mariadb/storage/innobase/include/data0data.h
Marko Mäkelä 4dcb1b575b MDEV-35049: Use CRC-32C and avoid allocating heap
For the adaptive hash index, dtuple_fold() and rec_fold() were employing
a slow rolling hash algorithm, computing hash values ("fold") for one
field and one byte at a time, while depending on calls to
rec_get_offsets().

We already have optimized implementations of CRC-32C and have been
successfully using that function in some other InnoDB tables, but not
yet in the adaptive hash index.

Any linear function such as any CRC will fail the avalanche test that
any cryptographically secure hash function is expected to pass:
any single-bit change in the input key should affect on average half
the bits in the output.

But we always were happy with less than cryptographically secure:
in fact, ut_fold_ulint_pair() or ut_fold_binary() are just about as
linear as any CRC, using a combination of multiplication and addition,
partly carry-less. It is worth noting that exclusive-or corresponds to
carry-less subtraction or addition in a binary Galois field, or GF(2).

We only need some way of reducing key prefixes into hash values.
The CRC-32C should be better than a Rabin–Karp rolling hash algorithm.
Compared to the old hash algorithm, it has the drawback that there will
be only 32 bits of entropy before we choose the hash table cell by a
modulus operation. The size of each adaptive hash index array is
(innodb_buffer_pool_size / 512) / innodb_adaptive_hash_index_parts.
With the maximum number of partitions (512), we would not exceed 1<<32
elements per array until the buffer pool size exceeds 1<<50 bytes (1 PiB).
We would hit other limits before that: the virtual address space on many
contemporary 64-bit processor implementations is only 48 bits (256 TiB).
So, we can simply go for the SIMD accelerated CRC-32C.

rec_fold(): Take a combined parameter n_bytes_fields. Determine the
length of each field on the fly, and compute CRC-32C over a single
contiguous range of bytes, from the start of the record payload area
to the end of the last full or partial field. For secondary index records
in ROW_FORMAT=REDUNDANT, also the data area that is reserved for NULL
values (to facilitate in-place updates between NULL and NOT NULL values)
will be included in the count. Luckily, InnoDB always zero-initialized
such unused area; refer to data_write_sql_null() in
rec_convert_dtuple_to_rec_old(). For other than ROW_FORMAT=REDUNDANT,
no space is allocated for NULL values, and therefore the CRC-32C will
only cover the actual payload of the key prefix.

dtuple_fold(): For ROW_FORMAT=REDUNDANT, include the dummy NULL values
in the CRC-32C, so that the values will be comparable with rec_fold().

innodb_ahi-t: A unit test for rec_fold() and dtuple_fold().

btr_search_build_page_hash_index(), btr_search_drop_page_hash_index():
Use a fixed-size stack buffer for computing the fold values, to avoid
dynamic memory allocation.

btr_search_drop_page_hash_index(): Do not release part.latch if we
need to invoke multiple batches of rec_fold().

dtuple_t: Allocate fewer bits for the fields. The maximum number of
data fields is about 1023, so uint16_t will be fine for them. The
info_bits is stored in less than 1 byte.

ut_pair_min(), ut_pair_cmp(): Remove. We can actually combine and compare
int(n_fields << 16 | n_bytes).

PAGE_CUR_LE_OR_EXTENDS, PAGE_CUR_DBG: Remove. These were never defined,
because they would only work with latin1_swedish_ci if at all.

btr_cur_t::check_mismatch(): Replaces !btr_search_check_guess().

cmp_dtuple_rec_bytes(): Replaces cmp_dtuple_rec_with_match_bytes().
Determine the offsets of fields on the fly.

page_cur_try_search_shortcut_bytes(): This caller of
cmp_dtuple_rec_bytes() will not be invoked on the change buffer tree.

cmp_dtuple_rec_leaf(): Replaces cmp_dtuple_rec_with_match()
for comparing leaf-page records.

buf_block_t::ahi_left_bytes_fields: Consolidated Atomic_relaxed<uint32_t>
of curr_left_side << 31 | curr_n_bytes << 16 | curr_n_fields.
The other set of parameters (n_fields, n_bytes, left_side) was removed
as redundant.

btr_search_update_hash_node_on_insert(): Merged to
btr_search_update_hash_on_insert().

btr_search_build_page_hash_index(): Take combined left_bytes_fields
instead of n_fields, n_bytes, left_side.

btr_search_update_block_hash_info(), btr_search_update_hash_ref():
Merged to btr_search_info_update_hash().

btr_cur_t::n_bytes_fields: Replaces n_bytes << 16 | n_fields.

We also remove many redundant checks of btr_search.enabled.
If we are holding any btr_sea::partition::latch, then a nonnull pointer
in buf_block_t::index must imply that the adaptive hash index is enabled.

Reviewed by: Vladislav Lesin
2025-01-10 16:39:44 +02:00

688 lines
22 KiB
C++

/*****************************************************************************
Copyright (c) 1994, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2017, 2022, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/********************************************************************//**
@file include/data0data.h
SQL data field and tuple
Created 5/30/1994 Heikki Tuuri
*************************************************************************/
#ifndef data0data_h
#define data0data_h
#include "data0types.h"
#include "data0type.h"
#include "mem0mem.h"
#include "dict0types.h"
#include "btr0types.h"
#include <vector>
#include <ostream>
/** Storage for overflow data in a big record, that is, a clustered
index record which needs external storage of data fields */
struct big_rec_t;
struct upd_t;
/** Dummy variable to catch access to uninitialized fields. In the
debug version, dtuple_create() will make all fields of dtuple_t point
to data_error. */
ut_d(extern byte data_error);
/*********************************************************************//**
Sets the type struct of SQL data field. */
UNIV_INLINE
void
dfield_set_type(
/*============*/
dfield_t* field, /*!< in: SQL data field */
const dtype_t* type); /*!< in: pointer to data type struct */
/*********************************************************************//**
Sets length in a field. */
UNIV_INLINE
void
dfield_set_len(
/*===========*/
dfield_t* field, /*!< in: field */
ulint len) /*!< in: length or UNIV_SQL_NULL */
MY_ATTRIBUTE((nonnull));
/** Gets spatial status for "external storage"
@param[in,out] field field */
UNIV_INLINE
spatial_status_t
dfield_get_spatial_status(
const dfield_t* field);
/** Sets spatial status for "external storage"
@param[in,out] field field
@param[in] spatial_status spatial status */
UNIV_INLINE
void
dfield_set_spatial_status(
dfield_t* field,
spatial_status_t spatial_status);
/*********************************************************************//**
Sets pointer to the data and length in a field. */
UNIV_INLINE
void
dfield_set_data(
/*============*/
dfield_t* field, /*!< in: field */
const void* data, /*!< in: data */
ulint len) /*!< in: length or UNIV_SQL_NULL */
MY_ATTRIBUTE((nonnull(1)));
/*********************************************************************//**
Sets pointer to the data and length in a field. */
UNIV_INLINE
void
dfield_write_mbr(
/*=============*/
dfield_t* field, /*!< in: field */
const double* mbr) /*!< in: data */
MY_ATTRIBUTE((nonnull(1)));
/*********************************************************************//**
Sets a data field to SQL NULL. */
UNIV_INLINE
void
dfield_set_null(
/*============*/
dfield_t* field) /*!< in/out: field */
MY_ATTRIBUTE((nonnull));
/**********************************************************************//**
Writes an SQL null field full of zeros. */
UNIV_INLINE
void
data_write_sql_null(
/*================*/
byte* data, /*!< in: pointer to a buffer of size len */
ulint len) /*!< in: SQL null size in bytes */
MY_ATTRIBUTE((nonnull));
/*********************************************************************//**
Copies the data and len fields. */
UNIV_INLINE
void
dfield_copy_data(
/*=============*/
dfield_t* field1, /*!< out: field to copy to */
const dfield_t* field2); /*!< in: field to copy from */
/*********************************************************************//**
Copies a data field to another. */
UNIV_INLINE
void
dfield_copy(
/*========*/
dfield_t* field1, /*!< out: field to copy to */
const dfield_t* field2) /*!< in: field to copy from */
MY_ATTRIBUTE((nonnull));
/*********************************************************************//**
Copies the data pointed to by a data field. */
UNIV_INLINE
void
dfield_dup(
/*=======*/
dfield_t* field, /*!< in/out: data field */
mem_heap_t* heap) /*!< in: memory heap where allocated */
MY_ATTRIBUTE((nonnull));
/*********************************************************************//**
Tests if two data fields are equal.
If len==0, tests the data length and content for equality.
If len>0, tests the first len bytes of the content for equality.
@return TRUE if both fields are NULL or if they are equal */
UNIV_INLINE
ibool
dfield_datas_are_binary_equal(
/*==========================*/
const dfield_t* field1, /*!< in: field */
const dfield_t* field2, /*!< in: field */
ulint len) /*!< in: maximum prefix to compare,
or 0 to compare the whole field length */
MY_ATTRIBUTE((nonnull, warn_unused_result));
/*********************************************************************//**
Tests if dfield data length and content is equal to the given.
@return TRUE if equal */
UNIV_INLINE
ibool
dfield_data_is_binary_equal(
/*========================*/
const dfield_t* field, /*!< in: field */
ulint len, /*!< in: data length or UNIV_SQL_NULL */
const byte* data) /*!< in: data */
MY_ATTRIBUTE((nonnull(1), warn_unused_result));
/*********************************************************************//**
Gets info bits in a data tuple.
@return info bits */
UNIV_INLINE
ulint
dtuple_get_info_bits(
/*=================*/
const dtuple_t* tuple) /*!< in: tuple */
MY_ATTRIBUTE((nonnull, warn_unused_result));
/*********************************************************************//**
Sets info bits in a data tuple. */
UNIV_INLINE
void
dtuple_set_info_bits(
/*=================*/
dtuple_t* tuple, /*!< in: tuple */
ulint info_bits) /*!< in: info bits */
MY_ATTRIBUTE((nonnull));
/*********************************************************************//**
Gets number of fields used in record comparisons.
@return number of fields used in comparisons in rem0cmp.* */
UNIV_INLINE
uint16_t
dtuple_get_n_fields_cmp(
/*====================*/
const dtuple_t* tuple) /*!< in: tuple */
MY_ATTRIBUTE((nonnull, warn_unused_result));
/*********************************************************************//**
Gets number of fields used in record comparisons. */
UNIV_INLINE
void
dtuple_set_n_fields_cmp(
/*====================*/
dtuple_t* tuple, /*!< in: tuple */
ulint n_fields_cmp) /*!< in: number of fields used in
comparisons in rem0cmp.* */
MY_ATTRIBUTE((nonnull));
/* Estimate the number of bytes that are going to be allocated when
creating a new dtuple_t object */
#define DTUPLE_EST_ALLOC(n_fields) \
(sizeof(dtuple_t) + (n_fields) * sizeof(dfield_t))
/** Creates a data tuple from an already allocated chunk of memory.
The size of the chunk must be at least DTUPLE_EST_ALLOC(n_fields).
The default value for number of fields used in record comparisons
for this tuple is n_fields.
@param[in,out] buf buffer to use
@param[in] buf_size buffer size
@param[in] n_fields number of field
@param[in] n_v_fields number of fields on virtual columns
@return created tuple (inside buf) */
UNIV_INLINE
dtuple_t*
dtuple_create_from_mem(
void* buf,
ulint buf_size,
ulint n_fields,
ulint n_v_fields)
MY_ATTRIBUTE((nonnull, warn_unused_result));
/**********************************************************//**
Creates a data tuple to a memory heap. The default value for number
of fields used in record comparisons for this tuple is n_fields.
@return own: created tuple */
UNIV_INLINE
dtuple_t*
dtuple_create(
/*==========*/
mem_heap_t* heap, /*!< in: memory heap where the tuple
is created, DTUPLE_EST_ALLOC(n_fields)
bytes will be allocated from this heap */
ulint n_fields)/*!< in: number of fields */
MY_ATTRIBUTE((nonnull, malloc));
/** Initialize the virtual field data in a dtuple_t
@param[in,out] vrow dtuple contains the virtual fields */
UNIV_INLINE void dtuple_init_v_fld(dtuple_t* vrow);
/** Duplicate the virtual field data in a dtuple_t
@param[in,out] vrow dtuple contains the virtual fields
@param[in] heap heap memory to use */
UNIV_INLINE void dtuple_dup_v_fld(dtuple_t* vrow, mem_heap_t* heap);
/** Creates a data tuple with possible virtual columns to a memory heap.
@param[in] heap memory heap where the tuple is created
@param[in] n_fields number of fields
@param[in] n_v_fields number of fields on virtual col
@return own: created tuple */
UNIV_INLINE
dtuple_t*
dtuple_create_with_vcol(
mem_heap_t* heap,
ulint n_fields,
ulint n_v_fields);
/*********************************************************************//**
Sets number of fields used in a tuple. Normally this is set in
dtuple_create, but if you want later to set it smaller, you can use this. */
inline
void
dtuple_set_n_fields(
/*================*/
dtuple_t* tuple, /*!< in: tuple */
ulint n_fields) /*!< in: number of fields */
MY_ATTRIBUTE((nonnull));
/** Copies a data tuple's virtaul fields to another. This is a shallow copy;
@param[in,out] d_tuple destination tuple
@param[in] s_tuple source tuple */
UNIV_INLINE
void
dtuple_copy_v_fields(
dtuple_t* d_tuple,
const dtuple_t* s_tuple);
/*********************************************************************//**
Copies a data tuple to another. This is a shallow copy; if a deep copy
is desired, dfield_dup() will have to be invoked on each field.
@return own: copy of tuple */
UNIV_INLINE
dtuple_t*
dtuple_copy(
/*========*/
const dtuple_t* tuple, /*!< in: tuple to copy from */
mem_heap_t* heap) /*!< in: memory heap
where the tuple is created */
MY_ATTRIBUTE((nonnull, malloc));
/**********************************************************//**
The following function returns the sum of data lengths of a tuple. The space
occupied by the field structs or the tuple struct is not counted.
@return sum of data lens */
UNIV_INLINE
ulint
dtuple_get_data_size(
/*=================*/
const dtuple_t* tuple, /*!< in: typed data tuple */
ulint comp) /*!< in: nonzero=ROW_FORMAT=COMPACT */
MY_ATTRIBUTE((nonnull));
/*********************************************************************//**
Computes the number of externally stored fields in a data tuple.
@return number of fields */
UNIV_INLINE
ulint
dtuple_get_n_ext(
/*=============*/
const dtuple_t* tuple) /*!< in: tuple */
MY_ATTRIBUTE((nonnull));
/*******************************************************************//**
Sets types of fields binary in a tuple. */
UNIV_INLINE
void
dtuple_set_types_binary(
/*====================*/
dtuple_t* tuple, /*!< in: data tuple */
ulint n) /*!< in: number of fields to set */
MY_ATTRIBUTE((nonnull));
/** Checks if a dtuple contains an SQL null value.
@param tuple tuple
@param fields_number number of fields in the tuple to check
@return true if some field is SQL null */
UNIV_INLINE
bool dtuple_contains_null(const dtuple_t *tuple, ulint fields_number = 0);
/**********************************************************//**
Checks that a data field is typed. Asserts an error if not.
@return TRUE if ok */
ibool
dfield_check_typed(
/*===============*/
const dfield_t* field) /*!< in: data field */
MY_ATTRIBUTE((nonnull, warn_unused_result));
/**********************************************************//**
Checks that a data tuple is typed. Asserts an error if not.
@return TRUE if ok */
ibool
dtuple_check_typed(
/*===============*/
const dtuple_t* tuple) /*!< in: tuple */
MY_ATTRIBUTE((nonnull, warn_unused_result));
#ifdef UNIV_DEBUG
/**********************************************************//**
Validates the consistency of a tuple which must be complete, i.e,
all fields must have been set.
@return TRUE if ok */
ibool
dtuple_validate(
/*============*/
const dtuple_t* tuple) /*!< in: tuple */
MY_ATTRIBUTE((nonnull, warn_unused_result));
#endif /* UNIV_DEBUG */
/*************************************************************//**
Pretty prints a dfield value according to its data type. */
void
dfield_print(
/*=========*/
const dfield_t* dfield) /*!< in: dfield */
MY_ATTRIBUTE((nonnull));
/*************************************************************//**
Pretty prints a dfield value according to its data type. Also the hex string
is printed if a string contains non-printable characters. */
void
dfield_print_also_hex(
/*==================*/
const dfield_t* dfield) /*!< in: dfield */
MY_ATTRIBUTE((nonnull));
/**********************************************************//**
The following function prints the contents of a tuple. */
void
dtuple_print(
/*=========*/
FILE* f, /*!< in: output stream */
const dtuple_t* tuple) /*!< in: tuple */
MY_ATTRIBUTE((nonnull));
/** Print the contents of a tuple.
@param[out] o output stream
@param[in] field array of data fields
@param[in] n number of data fields */
void
dfield_print(
std::ostream& o,
const dfield_t* field,
ulint n);
/** Print the contents of a tuple.
@param[out] o output stream
@param[in] tuple data tuple */
void
dtuple_print(
std::ostream& o,
const dtuple_t* tuple);
/** Print the contents of a tuple.
@param[out] o output stream
@param[in] tuple data tuple */
inline
std::ostream&
operator<<(std::ostream& o, const dtuple_t& tuple)
{
dtuple_print(o, &tuple);
return(o);
}
/**************************************************************//**
Moves parts of long fields in entry to the big record vector so that
the size of tuple drops below the maximum record size allowed in the
database. Moves data only from those fields which are not necessary
to determine uniquely the insertion place of the tuple in the index.
@return own: created big record vector, NULL if we are not able to
shorten the entry enough, i.e., if there are too many fixed-length or
short fields in entry or the index is clustered */
big_rec_t*
dtuple_convert_big_rec(
/*===================*/
dict_index_t* index, /*!< in: index */
upd_t* upd, /*!< in/out: update vector */
dtuple_t* entry, /*!< in/out: index entry */
ulint* n_ext) /*!< in/out: number of
externally stored columns */
MY_ATTRIBUTE((malloc, warn_unused_result));
/**************************************************************//**
Puts back to entry the data stored in vector. Note that to ensure the
fields in entry can accommodate the data, vector must have been created
from entry with dtuple_convert_big_rec. */
void
dtuple_convert_back_big_rec(
/*========================*/
dict_index_t* index, /*!< in: index */
dtuple_t* entry, /*!< in: entry whose data was put to vector */
big_rec_t* vector) /*!< in, own: big rec vector; it is
freed in this function */
MY_ATTRIBUTE((nonnull));
/**************************************************************//**
Frees the memory in a big rec vector. */
UNIV_INLINE
void
dtuple_big_rec_free(
/*================*/
big_rec_t* vector) /*!< in, own: big rec vector; it is
freed in this function */
MY_ATTRIBUTE((nonnull));
/*######################################################################*/
/** Structure for an SQL data field */
struct dfield_t{
void* data; /*!< pointer to data */
unsigned ext:1; /*!< TRUE=externally stored, FALSE=local */
unsigned spatial_status:2;
/*!< spatial status of externally stored field
in undo log for purge */
unsigned len; /*!< data length; UNIV_SQL_NULL if SQL null */
dtype_t type; /*!< type of data */
/** Create a deep copy of this object.
@param[in,out] heap memory heap in which the clone will be created
@return the cloned object */
dfield_t* clone(mem_heap_t* heap) const;
/** @return system field indicates history row */
bool vers_history_row() const
{
ut_ad(type.vers_sys_end());
if (type.mtype == DATA_FIXBINARY) {
ut_ad(len == sizeof timestamp_max_bytes);
return !IS_MAX_TIMESTAMP(data);
} else {
ut_ad(type.mtype == DATA_INT);
ut_ad(len == sizeof trx_id_max_bytes);
return 0 != memcmp(data, trx_id_max_bytes, len);
}
ut_ad(0);
return false;
}
};
/** Structure for an SQL data tuple of fields (logical record) */
struct dtuple_t {
byte info_bits; /*!< info bits of an index record:
the default is 0; this field is used
if an index record is built from
a data tuple */
uint16_t n_fields; /*!< number of fields in dtuple */
uint16_t n_fields_cmp; /*!< number of fields which should
be used in comparison services
of rem0cmp.*; the index search
is performed by comparing only these
fields, others are ignored; the
default value in dtuple creation is
the same value as n_fields */
uint16_t n_v_fields; /*!< number of virtual fields */
dfield_t* fields; /*!< fields */
dfield_t* v_fields; /*!< fields on virtual column */
#ifdef UNIV_DEBUG
ulint magic_n; /*!< magic number, used in
debug assertions */
/** Value of dtuple_t::magic_n */
# define DATA_TUPLE_MAGIC_N 65478679
#endif /* UNIV_DEBUG */
/** Trim the tail of an index tuple before insert or update.
After instant ADD COLUMN, if the last fields of a clustered index tuple
match the default values that were explicitly specified or implied
during ADD COLUMN, there will be no need to store them.
NOTE: A page latch in the index must be held, so that the index
may not lose 'instantness' before the trimmed tuple has been
inserted or updated.
@param[in] index index possibly with instantly added columns */
void trim(const dict_index_t& index);
bool vers_history_row() const
{
for (ulint i = 0; i < n_fields; i++) {
const dfield_t* field = &fields[i];
if (field->type.vers_sys_end()) {
return field->vers_history_row();
}
}
return false;
}
/**
@param info_bits the info_bits of a data tuple
@return whether this is a hidden metadata record
for instant ADD COLUMN or ALTER TABLE */
static bool is_alter_metadata(ulint info_bits)
{
return UNIV_UNLIKELY(info_bits == REC_INFO_METADATA_ALTER);
}
/**
@param info_bits the info_bits of a data tuple
@return whether this is a hidden metadata record
for instant ADD COLUMN or ALTER TABLE */
static bool is_metadata(ulint info_bits)
{
return UNIV_UNLIKELY((info_bits & ~REC_INFO_DELETED_FLAG)
== REC_INFO_METADATA_ADD);
}
/** @return whether this is a hidden metadata record
for instant ALTER TABLE (not only ADD COLUMN) */
bool is_alter_metadata() const { return is_alter_metadata(info_bits); }
/** @return whether this is a hidden metadata record
for instant ADD COLUMN or ALTER TABLE */
bool is_metadata() const { return is_metadata(info_bits); }
/** Copy type information from index fields.
@param index index field to be copied */
inline void copy_field_types(const dict_index_t &index);
};
inline uint16_t dtuple_get_n_fields(const dtuple_t* tuple)
{ return tuple->n_fields; }
inline dtype_t* dfield_get_type(dfield_t* field) { return &field->type; }
inline const dtype_t* dfield_get_type(const dfield_t* field)
{ return &field->type; }
inline void* dfield_get_data(dfield_t* field)
{
ut_ad(field->len == UNIV_SQL_NULL || field->data != &data_error);
return field->data;
}
inline const void* dfield_get_data(const dfield_t* field)
{
ut_ad(field->len == UNIV_SQL_NULL || field->data != &data_error);
return field->data;
}
inline ulint dfield_get_len(const dfield_t* field) {
ut_ad(field->len == UNIV_SQL_NULL || field->data != &data_error);
ut_ad(field->len != UNIV_SQL_DEFAULT);
return field->len;
}
inline bool dfield_is_null(const dfield_t* field)
{ return field->len == UNIV_SQL_NULL; }
/** @return whether a column is to be stored off-page */
inline bool dfield_is_ext(const dfield_t* field)
{
ut_ad(!field->ext || field->len >= BTR_EXTERN_FIELD_REF_SIZE);
return static_cast<bool>(field->ext);
}
/** Set the "external storage" flag */
inline void dfield_set_ext(dfield_t* field) { field->ext = 1; }
/** Gets number of virtual fields in a data tuple.
@param[in] tuple dtuple to check
@return number of fields */
inline uint16_t
dtuple_get_n_v_fields(const dtuple_t* tuple) { return tuple->n_v_fields; }
inline const dfield_t* dtuple_get_nth_field(const dtuple_t* tuple, ulint n)
{
ut_ad(n < tuple->n_fields);
return &tuple->fields[n];
}
inline dfield_t* dtuple_get_nth_field(dtuple_t* tuple, ulint n)
{
ut_ad(n < tuple->n_fields);
return &tuple->fields[n];
}
/** Get a virtual column in a table row or an extended clustered index record.
@param[in] tuple tuple
@oaran[in] n the nth virtual field to get
@return nth virtual field */
inline const dfield_t* dtuple_get_nth_v_field(const dtuple_t* tuple, ulint n)
{
ut_ad(n < tuple->n_v_fields);
return &tuple->v_fields[n];
}
/** Get a virtual column in a table row or an extended clustered index record.
@param[in] tuple tuple
@oaran[in] n the nth virtual field to get
@return nth virtual field */
inline dfield_t* dtuple_get_nth_v_field(dtuple_t* tuple, ulint n)
{
ut_ad(n < tuple->n_v_fields);
return &tuple->v_fields[n];
}
/** A slot for a field in a big rec vector */
struct big_rec_field_t {
/** Constructor.
@param[in] field_no_ the field number
@param[in] len_ the data length
@param[in] data_ the data */
big_rec_field_t(ulint field_no_, ulint len_, const void* data_)
: field_no(field_no_),
len(len_),
data(data_)
{}
ulint field_no; /*!< field number in record */
ulint len; /*!< stored data length, in bytes */
const void* data; /*!< stored data */
};
/** Storage format for overflow data in a big record, that is, a
clustered index record which needs external storage of data fields */
struct big_rec_t {
mem_heap_t* heap; /*!< memory heap from which
allocated */
const ulint capacity; /*!< fields array size */
ulint n_fields; /*!< number of stored fields */
big_rec_field_t*fields; /*!< stored fields */
/** Constructor.
@param[in] max the capacity of the array of fields. */
explicit big_rec_t(const ulint max)
: heap(0),
capacity(max),
n_fields(0),
fields(0)
{}
/** Append one big_rec_field_t object to the end of array of fields */
void append(const big_rec_field_t& field)
{
ut_ad(n_fields < capacity);
fields[n_fields] = field;
n_fields++;
}
/** Allocate a big_rec_t object in the given memory heap, and for
storing n_fld number of fields.
@param[in] heap memory heap in which this object is allocated
@param[in] n_fld maximum number of fields that can be stored in
this object
@return the allocated object */
static big_rec_t* alloc(
mem_heap_t* heap,
ulint n_fld);
};
#include "data0data.inl"
#endif