mirror of
https://github.com/MariaDB/server.git
synced 2025-04-05 14:55:32 +02:00

For the adaptive hash index, dtuple_fold() and rec_fold() were employing a slow rolling hash algorithm, computing hash values ("fold") for one field and one byte at a time, while depending on calls to rec_get_offsets(). We already have optimized implementations of CRC-32C and have been successfully using that function in some other InnoDB tables, but not yet in the adaptive hash index. Any linear function such as any CRC will fail the avalanche test that any cryptographically secure hash function is expected to pass: any single-bit change in the input key should affect on average half the bits in the output. But we always were happy with less than cryptographically secure: in fact, ut_fold_ulint_pair() or ut_fold_binary() are just about as linear as any CRC, using a combination of multiplication and addition, partly carry-less. It is worth noting that exclusive-or corresponds to carry-less subtraction or addition in a binary Galois field, or GF(2). We only need some way of reducing key prefixes into hash values. The CRC-32C should be better than a Rabin–Karp rolling hash algorithm. Compared to the old hash algorithm, it has the drawback that there will be only 32 bits of entropy before we choose the hash table cell by a modulus operation. The size of each adaptive hash index array is (innodb_buffer_pool_size / 512) / innodb_adaptive_hash_index_parts. With the maximum number of partitions (512), we would not exceed 1<<32 elements per array until the buffer pool size exceeds 1<<50 bytes (1 PiB). We would hit other limits before that: the virtual address space on many contemporary 64-bit processor implementations is only 48 bits (256 TiB). So, we can simply go for the SIMD accelerated CRC-32C. rec_fold(): Take a combined parameter n_bytes_fields. Determine the length of each field on the fly, and compute CRC-32C over a single contiguous range of bytes, from the start of the record payload area to the end of the last full or partial field. For secondary index records in ROW_FORMAT=REDUNDANT, also the data area that is reserved for NULL values (to facilitate in-place updates between NULL and NOT NULL values) will be included in the count. Luckily, InnoDB always zero-initialized such unused area; refer to data_write_sql_null() in rec_convert_dtuple_to_rec_old(). For other than ROW_FORMAT=REDUNDANT, no space is allocated for NULL values, and therefore the CRC-32C will only cover the actual payload of the key prefix. dtuple_fold(): For ROW_FORMAT=REDUNDANT, include the dummy NULL values in the CRC-32C, so that the values will be comparable with rec_fold(). innodb_ahi-t: A unit test for rec_fold() and dtuple_fold(). btr_search_build_page_hash_index(), btr_search_drop_page_hash_index(): Use a fixed-size stack buffer for computing the fold values, to avoid dynamic memory allocation. btr_search_drop_page_hash_index(): Do not release part.latch if we need to invoke multiple batches of rec_fold(). dtuple_t: Allocate fewer bits for the fields. The maximum number of data fields is about 1023, so uint16_t will be fine for them. The info_bits is stored in less than 1 byte. ut_pair_min(), ut_pair_cmp(): Remove. We can actually combine and compare int(n_fields << 16 | n_bytes). PAGE_CUR_LE_OR_EXTENDS, PAGE_CUR_DBG: Remove. These were never defined, because they would only work with latin1_swedish_ci if at all. btr_cur_t::check_mismatch(): Replaces !btr_search_check_guess(). cmp_dtuple_rec_bytes(): Replaces cmp_dtuple_rec_with_match_bytes(). Determine the offsets of fields on the fly. page_cur_try_search_shortcut_bytes(): This caller of cmp_dtuple_rec_bytes() will not be invoked on the change buffer tree. cmp_dtuple_rec_leaf(): Replaces cmp_dtuple_rec_with_match() for comparing leaf-page records. buf_block_t::ahi_left_bytes_fields: Consolidated Atomic_relaxed<uint32_t> of curr_left_side << 31 | curr_n_bytes << 16 | curr_n_fields. The other set of parameters (n_fields, n_bytes, left_side) was removed as redundant. btr_search_update_hash_node_on_insert(): Merged to btr_search_update_hash_on_insert(). btr_search_build_page_hash_index(): Take combined left_bytes_fields instead of n_fields, n_bytes, left_side. btr_search_update_block_hash_info(), btr_search_update_hash_ref(): Merged to btr_search_info_update_hash(). btr_cur_t::n_bytes_fields: Replaces n_bytes << 16 | n_fields. We also remove many redundant checks of btr_search.enabled. If we are holding any btr_sea::partition::latch, then a nonnull pointer in buf_block_t::index must imply that the adaptive hash index is enabled. Reviewed by: Vladislav Lesin
572 lines
15 KiB
C++
572 lines
15 KiB
C++
/*****************************************************************************
|
|
|
|
Copyright (c) 1994, 2015, Oracle and/or its affiliates. All Rights Reserved.
|
|
Copyright (c) 2017, 2020, MariaDB Corporation.
|
|
|
|
This program is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free Software
|
|
Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
|
|
|
|
*****************************************************************************/
|
|
|
|
/********************************************************************//**
|
|
@file include/data0data.ic
|
|
SQL data field and tuple
|
|
|
|
Created 5/30/1994 Heikki Tuuri
|
|
*************************************************************************/
|
|
|
|
#include "ut0rnd.h"
|
|
|
|
/*********************************************************************//**
|
|
Sets the type struct of SQL data field. */
|
|
UNIV_INLINE
|
|
void
|
|
dfield_set_type(
|
|
/*============*/
|
|
dfield_t* field, /*!< in: SQL data field */
|
|
const dtype_t* type) /*!< in: pointer to data type struct */
|
|
{
|
|
ut_ad(field != NULL);
|
|
ut_ad(type != NULL);
|
|
|
|
field->type = *type;
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Sets length in a field. */
|
|
UNIV_INLINE
|
|
void
|
|
dfield_set_len(
|
|
/*===========*/
|
|
dfield_t* field, /*!< in: field */
|
|
ulint len) /*!< in: length or UNIV_SQL_NULL */
|
|
{
|
|
ut_ad(len != UNIV_SQL_DEFAULT);
|
|
field->ext = 0;
|
|
field->len = static_cast<unsigned int>(len);
|
|
}
|
|
|
|
/** Gets spatial status for "external storage"
|
|
@param[in,out] field field */
|
|
UNIV_INLINE
|
|
spatial_status_t
|
|
dfield_get_spatial_status(
|
|
const dfield_t* field)
|
|
{
|
|
ut_ad(dfield_is_ext(field));
|
|
|
|
return(static_cast<spatial_status_t>(field->spatial_status));
|
|
}
|
|
|
|
/** Sets spatial status for "external storage"
|
|
@param[in,out] field field
|
|
@param[in] spatial_status spatial status */
|
|
UNIV_INLINE
|
|
void
|
|
dfield_set_spatial_status(
|
|
dfield_t* field,
|
|
spatial_status_t spatial_status)
|
|
{
|
|
field->spatial_status = spatial_status & 3;
|
|
ut_ad(dfield_get_spatial_status(field) == spatial_status);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Sets pointer to the data and length in a field. */
|
|
UNIV_INLINE
|
|
void
|
|
dfield_set_data(
|
|
/*============*/
|
|
dfield_t* field, /*!< in: field */
|
|
const void* data, /*!< in: data */
|
|
ulint len) /*!< in: length or UNIV_SQL_NULL */
|
|
{
|
|
field->data = (void*) data;
|
|
field->ext = 0;
|
|
field->len = static_cast<unsigned int>(len);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Sets pointer to the data and length in a field. */
|
|
UNIV_INLINE
|
|
void
|
|
dfield_write_mbr(
|
|
/*=============*/
|
|
dfield_t* field, /*!< in: field */
|
|
const double* mbr) /*!< in: data */
|
|
{
|
|
MEM_CHECK_DEFINED(mbr, sizeof *mbr);
|
|
field->ext = 0;
|
|
|
|
for (unsigned i = 0; i < SPDIMS * 2; i++) {
|
|
mach_double_write(static_cast<byte*>(field->data)
|
|
+ i * sizeof(double), mbr[i]);
|
|
}
|
|
|
|
field->len = DATA_MBR_LEN;
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Sets a data field to SQL NULL. */
|
|
UNIV_INLINE
|
|
void
|
|
dfield_set_null(
|
|
/*============*/
|
|
dfield_t* field) /*!< in/out: field */
|
|
{
|
|
dfield_set_data(field, NULL, UNIV_SQL_NULL);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Copies the data and len fields. */
|
|
UNIV_INLINE
|
|
void
|
|
dfield_copy_data(
|
|
/*=============*/
|
|
dfield_t* field1, /*!< out: field to copy to */
|
|
const dfield_t* field2) /*!< in: field to copy from */
|
|
{
|
|
ut_ad(field1 != NULL);
|
|
ut_ad(field2 != NULL);
|
|
|
|
field1->data = field2->data;
|
|
field1->len = field2->len;
|
|
field1->ext = field2->ext;
|
|
field1->spatial_status = field2->spatial_status;
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Copies a data field to another. */
|
|
UNIV_INLINE
|
|
void
|
|
dfield_copy(
|
|
/*========*/
|
|
dfield_t* field1, /*!< out: field to copy to */
|
|
const dfield_t* field2) /*!< in: field to copy from */
|
|
{
|
|
*field1 = *field2;
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Copies the data pointed to by a data field. */
|
|
UNIV_INLINE
|
|
void
|
|
dfield_dup(
|
|
/*=======*/
|
|
dfield_t* field, /*!< in/out: data field */
|
|
mem_heap_t* heap) /*!< in: memory heap where allocated */
|
|
{
|
|
if (!dfield_is_null(field)) {
|
|
MEM_CHECK_DEFINED(field->data, field->len);
|
|
field->data = mem_heap_dup(heap, field->data, field->len);
|
|
}
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Tests if two data fields are equal.
|
|
If len==0, tests the data length and content for equality.
|
|
If len>0, tests the first len bytes of the content for equality.
|
|
@return TRUE if both fields are NULL or if they are equal */
|
|
UNIV_INLINE
|
|
ibool
|
|
dfield_datas_are_binary_equal(
|
|
/*==========================*/
|
|
const dfield_t* field1, /*!< in: field */
|
|
const dfield_t* field2, /*!< in: field */
|
|
ulint len) /*!< in: maximum prefix to compare,
|
|
or 0 to compare the whole field length */
|
|
{
|
|
ulint len2 = len;
|
|
|
|
if (field1->len == UNIV_SQL_NULL || len == 0 || field1->len < len) {
|
|
len = field1->len;
|
|
}
|
|
|
|
if (field2->len == UNIV_SQL_NULL || len2 == 0 || field2->len < len2) {
|
|
len2 = field2->len;
|
|
}
|
|
|
|
return(len == len2
|
|
&& (len == UNIV_SQL_NULL
|
|
|| !memcmp(field1->data, field2->data, len)));
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Tests if dfield data length and content is equal to the given.
|
|
@return TRUE if equal */
|
|
UNIV_INLINE
|
|
ibool
|
|
dfield_data_is_binary_equal(
|
|
/*========================*/
|
|
const dfield_t* field, /*!< in: field */
|
|
ulint len, /*!< in: data length or UNIV_SQL_NULL */
|
|
const byte* data) /*!< in: data */
|
|
{
|
|
ut_ad(len != UNIV_SQL_DEFAULT);
|
|
return(len == dfield_get_len(field)
|
|
&& (!len || len == UNIV_SQL_NULL
|
|
|| !memcmp(dfield_get_data(field), data, len)));
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Gets info bits in a data tuple.
|
|
@return info bits */
|
|
UNIV_INLINE
|
|
ulint
|
|
dtuple_get_info_bits(
|
|
/*=================*/
|
|
const dtuple_t* tuple) /*!< in: tuple */
|
|
{
|
|
return(tuple->info_bits);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Sets info bits in a data tuple. */
|
|
UNIV_INLINE
|
|
void
|
|
dtuple_set_info_bits(
|
|
/*=================*/
|
|
dtuple_t* tuple, /*!< in: tuple */
|
|
ulint info_bits) /*!< in: info bits */
|
|
{
|
|
tuple->info_bits = byte(info_bits);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Gets number of fields used in record comparisons.
|
|
@return number of fields used in comparisons in rem0cmp.* */
|
|
UNIV_INLINE
|
|
uint16_t
|
|
dtuple_get_n_fields_cmp(
|
|
/*====================*/
|
|
const dtuple_t* tuple) /*!< in: tuple */
|
|
{
|
|
return(tuple->n_fields_cmp);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Sets number of fields used in record comparisons. */
|
|
UNIV_INLINE
|
|
void
|
|
dtuple_set_n_fields_cmp(
|
|
/*====================*/
|
|
dtuple_t* tuple, /*!< in: tuple */
|
|
ulint n_fields_cmp) /*!< in: number of fields used in
|
|
comparisons in rem0cmp.* */
|
|
{
|
|
ut_ad(n_fields_cmp <= tuple->n_fields);
|
|
tuple->n_fields_cmp = uint16_t(n_fields_cmp);
|
|
}
|
|
|
|
/** Creates a data tuple from an already allocated chunk of memory.
|
|
The size of the chunk must be at least DTUPLE_EST_ALLOC(n_fields).
|
|
The default value for number of fields used in record comparisons
|
|
for this tuple is n_fields.
|
|
@param[in,out] buf buffer to use
|
|
@param[in] buf_size buffer size
|
|
@param[in] n_fields number of field
|
|
@param[in] n_v_fields number of fields on virtual columns
|
|
@return created tuple (inside buf) */
|
|
UNIV_INLINE
|
|
dtuple_t*
|
|
dtuple_create_from_mem(
|
|
void* buf,
|
|
ulint buf_size,
|
|
ulint n_fields,
|
|
ulint n_v_fields)
|
|
{
|
|
dtuple_t* tuple;
|
|
ulint n_t_fields = n_fields + n_v_fields;
|
|
|
|
ut_a(buf_size >= DTUPLE_EST_ALLOC(n_t_fields));
|
|
|
|
tuple = (dtuple_t*) buf;
|
|
tuple->info_bits = 0;
|
|
tuple->n_fields = uint16_t(n_fields);
|
|
tuple->n_v_fields = uint16_t(n_v_fields);
|
|
tuple->n_fields_cmp = uint16_t(n_fields);
|
|
tuple->fields = (dfield_t*) &tuple[1];
|
|
if (n_v_fields > 0) {
|
|
tuple->v_fields = &tuple->fields[n_fields];
|
|
} else {
|
|
tuple->v_fields = NULL;
|
|
}
|
|
|
|
#ifdef UNIV_DEBUG
|
|
tuple->magic_n = DATA_TUPLE_MAGIC_N;
|
|
|
|
{ /* In the debug version, initialize fields to an error value */
|
|
ulint i;
|
|
|
|
for (i = 0; i < n_t_fields; i++) {
|
|
dfield_t* field;
|
|
|
|
if (i >= n_fields) {
|
|
field = dtuple_get_nth_v_field(
|
|
tuple, i - n_fields);
|
|
} else {
|
|
field = dtuple_get_nth_field(tuple, i);
|
|
}
|
|
|
|
dfield_set_len(field, UNIV_SQL_NULL);
|
|
field->data = &data_error;
|
|
dfield_get_type(field)->mtype = DATA_ERROR;
|
|
dfield_get_type(field)->prtype = DATA_ERROR;
|
|
}
|
|
}
|
|
#endif
|
|
MEM_CHECK_ADDRESSABLE(tuple->fields, n_t_fields
|
|
* sizeof *tuple->fields);
|
|
MEM_UNDEFINED(tuple->fields, n_t_fields * sizeof *tuple->fields);
|
|
return(tuple);
|
|
}
|
|
|
|
/** Duplicate the virtual field data in a dtuple_t
|
|
@param[in,out] vrow dtuple contains the virtual fields
|
|
@param[in,out] heap heap memory to use */
|
|
UNIV_INLINE
|
|
void
|
|
dtuple_dup_v_fld(dtuple_t* vrow, mem_heap_t* heap)
|
|
{
|
|
for (ulint i = 0; i < vrow->n_v_fields; i++) {
|
|
dfield_t* dfield = dtuple_get_nth_v_field(vrow, i);
|
|
dfield_dup(dfield, heap);
|
|
}
|
|
}
|
|
|
|
/** Initialize the virtual field data in a dtuple_t
|
|
@param[in,out] vrow dtuple contains the virtual fields */
|
|
UNIV_INLINE
|
|
void
|
|
dtuple_init_v_fld(dtuple_t* vrow)
|
|
{
|
|
for (ulint i = 0; i < vrow->n_v_fields; i++) {
|
|
dfield_t* dfield = dtuple_get_nth_v_field(vrow, i);
|
|
dfield_get_type(dfield)->mtype = DATA_MISSING;
|
|
dfield_set_len(dfield, UNIV_SQL_NULL);
|
|
}
|
|
}
|
|
|
|
/**********************************************************//**
|
|
Creates a data tuple to a memory heap. The default value for number
|
|
of fields used in record comparisons for this tuple is n_fields.
|
|
@return own: created tuple */
|
|
UNIV_INLINE
|
|
dtuple_t*
|
|
dtuple_create(
|
|
/*==========*/
|
|
mem_heap_t* heap, /*!< in: memory heap where the tuple
|
|
is created, DTUPLE_EST_ALLOC(n_fields)
|
|
bytes will be allocated from this heap */
|
|
ulint n_fields) /*!< in: number of fields */
|
|
{
|
|
return(dtuple_create_with_vcol(heap, n_fields, 0));
|
|
}
|
|
|
|
/** Creates a data tuple with virtual columns to a memory heap.
|
|
@param[in] heap memory heap where the tuple is created
|
|
@param[in] n_fields number of fields
|
|
@param[in] n_v_fields number of fields on virtual col
|
|
@return own: created tuple */
|
|
UNIV_INLINE
|
|
dtuple_t*
|
|
dtuple_create_with_vcol(
|
|
mem_heap_t* heap,
|
|
ulint n_fields,
|
|
ulint n_v_fields)
|
|
{
|
|
void* buf;
|
|
ulint buf_size;
|
|
dtuple_t* tuple;
|
|
|
|
ut_ad(heap);
|
|
|
|
buf_size = DTUPLE_EST_ALLOC(n_fields + n_v_fields);
|
|
buf = mem_heap_alloc(heap, buf_size);
|
|
|
|
tuple = dtuple_create_from_mem(buf, buf_size, n_fields, n_v_fields);
|
|
|
|
return(tuple);
|
|
}
|
|
|
|
inline void dtuple_set_n_fields(dtuple_t *tuple, ulint n_fields)
|
|
{
|
|
tuple->n_fields= uint16_t(n_fields);
|
|
tuple->n_fields_cmp= uint16_t(n_fields);
|
|
}
|
|
|
|
/** Copies a data tuple's virtual fields to another. This is a shallow copy;
|
|
@param[in,out] d_tuple destination tuple
|
|
@param[in] s_tuple source tuple */
|
|
UNIV_INLINE
|
|
void
|
|
dtuple_copy_v_fields(
|
|
dtuple_t* d_tuple,
|
|
const dtuple_t* s_tuple)
|
|
{
|
|
|
|
ulint n_v_fields = dtuple_get_n_v_fields(d_tuple);
|
|
ut_ad(n_v_fields == dtuple_get_n_v_fields(s_tuple));
|
|
|
|
for (ulint i = 0; i < n_v_fields; i++) {
|
|
dfield_copy(dtuple_get_nth_v_field(d_tuple, i),
|
|
dtuple_get_nth_v_field(s_tuple, i));
|
|
}
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Copies a data tuple to another. This is a shallow copy; if a deep copy
|
|
is desired, dfield_dup() will have to be invoked on each field.
|
|
@return own: copy of tuple */
|
|
UNIV_INLINE
|
|
dtuple_t*
|
|
dtuple_copy(
|
|
/*========*/
|
|
const dtuple_t* tuple, /*!< in: tuple to copy from */
|
|
mem_heap_t* heap) /*!< in: memory heap
|
|
where the tuple is created */
|
|
{
|
|
ulint n_fields = dtuple_get_n_fields(tuple);
|
|
ulint n_v_fields = dtuple_get_n_v_fields(tuple);
|
|
dtuple_t* new_tuple = dtuple_create_with_vcol(
|
|
heap, tuple->n_fields, tuple->n_v_fields);
|
|
ulint i;
|
|
|
|
for (i = 0; i < n_fields; i++) {
|
|
dfield_copy(dtuple_get_nth_field(new_tuple, i),
|
|
dtuple_get_nth_field(tuple, i));
|
|
}
|
|
|
|
for (i = 0; i < n_v_fields; i++) {
|
|
dfield_copy(dtuple_get_nth_v_field(new_tuple, i),
|
|
dtuple_get_nth_v_field(tuple, i));
|
|
}
|
|
|
|
return(new_tuple);
|
|
}
|
|
|
|
/**********************************************************//**
|
|
The following function returns the sum of data lengths of a tuple. The space
|
|
occupied by the field structs or the tuple struct is not counted. Neither
|
|
is possible space in externally stored parts of the field.
|
|
@return sum of data lengths */
|
|
UNIV_INLINE
|
|
ulint
|
|
dtuple_get_data_size(
|
|
/*=================*/
|
|
const dtuple_t* tuple, /*!< in: typed data tuple */
|
|
ulint comp) /*!< in: nonzero=ROW_FORMAT=COMPACT */
|
|
{
|
|
const dfield_t* field;
|
|
ulint n_fields;
|
|
ulint len;
|
|
ulint i;
|
|
ulint sum = 0;
|
|
|
|
ut_ad(dtuple_check_typed(tuple));
|
|
ut_ad(tuple->magic_n == DATA_TUPLE_MAGIC_N);
|
|
|
|
n_fields = tuple->n_fields;
|
|
|
|
for (i = 0; i < n_fields; i++) {
|
|
field = dtuple_get_nth_field(tuple, i);
|
|
len = dfield_get_len(field);
|
|
|
|
if (len == UNIV_SQL_NULL) {
|
|
len = dtype_get_sql_null_size(dfield_get_type(field),
|
|
comp);
|
|
}
|
|
|
|
sum += len;
|
|
}
|
|
|
|
return(sum);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Computes the number of externally stored fields in a data tuple.
|
|
@return number of externally stored fields */
|
|
UNIV_INLINE
|
|
ulint
|
|
dtuple_get_n_ext(
|
|
/*=============*/
|
|
const dtuple_t* tuple) /*!< in: tuple */
|
|
{
|
|
ulint n_ext = 0;
|
|
ulint n_fields = tuple->n_fields;
|
|
ulint i;
|
|
|
|
ut_ad(dtuple_check_typed(tuple));
|
|
ut_ad(tuple->magic_n == DATA_TUPLE_MAGIC_N);
|
|
|
|
for (i = 0; i < n_fields; i++) {
|
|
n_ext += dtuple_get_nth_field(tuple, i)->ext;
|
|
}
|
|
|
|
return(n_ext);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Sets types of fields binary in a tuple. */
|
|
UNIV_INLINE
|
|
void
|
|
dtuple_set_types_binary(
|
|
/*====================*/
|
|
dtuple_t* tuple, /*!< in: data tuple */
|
|
ulint n) /*!< in: number of fields to set */
|
|
{
|
|
dtype_t* dfield_type;
|
|
ulint i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
dfield_type = dfield_get_type(dtuple_get_nth_field(tuple, i));
|
|
dtype_set(dfield_type, DATA_BINARY, 0, 0);
|
|
}
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Writes an SQL null field full of zeros. */
|
|
UNIV_INLINE
|
|
void
|
|
data_write_sql_null(
|
|
/*================*/
|
|
byte* data, /*!< in: pointer to a buffer of size len */
|
|
ulint len) /*!< in: SQL null size in bytes */
|
|
{
|
|
memset(data, 0, len);
|
|
}
|
|
|
|
/** Checks if a dtuple contains an SQL null value.
|
|
@param tuple tuple
|
|
@param fields_number number of fields in the tuple to check
|
|
@return true if some field is SQL null */
|
|
UNIV_INLINE
|
|
bool dtuple_contains_null(const dtuple_t *tuple, ulint fields_number)
|
|
{
|
|
ulint n= fields_number ? fields_number : dtuple_get_n_fields(tuple);
|
|
for (ulint i= 0; i < n; i++)
|
|
if (dfield_is_null(dtuple_get_nth_field(tuple, i)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/**************************************************************//**
|
|
Frees the memory in a big rec vector. */
|
|
UNIV_INLINE
|
|
void
|
|
dtuple_big_rec_free(
|
|
/*================*/
|
|
big_rec_t* vector) /*!< in, own: big rec vector; it is
|
|
freed in this function */
|
|
{
|
|
mem_heap_free(vector->heap);
|
|
}
|