted strings as identifiers.
Table and index names cannot be empty in MariaDB.
Let's also disallow empty query block names.
Note, table aliases can actually be empty:
SELECT ``.a FROM t1 ``;
But let's disallow them in hints for simplicity, to handle
all identifiers in the same way in the hint parser.
*/
if (delimited_ident.length > 2)
return Token(delimited_ident, TokenID::tIDENT);
/*
If the string is empty, "unget" it to have a good
syntax error position in the message text.
The point is to include the empty string in the error message:
EXPLAIN EXTENDED SELECT ... QB_NAME(``) ...; -->
Optimizer hint syntax error near '``) ...' at line 1
*/
m_ptr-= delimited_ident.length;
return Token(Lex_cstring(m_ptr, m_ptr), TokenID::tNULL);
}
const Token_with_metadata ident= get_ident();
if (ident.length)
return Token(ident, ident.m_extended_chars ?
TokenID::tIDENT : find_keyword(ident));
if (!get_char(','))
return Token(Lex_cstring(m_ptr - 1, 1), TokenID::tCOMMA);
if (!get_char('@'))
return Token(Lex_cstring(m_ptr - 1, 1), TokenID::tAT);
if (!get_char('('))
return Token(Lex_cstring(m_ptr - 1, 1), TokenID::tLPAREN);
if (!get_char(')'))
return Token(Lex_cstring(m_ptr - 1, 1), TokenID::tRPAREN);
return Token(Lex_cstring(m_ptr, m_ptr), TokenID::tNULL);
}
// This method is for debug purposes
bool Parser::parse_token_list(THD *thd)
{
for ( ; ; m_look_ahead_token= get_token(m_cs))
{
char tmp[200];
my_snprintf(tmp, sizeof(tmp), "TOKEN: %d %.*s",
(int) m_look_ahead_token.id(),
(int) m_look_ahead_token.length,
m_look_ahead_token.str);
push_warning(thd, Sql_condition::WARN_LEVEL_WARN,
ER_UNKNOWN_ERROR, tmp);
if (m_look_ahead_token.id() == TokenID::tNULL ||
m_look_ahead_token.id() == TokenID::tEOF)
break;
}
return true; // Success
}
void Parser::push_warning_syntax_error(THD *thd, uint start_lineno)
{
DBUG_ASSERT(m_start <= m_ptr);
DBUG_ASSERT(m_ptr <= m_end);
const char *msg= ER_THD(thd, ER_WARN_OPTIMIZER_HINT_SYNTAX_ERROR);
ErrConvString txt(m_look_ahead_token.str, strlen(m_look_ahead_token.str),
thd->variables.character_set_client);
/*
start_lineno is the line number on which the whole hint started.
Add the line number of the current tokenizer position inside the hint
(in case hints are written in multiple lines).
*/
push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN,
ER_PARSE_ERROR, ER_THD(thd, ER_PARSE_ERROR),
msg, txt.ptr(), start_lineno + lineno());
}
bool
Parser::Table_name_list_container::add(Optimizer_hint_parser *p,
Table_name &&elem)
{
Table_name *pe= (Table_name*) p->m_thd->alloc(sizeof(*pe));
if (!pe)
return true;
*pe= std::move(elem);
return push_back(pe, p->m_thd->mem_root);
}
bool Parser::Hint_param_table_list_container::add(Optimizer_hint_parser *p,
Hint_param_table &&elem)
{
Hint_param_table *pe= (Hint_param_table*) p->m_thd->alloc(sizeof(*pe));
if (!pe)
return true;
*pe= std::move(elem);
return push_back(pe, p->m_thd->mem_root);
}
bool Parser::Hint_param_index_list_container::add(Optimizer_hint_parser *p,
Hint_param_index &&elem)
{
Hint_param_index *pe= (Hint_param_index*) p->m_thd->alloc(sizeof(*pe));
if (!pe)
return true;
*pe= std::move(elem);
return push_back(pe, p->m_thd->mem_root);
}
bool Parser::Hint_list_container::add(Optimizer_hint_parser *p, Hint &&elem)
{
Hint *pe= new (p->m_thd->mem_root) Hint;
if (!pe)
return true;
*pe= std::move(elem);
return push_back(pe, p->m_thd->mem_root);
}
bool Parser::Semijoin_strategy_list_container::add(Optimizer_hint_parser *p,
Semijoin_strategy &&elem)
{
Semijoin_strategy *pe= (Semijoin_strategy*) p->m_thd->alloc(sizeof(*pe));
if (!pe)
return true;
*pe= std::move(elem);
return push_back(pe, p->m_thd->mem_root);
}
/*
Resolve a parsed table level hint, i.e. set up proper Opt_hint_* structures
which will be used later during query preparation and optimization.
Return value:
- false: no critical errors, warnings on duplicated hints,
unresolved query block names, etc. are allowed
- true: critical errors detected, break further hints processing
*/
bool Parser::Table_level_hint::resolve(Parse_context *pc) const
{
const Table_level_hint_type &table_level_hint_type= *this;
opt_hints_enum hint_type;
bool hint_state; // ON or OFF
switch (table_level_hint_type.id())
{
case TokenID::keyword_BNL:
hint_type= BNL_HINT_ENUM;
hint_state= true;
break;
case TokenID::keyword_NO_BNL:
hint_type= BNL_HINT_ENUM;
hint_state= false;
break;
case TokenID::keyword_BKA:
hint_type= BKA_HINT_ENUM;
hint_state= true;
break;
case TokenID::keyword_NO_BKA:
hint_type= BKA_HINT_ENUM;
hint_state= false;
break;
case TokenID::keyword_DERIVED_CONDITION_PUSHDOWN:
hint_type= DERIVED_CONDITION_PUSHDOWN_HINT_ENUM;
hint_state= true;
break;
case TokenID::keyword_NO_DERIVED_CONDITION_PUSHDOWN:
hint_type= DERIVED_CONDITION_PUSHDOWN_HINT_ENUM;
hint_state= false;
break;
case TokenID::keyword_MERGE:
hint_type= MERGE_HINT_ENUM;
hint_state= true;
break;
case TokenID::keyword_NO_MERGE:
hint_type= MERGE_HINT_ENUM;
hint_state= false;
break;
case TokenID::keyword_SPLIT_MATERIALIZED:
hint_type= SPLIT_MATERIALIZED_HINT_ENUM;
hint_state= true;
break;
case TokenID::keyword_NO_SPLIT_MATERIALIZED:
hint_type= SPLIT_MATERIALIZED_HINT_ENUM;
hint_state= false;
break;
default:
DBUG_ASSERT(0);
return true;
}
if (const At_query_block_name_opt_table_name_list &
at_query_block_name_opt_table_name_list= *this)
{
// this is @ query_block_name opt_table_name_list
const Lex_ident_sys qb_name_sys= Query_block_name::to_ident_sys(pc->thd);
Opt_hints_qb *qb= find_qb_hints(pc, qb_name_sys, hint_type, hint_state);
if (qb == NULL)
return false;
if (at_query_block_name_opt_table_name_list.base_list::is_empty())
{
// e.g. BKA(@qb1)
if (qb->set_switch(hint_state, hint_type, false))
{
print_warn(pc->thd, ER_WARN_CONFLICTING_HINT, hint_type, hint_state,
&qb_name_sys, nullptr, nullptr, nullptr);
}
return false;
}
else
{
// e.g. BKA(@qb1 t1, t2, t3)
const Opt_table_name_list &opt_table_name_list= *this;
for (const Table_name &table : opt_table_name_list)
{
const Lex_ident_sys table_name_sys= table.to_ident_sys(pc->thd);
Opt_hints_table *tab= get_table_hints(pc, table_name_sys, qb);
if (!tab)
return false;
if (tab->set_switch(hint_state, hint_type, true))
{
print_warn(pc->thd, ER_WARN_CONFLICTING_HINT, hint_type, hint_state,
&qb_name_sys, &table_name_sys, nullptr,
nullptr);
}
}
}
}
else
{
// this is opt_hint_param_table_list
const Opt_hint_param_table_list &opt_hint_param_table_list= *this;
Opt_hints_qb *qb= find_qb_hints(pc, Lex_ident_sys(), hint_type, hint_state);
if (qb == NULL)
return false;
if (opt_hint_param_table_list.is_empty())
{
// e.g. BKA()
if (qb->set_switch(hint_state, hint_type, false))
{
print_warn(pc->thd, ER_WARN_CONFLICTING_HINT, hint_type, hint_state,
&null_ident_sys, nullptr, nullptr, nullptr);
}
return false;
}
for (const Hint_param_table &table : opt_hint_param_table_list)
{
// e.g. BKA(t1@qb1, t2@qb2, t3)
const Lex_ident_sys qb_name_sys= table.Query_block_name::
to_ident_sys(pc->thd);
Opt_hints_qb *qb= find_qb_hints(pc, qb_name_sys, hint_type, hint_state);
if (qb == NULL)
return false;
const Lex_ident_sys table_name_sys= table.Table_name::
to_ident_sys(pc->thd);
Opt_hints_table *tab= get_table_hints(pc, table_name_sys, qb);
if (!tab)
return false;
if (tab->set_switch(hint_state, hint_type, true))
{
print_warn(pc->thd, ER_WARN_CONFLICTING_HINT, hint_type, hint_state,
&qb_name_sys, &table_name_sys, nullptr, nullptr);
}
}
}
return false;
}
/*
Resolve a parsed index level hint, i.e. set up proper Opt_hint_* structures
which will be used later during query preparation and optimization.
Return value:
- false: no critical errors, warnings on duplicated hints,
unresolved query block names, etc. are allowed
- true: critical errors detected, break further hints processing
Taxonomy of index hints
- 2 levels of hints:
- table level hints: only table name specified but no index names
- index level hints: both table name and index names specified
- 2 kinds of hints:
- global: [NO_]INDEX
- non-global: [NO_]JOIN_INDEX, [NO_]GROUP_INDEX, [NO_]ORDER_INDEX
- 4 types of hints:
- [NO_]JOIN_INDEX
- [NO_]GROUP_INDEX
- [NO_]ORDER_INDEX
- [NO_]INDEX
Conflict checking
- A conflict happens if and only if
- for a table level hint
- a hint of the same type or opposite kind has already been specified
for the same table
- for a index level hint
- the same type of hint has already been specified for the same
table or for the same index, OR
- the opposite kind of hint has already been specified for the
same index
- For a multi index hint like JOIN_INDEX(t1 i1, i2, i3), it conflicts
with a previous hint if any of the JOIN_INDEX(t1 i1), JOIN_INDEX(t1
i2), JOIN_INDEX(t1 i3) conflicts with a previous hint
When a hint type is specified for an index, it is also marked as
specified with the same switch state for the table
*/
bool Parser::Index_level_hint::resolve(Parse_context *pc) const
{
const Index_level_hint_type &index_level_hint_type= *this;
opt_hints_enum hint_type;
bool hint_state; // ON or OFF
switch (index_level_hint_type.id())
{
case TokenID::keyword_NO_ICP:
hint_type= ICP_HINT_ENUM;
hint_state= false;
break;
case TokenID::keyword_MRR:
hint_type= MRR_HINT_ENUM;
hint_state= true;
break;
case TokenID::keyword_NO_MRR:
hint_type= MRR_HINT_ENUM;
hint_state= false;
break;
case TokenID::keyword_NO_RANGE_OPTIMIZATION:
hint_type= NO_RANGE_HINT_ENUM;
hint_state= true;
break;
case TokenID::keyword_INDEX:
hint_type= INDEX_HINT_ENUM;
hint_state= true;
break;
case TokenID::keyword_NO_INDEX:
hint_type= INDEX_HINT_ENUM;
hint_state= false;
break;
case TokenID::keyword_JOIN_INDEX:
hint_type= JOIN_INDEX_HINT_ENUM;
hint_state= true;
break;
case TokenID::keyword_NO_JOIN_INDEX:
hint_type= JOIN_INDEX_HINT_ENUM;
hint_state= false;
break;
case TokenID::keyword_ORDER_INDEX:
hint_type= ORDER_INDEX_HINT_ENUM;
hint_state= true;
break;
case TokenID::keyword_NO_ORDER_INDEX:
hint_type= ORDER_INDEX_HINT_ENUM;
hint_state= false;
break;
case TokenID::keyword_GROUP_INDEX:
hint_type= GROUP_INDEX_HINT_ENUM;
hint_state= true;
break;
case TokenID::keyword_NO_GROUP_INDEX:
hint_type= GROUP_INDEX_HINT_ENUM;
hint_state= false;
break;
default:
DBUG_ASSERT(0);
return true;
}
const Hint_param_table_ext &table_ext= *this;
const Lex_ident_sys qb_name_sys= table_ext.Query_block_name::
to_ident_sys(pc->thd);
const Lex_ident_sys table_name_sys= table_ext.Table_name::
to_ident_sys(pc->thd);
Opt_hints_qb *qb= find_qb_hints(pc, qb_name_sys, hint_type, hint_state);
if (qb == NULL)
return false;
Opt_hints_table *tab= get_table_hints(pc, table_name_sys, qb);
if (!tab)
return false;
const Lex_ident_sys key_conflict(
STRING_WITH_LEN("another hint was already specified for this index"));
/*
If no index names are given, this is a table level hint, for example:
GROUP_INDEX(t1), NO_MRR(t2).
Otherwise this is a group of index-level hints:
NO_INDEX(t1 idx1, idx2) NO_ICP(t2 idx_a, idx_b, idx_c)
*/
if (base_list::is_empty())
{
uint warn_code= 0;
if (is_compound_hint(hint_type) &&
is_index_hint_conflicting(tab, nullptr, hint_type))
{
warn_code= ER_WARN_CONFLICTING_COMPOUND_INDEX_HINT_FOR_TABLE;
}
else if (tab->set_switch(hint_state, hint_type, false))
{
warn_code= ER_WARN_CONFLICTING_INDEX_HINT_FOR_TABLE;
}
if (warn_code != 0)
{
print_warn(pc->thd, warn_code, hint_type, hint_state, &qb_name_sys,
&table_name_sys, nullptr, this);
}
else if (is_compound_hint(hint_type))
{
tab->get_key_hint_bitmap(hint_type)->parsed_hint= this;
}
return false;
}
// Key names for a compound hint are first collected into the array:
Mem_root_array<std::pair<Opt_hints_key *,
bool /* whether a new one was created */>>
key_hints(pc->thd->mem_root);
bool is_conflicting= false;
for (const Hint_param_index &index_name : *this)
{
const Lex_ident_sys index_name_sys= index_name.to_ident_sys(pc->thd);
bool new_opt_key_hint_created= false;
Opt_hints_key *key= (Opt_hints_key *)tab->find_by_name(index_name_sys);
if (!key)
{
key= new (pc->thd->mem_root)
Opt_hints_key(index_name_sys, tab, pc->thd->mem_root);
new_opt_key_hint_created= true;
}
if (!is_compound_hint(hint_type))
{
if (key->set_switch(hint_state, hint_type, true))
{
print_warn(pc->thd, ER_WARN_CONFLICTING_INDEX_HINT_FOR_KEY,
hint_type, hint_state, &qb_name_sys, &table_name_sys,
&index_name_sys, nullptr);
continue;
}
if (new_opt_key_hint_created)
tab->register_child(key);
}
else
{
bool is_specified= tab->is_specified(hint_type) ||
key->is_specified(hint_type);
if (is_specified || is_index_hint_conflicting(tab, key, hint_type))
{
is_conflicting= true;
uint warn_code;
if (is_specified)
{
warn_code= tab->is_specified(hint_type) ?
ER_WARN_CONFLICTING_INDEX_HINT_FOR_TABLE :
ER_WARN_CONFLICTING_INDEX_HINT_FOR_KEY;
}
else
{
warn_code= ER_WARN_CONFLICTING_COMPOUND_INDEX_HINT_FOR_KEY;
}
print_warn(pc->thd, warn_code, hint_type, hint_state,
&qb_name_sys, &table_name_sys, nullptr, this);
break;
}
key_hints.push_back({ key, new_opt_key_hint_created });
}
}
if (is_compound_hint(hint_type) && !is_conflicting)
{
/*
Process key names collected for a compound hint. They have already been
checked for conflicts/duplication above, so there is no need to examine
the `set_switch()` return value
*/
for (size_t i= 0; i < key_hints.size(); i++)
{
std::pair<Opt_hints_key *, bool> key= key_hints.at(i);
key.first->set_switch(hint_state, hint_type, true);
if (key.second)
tab->register_child(key.first);
}
tab->get_key_hint_bitmap(hint_type)->parsed_hint= this;
tab->set_switch(hint_state, hint_type, false);
}
return false;
}
void Parser::Index_level_hint::append_args(THD *thd, String *str) const
{
if (base_list::is_empty()) // Empty list of index names, no additional info
return;
bool first_index_name= true;
for (const Hint_param_index &index_name : *this)
{
if (!first_index_name)
str->append(STRING_WITH_LEN(","));
append_identifier(thd, str, &index_name);
first_index_name= false;
}
}
/*
Resolve a parsed query block name hint, i.e. set up proper Opt_hint_*
structures which will be used later during query preparation and optimization.
Return value:
- false: no critical errors, warnings on duplicated hints,
unresolved query block names, etc. are allowed
- true: critical errors detected, break further hints processing
*/
bool Parser::Qb_name_hint::resolve(Parse_context *pc) const
{
Opt_hints_qb *qb= pc->select->opt_hints_qb;
DBUG_ASSERT(qb);
const Lex_ident_sys qb_name_sys= Query_block_name::to_ident_sys(pc->thd);
if (qb->get_name().str || // QB name is already set
qb->get_parent()->find_by_name(qb_name_sys)) // Name is already used
{
print_warn(pc->thd, ER_WARN_CONFLICTING_HINT, QB_NAME_HINT_ENUM, true,
&qb_name_sys, nullptr, nullptr, nullptr);
return false;
}
qb->set_name(qb_name_sys);
return false;
}
void Parser::Semijoin_hint::fill_strategies_map(Opt_hints_qb *qb) const
{
// Loop for hints like SEMIJOIN(firstmatch, dupsweedout)
const Hint_param_opt_sj_strategy_list &hint_param_strategy_list= *this;
for (const Semijoin_strategy &strat : hint_param_strategy_list)
add_strategy_to_map(strat.id(), qb);
// Loop for hints like SEMIJOIN(@qb1 firstmatch, dupsweedout)
const Opt_sj_strategy_list &opt_sj_strategy_list= *this;
for (const Semijoin_strategy &strat : opt_sj_strategy_list)
add_strategy_to_map(strat.id(), qb);
}
void Parser::Semijoin_hint::add_strategy_to_map(TokenID token_id,
Opt_hints_qb *qb) const
{
switch(token_id)
{
case TokenID::keyword_DUPSWEEDOUT:
qb->semijoin_strategies_map |= OPTIMIZER_SWITCH_DUPSWEEDOUT;
break;
case TokenID::keyword_FIRSTMATCH:
qb->semijoin_strategies_map |= OPTIMIZER_SWITCH_FIRSTMATCH;
break;
case TokenID::keyword_LOOSESCAN:
qb->semijoin_strategies_map |= OPTIMIZER_SWITCH_LOOSE_SCAN;
break;
case TokenID::keyword_MATERIALIZATION:
qb->semijoin_strategies_map |= OPTIMIZER_SWITCH_MATERIALIZATION;
break;
default:
DBUG_ASSERT(0);
}
}
/*
Resolve a parsed semijoin hint, i.e. set up proper Opt_hint_* structures
which will be used later during query preparation and optimization.
Return value:
- false: no critical errors, warnings on duplicated hints,
unresolved query block names, etc. are allowed
- true: critical errors detected, break further hints processing
*/
bool Parser::Semijoin_hint::resolve(Parse_context *pc) const
{
const Semijoin_hint_type &semijoin_hint_type= *this;
bool hint_state; // true - SEMIJOIN(), false - NO_SEMIJOIN()
if (semijoin_hint_type.id() == TokenID::keyword_SEMIJOIN)
hint_state= true;
else
hint_state= false;
Opt_hints_qb *qb;
if (const At_query_block_name_opt_strategy_list &
at_query_block_name_opt_strategy_list __attribute__((unused)) = *this)
{
/*
This is @ query_block_name opt_strategy_list,
e.g. SEMIJOIN(@qb1) or SEMIJOIN(@qb1 firstmatch, loosescan)
*/
const Lex_ident_sys qb_name= Query_block_name::to_ident_sys(pc->thd);
qb= resolve_for_qb_name(pc, hint_state, &qb_name);
}
else
{
// This is opt_strategy_list, e.g. SEMIJOIN(loosescan, dupsweedout)
Lex_ident_sys empty_qb_name= Lex_ident_sys();
qb= resolve_for_qb_name(pc, hint_state, &empty_qb_name);
}
if (qb)
qb->semijoin_hint= this;
return false;
}
/*
Helper function to be called by Semijoin_hint::resolve().
Return value:
- pointer to Opt_hints_qb if the hint was resolved successfully
- NULL if the hint was ignored
*/
Opt_hints_qb* Parser::Semijoin_hint::
resolve_for_qb_name(Parse_context *pc, bool hint_state,
const Lex_ident_sys *qb_name) const
{
Opt_hints_qb *qb= find_qb_hints(pc, *qb_name, SEMIJOIN_HINT_ENUM, hint_state);
if (!qb)
return nullptr;
if (qb->subquery_hint)
{
print_warn(pc->thd, ER_WARN_CONFLICTING_HINT, SEMIJOIN_HINT_ENUM,
hint_state, qb_name, nullptr, nullptr, this);
return nullptr;
}
if (qb->set_switch(hint_state, SEMIJOIN_HINT_ENUM, false))
{
print_warn(pc->thd, ER_WARN_CONFLICTING_HINT, SEMIJOIN_HINT_ENUM,
hint_state, qb_name, nullptr, nullptr, this);
return nullptr;
}
fill_strategies_map(qb);
return qb;
}
void Parser::Semijoin_hint::append_args(THD *thd, String *str) const
{
// Loop for hints without query block name, e.g. SEMIJOIN(firstmatch, dupsweedout)
const Hint_param_opt_sj_strategy_list &hint_param_strategy_list= *this;
uint32 len_before= str->length();
for (const Semijoin_strategy &strat : hint_param_strategy_list)
{
if (str->length() > len_before)
str->append(STRING_WITH_LEN(", "));
append_strategy_name(strat.id(), str);
}
// Loop for hints with query block name, e.g. SEMIJOIN(@qb1 firstmatch, dupsweedout)
const Opt_sj_strategy_list &opt_sj_strategy_list= *this;
for (const Semijoin_strategy &strat : opt_sj_strategy_list)
{
if (str->length() > len_before)
str->append(STRING_WITH_LEN(", "));
append_strategy_name(strat.id(), str);
}
}
void Parser::Semijoin_hint::
append_strategy_name(TokenID token_id, String *str) const
{
switch(token_id)
{
case TokenID::keyword_DUPSWEEDOUT:
str->append(STRING_WITH_LEN("DUPSWEEDOUT"));
break;
case TokenID::keyword_FIRSTMATCH:
str->append(STRING_WITH_LEN("FIRSTMATCH"));
break;
case TokenID::keyword_LOOSESCAN:
str->append(STRING_WITH_LEN("LOOSESCAN"));
break;
case TokenID::keyword_MATERIALIZATION:
str->append(STRING_WITH_LEN("MATERIALIZATION"));
break;
default:
DBUG_ASSERT(0);
}
}
/*
Resolve a parsed subquery hint, i.e. set up proper Opt_hint_* structures
which will be used later during query preparation and optimization.
Return value:
- false: no critical errors, warnings on duplicated hints,
unresolved query block names, etc. are allowed
- true: critical errors detected, break further hints processing
*/
bool Parser::Subquery_hint::resolve(Parse_context *pc) const
{
Opt_hints_qb *qb;
if (const At_query_block_name_subquery_strategy &
at_query_block_name_subquery_strategy= *this)
{
/*
This is @ query_block_name subquery_strategy,
e.g. SUBQUERY(@qb1 INTOEXISTS)
*/
const Lex_ident_sys qb_name= Query_block_name::to_ident_sys(pc->thd);
const Subquery_strategy &strat= at_query_block_name_subquery_strategy;
qb= resolve_for_qb_name(pc, strat.id(), &qb_name);
}
else
{
// This is subquery_strategy, e.g. SUBQUERY(MATERIALIZATION)
Lex_ident_sys empty_qb_name= Lex_ident_sys();
const Hint_param_subquery_strategy &strat= *this;
qb= resolve_for_qb_name(pc, strat.id(), &empty_qb_name);
}
if (qb)
qb->subquery_hint= this;
return false;
}
/*
Helper function to be called by Subquery_hint::resolve().
Return value:
- pointer to Opt_hints_qb if the hint was resolved successfully
- NULL if the hint was ignored
*/
Opt_hints_qb* Parser::Subquery_hint::
resolve_for_qb_name(Parse_context *pc, TokenID token_id,
const Lex_ident_sys *qb_name) const
{
Opt_hints_qb *qb= find_qb_hints(pc, *qb_name, SUBQUERY_HINT_ENUM, true);
if (!qb)
return nullptr;
if (qb->semijoin_hint)
{
print_warn(pc->thd, ER_WARN_CONFLICTING_HINT, SUBQUERY_HINT_ENUM,
true, qb_name, nullptr, nullptr, this);
return nullptr;
}
if (qb->set_switch(true, SUBQUERY_HINT_ENUM, false))
{
print_warn(pc->thd, ER_WARN_CONFLICTING_HINT, SUBQUERY_HINT_ENUM,
true, qb_name, nullptr, nullptr, this);
return nullptr;
}
set_subquery_strategy(token_id, qb);
return qb;
}
void Parser::Subquery_hint::set_subquery_strategy(TokenID token_id,
Opt_hints_qb *qb) const
{
switch(token_id)
{
case TokenID::keyword_INTOEXISTS:
qb->subquery_strategy= SUBS_IN_TO_EXISTS;
break;
case TokenID::keyword_MATERIALIZATION:
qb->subquery_strategy= SUBS_MATERIALIZATION;
break;
default:
DBUG_ASSERT(0);
}
}
void Parser::Subquery_hint::append_args(THD *thd, String *str) const
{
TokenID token_id;
if (const At_query_block_name_subquery_strategy &
at_query_block_name_subquery_strategy= *this)
{
const Subquery_strategy &strat= at_query_block_name_subquery_strategy;
token_id= strat.id();
}
else
{
const Hint_param_subquery_strategy& hint_param_strat= *this;
token_id= hint_param_strat.id();
}
switch(token_id)
{
case TokenID::keyword_INTOEXISTS:
str->append(STRING_WITH_LEN("INTOEXISTS"));
break;
case TokenID::keyword_MATERIALIZATION:
str->append(STRING_WITH_LEN("MATERIALIZATION"));
break;
default:
DBUG_ASSERT(0);
}
}
/*
This is the first step of MAX_EXECUTION_TIME() hint resolution. It is invoked
during the parsing phase, but at this stage some essential information is
not yet available, preventing a full validation of the hint.
Particularly, the type of SQL command, mark of a stored procedure execution
or whether SELECT_LEX is not top-level (i.e., a subquery) are not yet set.
However, some basic checks like the numeric argument validation or hint
duplication check can still be performed.
The second step of hint validation is performed during the JOIN preparation
phase, within Opt_hints_global::resolve(). By this point, all necessary
information is up-to-date, allowing the hint to be fully resolved
*/
bool Parser::Max_execution_time_hint::resolve(Parse_context *pc) const
{
const Unsigned_Number& hint_arg= *this;
const ULonglong_null time_ms= hint_arg.get_ulonglong();
if (time_ms.is_null() || time_ms.value() == 0 || time_ms.value() > INT_MAX32)
{
print_warn(pc->thd, ER_BAD_OPTION_VALUE, MAX_EXEC_TIME_HINT_ENUM,
true, NULL, NULL, NULL, this);
return false;
}
Opt_hints_global *global_hint= get_global_hints(pc);
if (global_hint->is_specified(MAX_EXEC_TIME_HINT_ENUM))
{
// Hint duplication: /*+ MAX_EXECUTION_TIME ... MAX_EXECUTION_TIME */
print_warn(pc->thd, ER_WARN_CONFLICTING_HINT, MAX_EXEC_TIME_HINT_ENUM, true,
NULL, NULL, NULL, this);
return false;
}
global_hint->set_switch(true, MAX_EXEC_TIME_HINT_ENUM, false);
global_hint->max_exec_time_hint= this;
global_hint->max_exec_time_select_lex= pc->select;
return false;
}
void Parser::Join_order_hint::append_args(THD *thd, String *str) const
{
bool first_table_name= true;
for (const Parser::Table_name_and_Qb& tbl : table_names)
{
if (!first_table_name)
str->append(STRING_WITH_LEN(","));
append_table_name(thd, str, tbl.table_name, tbl.qb_name);
first_table_name= false;
}
}
/*
Resolve a parsed join order hint, i.e. set up proper Opt_hint_* structures
which will be used later during query preparation and optimization.
Return value:
- false: no critical errors, warnings on duplicated hints,
unresolved query block names, etc. are allowed
- true: critical errors detected, break further hints processing
*/
bool Parser::Join_order_hint::resolve(Parse_context *pc)
{
const Join_order_hint_type &join_order_hint_type= *this;
switch (join_order_hint_type.id())
{
case TokenID::keyword_JOIN_FIXED_ORDER:
hint_type= JOIN_FIXED_ORDER_HINT_ENUM;
break;
case TokenID::keyword_JOIN_ORDER:
hint_type= JOIN_ORDER_HINT_ENUM;
break;
case TokenID::keyword_JOIN_PREFIX:
hint_type= JOIN_PREFIX_HINT_ENUM;
break;
case TokenID::keyword_JOIN_SUFFIX:
hint_type= JOIN_SUFFIX_HINT_ENUM;
break;
default:
DBUG_ASSERT(0);
return true;
}
Opt_hints_qb *qb= nullptr;
Lex_ident_sys qb_name;
if (const At_query_block_name_opt_table_name_list &at_qb_tab_list= *this)
{
// this is @ query_block_name opt_table_name_list
qb_name= Query_block_name::to_ident_sys(pc->thd);
qb= find_qb_hints(pc, qb_name, hint_type, true);
// Compose `tables_names` list for warnings and final hints resolving
const Opt_table_name_list &opt_table_name_list= at_qb_tab_list;
for (const Table_name &table : opt_table_name_list)
{
Parser::Table_name_and_Qb *tbl_qb= new (pc->mem_root)
Parser::Table_name_and_Qb(table.to_ident_sys(pc->thd), Lex_ident_sys());
if (!tbl_qb)
return true;
table_names.push_back(tbl_qb, pc->mem_root);
}
}
else
{
// this is opt_hint_param_table_list, query block name is not specified
qb= find_qb_hints(pc, Lex_ident_sys(), hint_type, true);
const Opt_hint_param_table_list &opt_hint_param_table_list= *this;
for (const Hint_param_table &table : opt_hint_param_table_list)
{
// e.g. JOIN_ORDER(t1@qb1, t2@qb2, t3)
Parser::Table_name_and_Qb *tbl_qb=
new (pc->mem_root) Parser::Table_name_and_Qb(
table.Table_name::to_ident_sys(pc->thd),
table.Query_block_name::to_ident_sys(pc->thd));
table_names.push_back(tbl_qb, pc->mem_root);
}
}
if (qb == nullptr)
return false;
if ((hint_type != JOIN_FIXED_ORDER_HINT_ENUM && table_names.is_empty()) ||
(hint_type == JOIN_FIXED_ORDER_HINT_ENUM && !table_names.is_empty()))
{
/*
Skipping table name(s) only allowed and required for the
JOIN_FIXED_ORDER hint and is not allowed for other hint types
*/
print_warn(pc->thd, ER_WARN_MALFORMED_HINT, hint_type, true,
&qb_name, nullptr, nullptr, this);
return false;
}
if (hint_type == JOIN_FIXED_ORDER_HINT_ENUM)
{
/*
This is JOIN_ORDER_FIXED() or JOIN_ORDER_FIXED(@qb1)
There can be only one JOIN_ORDER_FIXED hint in a query block,
other hints are not allowed in this case
*/
if (qb->has_join_order_hints()|| qb->join_fixed_order)
{
print_warn(pc->thd, ER_WARN_CONFLICTING_HINT, hint_type, true,
&qb_name, nullptr, nullptr, this);
return false;
}
qb->join_fixed_order= this;
qb->set_switch(true, hint_type, false);
pc->select->options |= SELECT_STRAIGHT_JOIN;
return false;
}
// Finished with processing of JOIN_FIXED_ORDER()
DBUG_ASSERT(hint_type != JOIN_FIXED_ORDER_HINT_ENUM);
/*
Hints except JOIN_ORDER() must not duplicate. If there is JOIN_ORDER_FIXED()
already, then other hints are not allowed for this query block
*/
if ((qb->get_switch(hint_type) && hint_type != JOIN_ORDER_HINT_ENUM) ||
qb->join_fixed_order)
{
print_warn(pc->thd, ER_WARN_CONFLICTING_HINT, hint_type, true,
&qb_name, nullptr, nullptr, this);
return false;
}
switch(hint_type)
{
case JOIN_PREFIX_HINT_ENUM:
if (qb->join_prefix || qb->add_join_order_hint(this))
{
print_warn(pc->thd, ER_WARN_CONFLICTING_HINT, hint_type, true,
&qb_name, nullptr, nullptr, this);
return false;
}
qb->join_prefix= this;
qb->set_switch(true, JOIN_PREFIX_HINT_ENUM, false);
break;
case JOIN_SUFFIX_HINT_ENUM:
if (qb->join_suffix || qb->add_join_order_hint(this))
{
print_warn(pc->thd, ER_WARN_CONFLICTING_HINT, hint_type, true,
&qb_name, nullptr, nullptr, this);
return false;
}
qb->join_suffix= this;
qb->set_switch(true, JOIN_SUFFIX_HINT_ENUM, false);
break;
case JOIN_ORDER_HINT_ENUM:
// Multiple JOIN_ORDER() hints are allowed
if (qb->add_join_order_hint(this))
{
print_warn(pc->thd, ER_WARN_CONFLICTING_HINT, hint_type, true,
&qb_name, nullptr, nullptr, this);
return false;
}
qb->set_switch(true, JOIN_ORDER_HINT_ENUM, false);
break;
default:
DBUG_ASSERT(0);
}
return false;
}
void Parser::Max_execution_time_hint::append_args(THD *thd, String *str) const
{
const Unsigned_Number& hint_arg= *this;
str->append(ErrConvString(hint_arg.str, hint_arg.length,
&my_charset_latin1).lex_cstring());
}
ulonglong Parser::Max_execution_time_hint::get_milliseconds() const
{
const Unsigned_Number& hint_arg= *this;
return hint_arg.get_ulonglong().value();
}
bool Parser::Hint_list::resolve(Parse_context *pc) const
{
if (pc->thd->lex->create_view)
{
// we're creating or modifying a view, hints are not allowed here
push_warning(pc->thd, Sql_condition::WARN_LEVEL_WARN,
ER_HINTS_INSIDE_VIEWS_NOT_SUPPORTED,
ER_THD(pc->thd, ER_HINTS_INSIDE_VIEWS_NOT_SUPPORTED));
return false;
}
if (!get_qb_hints(pc))
return true;
for (Hint_list::iterator li= this->begin(); li != this->end(); ++li)
{
Parser::Hint &hint= *li;
if (const Table_level_hint &table_hint= hint)
{
if (table_hint.resolve(pc))
return true;
}
else if (const Index_level_hint &index_hint= hint)
{
if (index_hint.resolve(pc))
return true;
}
else if (const Qb_name_hint &qb_hint= hint)
{
if (qb_hint.resolve(pc))
return true;
}
else if (const Max_execution_time_hint &max_hint= hint)
{
if (max_hint.resolve(pc))
return true;
}
else if (const Semijoin_hint &sj_hint= hint)
{
if (sj_hint.resolve(pc))
return true;
}
else if (const Subquery_hint &subq_hint= hint)
{
if (subq_hint.resolve(pc))
return true;
}
else if (Join_order_hint &join_order_hint= hint)
{
if (join_order_hint.resolve(pc))
return true;
}
else {
DBUG_ASSERT(0);
}
}
return false;
}