mirror of
https://github.com/MariaDB/server.git
synced 2025-04-06 07:15:33 +02:00

For the adaptive hash index, dtuple_fold() and rec_fold() were employing a slow rolling hash algorithm, computing hash values ("fold") for one field and one byte at a time, while depending on calls to rec_get_offsets(). We already have optimized implementations of CRC-32C and have been successfully using that function in some other InnoDB tables, but not yet in the adaptive hash index. Any linear function such as any CRC will fail the avalanche test that any cryptographically secure hash function is expected to pass: any single-bit change in the input key should affect on average half the bits in the output. But we always were happy with less than cryptographically secure: in fact, ut_fold_ulint_pair() or ut_fold_binary() are just about as linear as any CRC, using a combination of multiplication and addition, partly carry-less. It is worth noting that exclusive-or corresponds to carry-less subtraction or addition in a binary Galois field, or GF(2). We only need some way of reducing key prefixes into hash values. The CRC-32C should be better than a Rabin–Karp rolling hash algorithm. Compared to the old hash algorithm, it has the drawback that there will be only 32 bits of entropy before we choose the hash table cell by a modulus operation. The size of each adaptive hash index array is (innodb_buffer_pool_size / 512) / innodb_adaptive_hash_index_parts. With the maximum number of partitions (512), we would not exceed 1<<32 elements per array until the buffer pool size exceeds 1<<50 bytes (1 PiB). We would hit other limits before that: the virtual address space on many contemporary 64-bit processor implementations is only 48 bits (256 TiB). So, we can simply go for the SIMD accelerated CRC-32C. rec_fold(): Take a combined parameter n_bytes_fields. Determine the length of each field on the fly, and compute CRC-32C over a single contiguous range of bytes, from the start of the record payload area to the end of the last full or partial field. For secondary index records in ROW_FORMAT=REDUNDANT, also the data area that is reserved for NULL values (to facilitate in-place updates between NULL and NOT NULL values) will be included in the count. Luckily, InnoDB always zero-initialized such unused area; refer to data_write_sql_null() in rec_convert_dtuple_to_rec_old(). For other than ROW_FORMAT=REDUNDANT, no space is allocated for NULL values, and therefore the CRC-32C will only cover the actual payload of the key prefix. dtuple_fold(): For ROW_FORMAT=REDUNDANT, include the dummy NULL values in the CRC-32C, so that the values will be comparable with rec_fold(). innodb_ahi-t: A unit test for rec_fold() and dtuple_fold(). btr_search_build_page_hash_index(), btr_search_drop_page_hash_index(): Use a fixed-size stack buffer for computing the fold values, to avoid dynamic memory allocation. btr_search_drop_page_hash_index(): Do not release part.latch if we need to invoke multiple batches of rec_fold(). dtuple_t: Allocate fewer bits for the fields. The maximum number of data fields is about 1023, so uint16_t will be fine for them. The info_bits is stored in less than 1 byte. ut_pair_min(), ut_pair_cmp(): Remove. We can actually combine and compare int(n_fields << 16 | n_bytes). PAGE_CUR_LE_OR_EXTENDS, PAGE_CUR_DBG: Remove. These were never defined, because they would only work with latin1_swedish_ci if at all. btr_cur_t::check_mismatch(): Replaces !btr_search_check_guess(). cmp_dtuple_rec_bytes(): Replaces cmp_dtuple_rec_with_match_bytes(). Determine the offsets of fields on the fly. page_cur_try_search_shortcut_bytes(): This caller of cmp_dtuple_rec_bytes() will not be invoked on the change buffer tree. cmp_dtuple_rec_leaf(): Replaces cmp_dtuple_rec_with_match() for comparing leaf-page records. buf_block_t::ahi_left_bytes_fields: Consolidated Atomic_relaxed<uint32_t> of curr_left_side << 31 | curr_n_bytes << 16 | curr_n_fields. The other set of parameters (n_fields, n_bytes, left_side) was removed as redundant. btr_search_update_hash_node_on_insert(): Merged to btr_search_update_hash_on_insert(). btr_search_build_page_hash_index(): Take combined left_bytes_fields instead of n_fields, n_bytes, left_side. btr_search_update_block_hash_info(), btr_search_update_hash_ref(): Merged to btr_search_info_update_hash(). btr_cur_t::n_bytes_fields: Replaces n_bytes << 16 | n_fields. We also remove many redundant checks of btr_search.enabled. If we are holding any btr_sea::partition::latch, then a nonnull pointer in buf_block_t::index must imply that the adaptive hash index is enabled. Reviewed by: Vladislav Lesin
807 lines
20 KiB
C++
807 lines
20 KiB
C++
/*****************************************************************************
|
|
|
|
Copyright (c) 1994, 2016, Oracle and/or its affiliates. All Rights Reserved.
|
|
Copyright (c) 2017, 2022, MariaDB Corporation.
|
|
|
|
This program is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free Software
|
|
Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
|
|
|
|
*****************************************************************************/
|
|
|
|
/********************************************************************//**
|
|
@file data/data0data.cc
|
|
SQL data field and tuple
|
|
|
|
Created 5/30/1994 Heikki Tuuri
|
|
*************************************************************************/
|
|
|
|
#include "data0data.h"
|
|
#include "rem0rec.h"
|
|
#include "rem0cmp.h"
|
|
#include "page0page.h"
|
|
#include "page0zip.h"
|
|
#include "dict0dict.h"
|
|
#include "btr0cur.h"
|
|
#include "row0upd.h"
|
|
|
|
#ifdef UNIV_DEBUG
|
|
/** Dummy variable to catch access to uninitialized fields. In the
|
|
debug version, dtuple_create() will make all fields of dtuple_t point
|
|
to data_error. */
|
|
ut_d(byte data_error);
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/** Trim the tail of an index tuple before insert or update.
|
|
After instant ADD COLUMN, if the last fields of a clustered index tuple
|
|
match the default values that were explicitly specified or implied during
|
|
ADD COLUMN, there will be no need to store them.
|
|
NOTE: A page latch in the index must be held, so that the index
|
|
may not lose 'instantness' before the trimmed tuple has been
|
|
inserted or updated.
|
|
@param[in] index index possibly with instantly added columns */
|
|
void dtuple_t::trim(const dict_index_t& index)
|
|
{
|
|
ut_ad(n_fields >= index.n_core_fields);
|
|
ut_ad(n_fields <= index.n_fields);
|
|
ut_ad(index.is_instant());
|
|
|
|
ulint i = n_fields;
|
|
for (; i > index.n_core_fields; i--) {
|
|
const dfield_t* dfield = dtuple_get_nth_field(this, i - 1);
|
|
const dict_col_t* col = dict_index_get_nth_col(&index, i - 1);
|
|
|
|
if (col->is_dropped()) {
|
|
continue;
|
|
}
|
|
|
|
ut_ad(col->is_added());
|
|
ulint len = dfield_get_len(dfield);
|
|
if (len != col->def_val.len) {
|
|
break;
|
|
}
|
|
|
|
if (len != 0 && len != UNIV_SQL_NULL
|
|
&& dfield->data != col->def_val.data
|
|
&& memcmp(dfield->data, col->def_val.data, len)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
n_fields = uint16_t(i);
|
|
}
|
|
|
|
/**********************************************************//**
|
|
Checks that a data field is typed.
|
|
@return TRUE if ok */
|
|
static
|
|
ibool
|
|
dfield_check_typed_no_assert(
|
|
/*=========================*/
|
|
const dfield_t* field) /*!< in: data field */
|
|
{
|
|
if (dfield_get_type(field)->mtype > DATA_MTYPE_CURRENT_MAX
|
|
|| dfield_get_type(field)->mtype < DATA_MTYPE_CURRENT_MIN) {
|
|
|
|
ib::error() << "Data field type "
|
|
<< dfield_get_type(field)->mtype
|
|
<< ", len " << dfield_get_len(field);
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/**********************************************************//**
|
|
Checks that a data tuple is typed.
|
|
@return TRUE if ok */
|
|
static
|
|
ibool
|
|
dtuple_check_typed_no_assert(
|
|
/*=========================*/
|
|
const dtuple_t* tuple) /*!< in: tuple */
|
|
{
|
|
const dfield_t* field;
|
|
ulint i;
|
|
|
|
if (dtuple_get_n_fields(tuple) > REC_MAX_N_FIELDS) {
|
|
ib::error() << "Index entry has "
|
|
<< dtuple_get_n_fields(tuple) << " fields";
|
|
dump:
|
|
fputs("InnoDB: Tuple contents: ", stderr);
|
|
dtuple_print(stderr, tuple);
|
|
putc('\n', stderr);
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
for (i = 0; i < dtuple_get_n_fields(tuple); i++) {
|
|
|
|
field = dtuple_get_nth_field(tuple, i);
|
|
|
|
if (!dfield_check_typed_no_assert(field)) {
|
|
goto dump;
|
|
}
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
#ifdef UNIV_DEBUG
|
|
/**********************************************************//**
|
|
Checks that a data field is typed. Asserts an error if not.
|
|
@return TRUE if ok */
|
|
ibool
|
|
dfield_check_typed(
|
|
/*===============*/
|
|
const dfield_t* field) /*!< in: data field */
|
|
{
|
|
if (dfield_get_type(field)->mtype > DATA_MTYPE_CURRENT_MAX
|
|
|| dfield_get_type(field)->mtype < DATA_MTYPE_CURRENT_MIN) {
|
|
|
|
ib::fatal() << "Data field type "
|
|
<< dfield_get_type(field)->mtype
|
|
<< ", len " << dfield_get_len(field);
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/**********************************************************//**
|
|
Checks that a data tuple is typed. Asserts an error if not.
|
|
@return TRUE if ok */
|
|
ibool
|
|
dtuple_check_typed(
|
|
/*===============*/
|
|
const dtuple_t* tuple) /*!< in: tuple */
|
|
{
|
|
const dfield_t* field;
|
|
ulint i;
|
|
|
|
for (i = 0; i < dtuple_get_n_fields(tuple); i++) {
|
|
|
|
field = dtuple_get_nth_field(tuple, i);
|
|
|
|
ut_a(dfield_check_typed(field));
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/**********************************************************//**
|
|
Validates the consistency of a tuple which must be complete, i.e,
|
|
all fields must have been set.
|
|
@return TRUE if ok */
|
|
ibool
|
|
dtuple_validate(
|
|
/*============*/
|
|
const dtuple_t* tuple) /*!< in: tuple */
|
|
{
|
|
ut_ad(tuple->magic_n == DATA_TUPLE_MAGIC_N);
|
|
#ifdef HAVE_valgrind
|
|
const ulint n_fields = dtuple_get_n_fields(tuple);
|
|
|
|
for (ulint i = 0; i < n_fields; i++) {
|
|
const dfield_t* field = dtuple_get_nth_field(tuple, i);
|
|
|
|
if (!dfield_is_null(field)) {
|
|
MEM_CHECK_DEFINED(dfield_get_data(field),
|
|
dfield_get_len(field));
|
|
}
|
|
}
|
|
#endif /* HAVE_valgrind */
|
|
ut_ad(dtuple_check_typed(tuple));
|
|
|
|
return(TRUE);
|
|
}
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/*************************************************************//**
|
|
Pretty prints a dfield value according to its data type. */
|
|
void
|
|
dfield_print(
|
|
/*=========*/
|
|
const dfield_t* dfield) /*!< in: dfield */
|
|
{
|
|
const byte* data;
|
|
ulint len;
|
|
ulint i;
|
|
|
|
len = dfield_get_len(dfield);
|
|
data = static_cast<const byte*>(dfield_get_data(dfield));
|
|
|
|
if (dfield_is_null(dfield)) {
|
|
fputs("NULL", stderr);
|
|
|
|
return;
|
|
}
|
|
|
|
switch (dtype_get_mtype(dfield_get_type(dfield))) {
|
|
case DATA_CHAR:
|
|
case DATA_VARCHAR:
|
|
for (i = 0; i < len; i++) {
|
|
int c = *data++;
|
|
putc(isprint(c) ? c : ' ', stderr);
|
|
}
|
|
|
|
if (dfield_is_ext(dfield)) {
|
|
fputs("(external)", stderr);
|
|
}
|
|
break;
|
|
case DATA_INT:
|
|
ut_a(len == 4); /* only works for 32-bit integers */
|
|
fprintf(stderr, "%d", (int) mach_read_from_4(data));
|
|
break;
|
|
default:
|
|
ut_error;
|
|
}
|
|
}
|
|
|
|
/*************************************************************//**
|
|
Pretty prints a dfield value according to its data type. Also the hex string
|
|
is printed if a string contains non-printable characters. */
|
|
void
|
|
dfield_print_also_hex(
|
|
/*==================*/
|
|
const dfield_t* dfield) /*!< in: dfield */
|
|
{
|
|
const byte* data;
|
|
ulint len;
|
|
ulint prtype;
|
|
ulint i;
|
|
ibool print_also_hex;
|
|
|
|
len = dfield_get_len(dfield);
|
|
data = static_cast<const byte*>(dfield_get_data(dfield));
|
|
|
|
if (dfield_is_null(dfield)) {
|
|
fputs("NULL", stderr);
|
|
|
|
return;
|
|
}
|
|
|
|
prtype = dtype_get_prtype(dfield_get_type(dfield));
|
|
|
|
switch (dtype_get_mtype(dfield_get_type(dfield))) {
|
|
ib_id_t id;
|
|
case DATA_INT:
|
|
switch (len) {
|
|
ulint val;
|
|
case 1:
|
|
val = mach_read_from_1(data);
|
|
|
|
if (!(prtype & DATA_UNSIGNED)) {
|
|
val &= ~0x80U;
|
|
fprintf(stderr, "%ld", (long) val);
|
|
} else {
|
|
fprintf(stderr, "%lu", (ulong) val);
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
val = mach_read_from_2(data);
|
|
|
|
if (!(prtype & DATA_UNSIGNED)) {
|
|
val &= ~0x8000U;
|
|
fprintf(stderr, "%ld", (long) val);
|
|
} else {
|
|
fprintf(stderr, "%lu", (ulong) val);
|
|
}
|
|
break;
|
|
|
|
case 3:
|
|
val = mach_read_from_3(data);
|
|
|
|
if (!(prtype & DATA_UNSIGNED)) {
|
|
val &= ~0x800000U;
|
|
fprintf(stderr, "%ld", (long) val);
|
|
} else {
|
|
fprintf(stderr, "%lu", (ulong) val);
|
|
}
|
|
break;
|
|
|
|
case 4:
|
|
val = mach_read_from_4(data);
|
|
|
|
if (!(prtype & DATA_UNSIGNED)) {
|
|
val &= ~0x80000000;
|
|
fprintf(stderr, "%ld", (long) val);
|
|
} else {
|
|
fprintf(stderr, "%lu", (ulong) val);
|
|
}
|
|
break;
|
|
|
|
case 6:
|
|
id = mach_read_from_6(data);
|
|
fprintf(stderr, IB_ID_FMT, id);
|
|
break;
|
|
|
|
case 7:
|
|
id = mach_read_from_7(data);
|
|
fprintf(stderr, IB_ID_FMT, id);
|
|
break;
|
|
case 8:
|
|
id = mach_read_from_8(data);
|
|
fprintf(stderr, IB_ID_FMT, id);
|
|
break;
|
|
default:
|
|
goto print_hex;
|
|
}
|
|
break;
|
|
|
|
case DATA_SYS:
|
|
switch (prtype & DATA_SYS_PRTYPE_MASK) {
|
|
case DATA_TRX_ID:
|
|
id = mach_read_from_6(data);
|
|
|
|
fprintf(stderr, "trx_id " TRX_ID_FMT, id);
|
|
break;
|
|
|
|
case DATA_ROLL_PTR:
|
|
id = mach_read_from_7(data);
|
|
|
|
fprintf(stderr, "roll_ptr " TRX_ID_FMT, id);
|
|
break;
|
|
|
|
case DATA_ROW_ID:
|
|
id = mach_read_from_6(data);
|
|
|
|
fprintf(stderr, "row_id " TRX_ID_FMT, id);
|
|
break;
|
|
|
|
default:
|
|
goto print_hex;
|
|
}
|
|
break;
|
|
|
|
case DATA_CHAR:
|
|
case DATA_VARCHAR:
|
|
print_also_hex = FALSE;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
int c = *data++;
|
|
|
|
if (!isprint(c)) {
|
|
print_also_hex = TRUE;
|
|
|
|
fprintf(stderr, "\\x%02x", (unsigned char) c);
|
|
} else {
|
|
putc(c, stderr);
|
|
}
|
|
}
|
|
|
|
if (dfield_is_ext(dfield)) {
|
|
fputs("(external)", stderr);
|
|
}
|
|
|
|
if (!print_also_hex) {
|
|
break;
|
|
}
|
|
|
|
data = static_cast<const byte*>(dfield_get_data(dfield));
|
|
/* fall through */
|
|
|
|
case DATA_BINARY:
|
|
default:
|
|
print_hex:
|
|
fputs(" Hex: ",stderr);
|
|
|
|
for (i = 0; i < len; i++) {
|
|
fprintf(stderr, "%02x", *data++);
|
|
}
|
|
|
|
if (dfield_is_ext(dfield)) {
|
|
fputs("(external)", stderr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*************************************************************//**
|
|
Print a dfield value using ut_print_buf. */
|
|
static
|
|
void
|
|
dfield_print_raw(
|
|
/*=============*/
|
|
FILE* f, /*!< in: output stream */
|
|
const dfield_t* dfield) /*!< in: dfield */
|
|
{
|
|
ulint len = dfield_get_len(dfield);
|
|
if (!dfield_is_null(dfield)) {
|
|
ulint print_len = ut_min(len, static_cast<ulint>(1000));
|
|
ut_print_buf(f, dfield_get_data(dfield), print_len);
|
|
if (len != print_len) {
|
|
std::ostringstream str_bytes;
|
|
str_bytes << ib::bytes_iec{len};
|
|
fprintf(f, "(total %s%s)",
|
|
str_bytes.str().c_str(),
|
|
dfield_is_ext(dfield) ? ", external" : "");
|
|
}
|
|
} else {
|
|
fputs(" SQL NULL", f);
|
|
}
|
|
}
|
|
|
|
/**********************************************************//**
|
|
The following function prints the contents of a tuple. */
|
|
void
|
|
dtuple_print(
|
|
/*=========*/
|
|
FILE* f, /*!< in: output stream */
|
|
const dtuple_t* tuple) /*!< in: tuple */
|
|
{
|
|
ulint n_fields;
|
|
ulint i;
|
|
|
|
n_fields = dtuple_get_n_fields(tuple);
|
|
|
|
fprintf(f, "DATA TUPLE: %lu fields;\n", (ulong) n_fields);
|
|
|
|
for (i = 0; i < n_fields; i++) {
|
|
fprintf(f, " %lu:", (ulong) i);
|
|
|
|
dfield_print_raw(f, dtuple_get_nth_field(tuple, i));
|
|
|
|
putc(';', f);
|
|
putc('\n', f);
|
|
}
|
|
|
|
ut_ad(dtuple_validate(tuple));
|
|
}
|
|
|
|
/** Print the contents of a tuple.
|
|
@param[out] o output stream
|
|
@param[in] field array of data fields
|
|
@param[in] n number of data fields */
|
|
void
|
|
dfield_print(
|
|
std::ostream& o,
|
|
const dfield_t* field,
|
|
ulint n)
|
|
{
|
|
for (ulint i = 0; i < n; i++, field++) {
|
|
const void* data = dfield_get_data(field);
|
|
const ulint len = dfield_get_len(field);
|
|
|
|
if (i) {
|
|
o << ',';
|
|
}
|
|
|
|
if (dfield_is_null(field)) {
|
|
o << "NULL";
|
|
} else if (dfield_is_ext(field)) {
|
|
ulint local_len = len - BTR_EXTERN_FIELD_REF_SIZE;
|
|
ut_ad(len >= BTR_EXTERN_FIELD_REF_SIZE);
|
|
|
|
o << '['
|
|
<< local_len
|
|
<< '+' << BTR_EXTERN_FIELD_REF_SIZE << ']';
|
|
ut_print_buf(o, data, local_len);
|
|
ut_print_buf_hex(o, static_cast<const byte*>(data)
|
|
+ local_len,
|
|
BTR_EXTERN_FIELD_REF_SIZE);
|
|
} else {
|
|
o << '[' << len << ']';
|
|
ut_print_buf(o, data, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Print the contents of a tuple.
|
|
@param[out] o output stream
|
|
@param[in] tuple data tuple */
|
|
void
|
|
dtuple_print(
|
|
std::ostream& o,
|
|
const dtuple_t* tuple)
|
|
{
|
|
const ulint n = dtuple_get_n_fields(tuple);
|
|
|
|
o << "TUPLE (info_bits=" << dtuple_get_info_bits(tuple)
|
|
<< ", " << n << " fields): {";
|
|
|
|
dfield_print(o, tuple->fields, n);
|
|
|
|
o << "}";
|
|
}
|
|
|
|
/**************************************************************//**
|
|
Moves parts of long fields in entry to the big record vector so that
|
|
the size of tuple drops below the maximum record size allowed in the
|
|
database. Moves data only from those fields which are not necessary
|
|
to determine uniquely the insertion place of the tuple in the index.
|
|
@return own: created big record vector, NULL if we are not able to
|
|
shorten the entry enough, i.e., if there are too many fixed-length or
|
|
short fields in entry or the index is clustered */
|
|
big_rec_t*
|
|
dtuple_convert_big_rec(
|
|
/*===================*/
|
|
dict_index_t* index, /*!< in: index */
|
|
upd_t* upd, /*!< in/out: update vector */
|
|
dtuple_t* entry, /*!< in/out: index entry */
|
|
ulint* n_ext) /*!< in/out: number of
|
|
externally stored columns */
|
|
{
|
|
mem_heap_t* heap;
|
|
big_rec_t* vector;
|
|
dfield_t* dfield;
|
|
ulint size;
|
|
ulint local_prefix_len;
|
|
|
|
if (!dict_index_is_clust(index)) {
|
|
return(NULL);
|
|
}
|
|
|
|
if (!index->table->space) {
|
|
return NULL;
|
|
}
|
|
|
|
ulint local_len = index->table->get_overflow_field_local_len();
|
|
const auto zip_size = index->table->space->zip_size();
|
|
|
|
ut_ad(index->n_uniq > 0);
|
|
|
|
ut_a(dtuple_check_typed_no_assert(entry));
|
|
|
|
size = rec_get_converted_size(index, entry, *n_ext);
|
|
|
|
if (UNIV_UNLIKELY(size > 1000000000)) {
|
|
ib::warn() << "Tuple size is very big: " << ib::bytes_iec{size};
|
|
fputs("InnoDB: Tuple contents: ", stderr);
|
|
dtuple_print(stderr, entry);
|
|
putc('\n', stderr);
|
|
}
|
|
|
|
heap = mem_heap_create(size + dtuple_get_n_fields(entry)
|
|
* sizeof(big_rec_field_t) + 1000);
|
|
|
|
vector = big_rec_t::alloc(heap, dtuple_get_n_fields(entry));
|
|
|
|
/* Decide which fields to shorten: the algorithm is to look for
|
|
a variable-length field that yields the biggest savings when
|
|
stored externally */
|
|
|
|
ut_d(ulint n_fields = 0);
|
|
uint16_t longest_i;
|
|
ulint longest;
|
|
|
|
const bool mblob = entry->is_alter_metadata();
|
|
ut_ad(unsigned(entry->n_fields - mblob) >= index->first_user_field());
|
|
ut_ad(unsigned(entry->n_fields - mblob) <= index->n_fields);
|
|
|
|
if (mblob) {
|
|
longest_i = index->first_user_field();
|
|
dfield = dtuple_get_nth_field(entry, longest_i);
|
|
local_len = BTR_EXTERN_FIELD_REF_SIZE;
|
|
ut_ad(!dfield_is_ext(dfield));
|
|
goto ext_write;
|
|
}
|
|
|
|
if (!dict_table_has_atomic_blobs(index->table)) {
|
|
/* up to MySQL 5.1: store a 768-byte prefix locally */
|
|
local_len = BTR_EXTERN_FIELD_REF_SIZE
|
|
+ DICT_ANTELOPE_MAX_INDEX_COL_LEN;
|
|
} else {
|
|
/* new-format table: do not store any BLOB prefix locally */
|
|
local_len = BTR_EXTERN_FIELD_REF_SIZE;
|
|
}
|
|
|
|
while (page_zip_rec_needs_ext(rec_get_converted_size(index, entry,
|
|
*n_ext),
|
|
index->table->not_redundant(),
|
|
dict_index_get_n_fields(index),
|
|
zip_size)) {
|
|
longest_i = 0;
|
|
longest = 0;
|
|
for (uint16_t i = index->first_user_field();
|
|
i < entry->n_fields - mblob; i++) {
|
|
ulint savings;
|
|
dfield = dtuple_get_nth_field(entry, i + mblob);
|
|
|
|
const dict_field_t* ifield = dict_index_get_nth_field(
|
|
index, i);
|
|
|
|
/* Skip fixed-length, NULL, externally stored,
|
|
or short columns */
|
|
|
|
if (ifield->fixed_len
|
|
|| dfield_is_null(dfield)
|
|
|| dfield_is_ext(dfield)
|
|
|| dfield_get_len(dfield) <= local_len
|
|
|| dfield_get_len(dfield)
|
|
<= BTR_EXTERN_LOCAL_STORED_MAX_SIZE) {
|
|
goto skip_field;
|
|
}
|
|
|
|
savings = dfield_get_len(dfield) - local_len;
|
|
|
|
/* Check that there would be savings */
|
|
if (longest >= savings) {
|
|
goto skip_field;
|
|
}
|
|
|
|
/* In DYNAMIC and COMPRESSED format, store
|
|
locally any non-BLOB columns whose maximum
|
|
length does not exceed 256 bytes. This is
|
|
because there is no room for the "external
|
|
storage" flag when the maximum length is 255
|
|
bytes or less. This restriction trivially
|
|
holds in REDUNDANT and COMPACT format, because
|
|
there we always store locally columns whose
|
|
length is up to local_len == 788 bytes.
|
|
@see rec_init_offsets_comp_ordinary */
|
|
if (!DATA_BIG_COL(ifield->col)) {
|
|
goto skip_field;
|
|
}
|
|
|
|
longest_i = uint16_t(i + mblob);
|
|
longest = savings;
|
|
|
|
skip_field:
|
|
continue;
|
|
}
|
|
|
|
if (!longest_i) {
|
|
/* Cannot shorten more */
|
|
|
|
mem_heap_free(heap);
|
|
|
|
return(NULL);
|
|
}
|
|
|
|
/* Move data from field longest_i to big rec vector.
|
|
|
|
We store the first bytes locally to the record. Then
|
|
we can calculate all ordering fields in all indexes
|
|
from locally stored data. */
|
|
dfield = dtuple_get_nth_field(entry, longest_i);
|
|
ext_write:
|
|
local_prefix_len = local_len - BTR_EXTERN_FIELD_REF_SIZE;
|
|
|
|
vector->append(
|
|
big_rec_field_t(
|
|
longest_i,
|
|
dfield_get_len(dfield) - local_prefix_len,
|
|
static_cast<char*>(dfield_get_data(dfield))
|
|
+ local_prefix_len));
|
|
|
|
/* Allocate the locally stored part of the column. */
|
|
byte* data = static_cast<byte*>(
|
|
mem_heap_alloc(heap, local_len));
|
|
|
|
/* Copy the local prefix. */
|
|
memcpy(data, dfield_get_data(dfield), local_prefix_len);
|
|
/* Clear the extern field reference (BLOB pointer). */
|
|
memset(data + local_prefix_len, 0, BTR_EXTERN_FIELD_REF_SIZE);
|
|
|
|
dfield_set_data(dfield, data, local_len);
|
|
dfield_set_ext(dfield);
|
|
|
|
(*n_ext)++;
|
|
ut_ad(++n_fields < dtuple_get_n_fields(entry));
|
|
|
|
if (upd && !upd->is_modified(longest_i)) {
|
|
|
|
DEBUG_SYNC_C("ib_mv_nonupdated_column_offpage");
|
|
|
|
upd_field_t upd_field;
|
|
upd_field.field_no = longest_i;
|
|
upd_field.orig_len = 0;
|
|
upd_field.exp = NULL;
|
|
upd_field.old_v_val = NULL;
|
|
dfield_copy(&upd_field.new_val,
|
|
dfield->clone(upd->heap));
|
|
upd->append(upd_field);
|
|
ut_ad(upd->is_modified(longest_i));
|
|
|
|
ut_ad(upd_field.new_val.len
|
|
>= BTR_EXTERN_FIELD_REF_SIZE);
|
|
ut_ad(upd_field.new_val.len == local_len);
|
|
ut_ad(upd_field.new_val.len == dfield_get_len(dfield));
|
|
}
|
|
}
|
|
|
|
ut_ad(n_fields == vector->n_fields);
|
|
|
|
return(vector);
|
|
}
|
|
|
|
/**************************************************************//**
|
|
Puts back to entry the data stored in vector. Note that to ensure the
|
|
fields in entry can accommodate the data, vector must have been created
|
|
from entry with dtuple_convert_big_rec. */
|
|
void
|
|
dtuple_convert_back_big_rec(
|
|
/*========================*/
|
|
dict_index_t* index MY_ATTRIBUTE((unused)), /*!< in: index */
|
|
dtuple_t* entry, /*!< in/out: entry whose data was put to vector */
|
|
big_rec_t* vector) /*!< in, own: big rec vector; it is
|
|
freed in this function */
|
|
{
|
|
big_rec_field_t* b = vector->fields;
|
|
const big_rec_field_t* const end = b + vector->n_fields;
|
|
|
|
for (; b < end; b++) {
|
|
dfield_t* dfield;
|
|
ulint local_len;
|
|
|
|
dfield = dtuple_get_nth_field(entry, b->field_no);
|
|
local_len = dfield_get_len(dfield);
|
|
|
|
ut_ad(dfield_is_ext(dfield));
|
|
ut_ad(local_len >= BTR_EXTERN_FIELD_REF_SIZE);
|
|
|
|
local_len -= BTR_EXTERN_FIELD_REF_SIZE;
|
|
|
|
/* Only in REDUNDANT and COMPACT format, we store
|
|
up to DICT_ANTELOPE_MAX_INDEX_COL_LEN (768) bytes
|
|
locally */
|
|
ut_ad(local_len <= DICT_ANTELOPE_MAX_INDEX_COL_LEN);
|
|
|
|
dfield_set_data(dfield,
|
|
(char*) b->data - local_len,
|
|
b->len + local_len);
|
|
}
|
|
|
|
mem_heap_free(vector->heap);
|
|
}
|
|
|
|
/** Allocate a big_rec_t object in the given memory heap, and for storing
|
|
n_fld number of fields.
|
|
@param[in] heap memory heap in which this object is allocated
|
|
@param[in] n_fld maximum number of fields that can be stored in
|
|
this object
|
|
|
|
@return the allocated object */
|
|
big_rec_t*
|
|
big_rec_t::alloc(
|
|
mem_heap_t* heap,
|
|
ulint n_fld)
|
|
{
|
|
big_rec_t* rec = static_cast<big_rec_t*>(
|
|
mem_heap_alloc(heap, sizeof(big_rec_t)));
|
|
|
|
new(rec) big_rec_t(n_fld);
|
|
|
|
rec->heap = heap;
|
|
rec->fields = static_cast<big_rec_field_t*>(
|
|
mem_heap_alloc(heap,
|
|
n_fld * sizeof(big_rec_field_t)));
|
|
|
|
rec->n_fields = 0;
|
|
return(rec);
|
|
}
|
|
|
|
/** Create a deep copy of this object.
|
|
@param[in,out] heap memory heap in which the clone will be created
|
|
@return the cloned object */
|
|
dfield_t*
|
|
dfield_t::clone(mem_heap_t* heap) const
|
|
{
|
|
const ulint size = len == UNIV_SQL_NULL ? 0 : len;
|
|
dfield_t* obj = static_cast<dfield_t*>(
|
|
mem_heap_alloc(heap, sizeof(dfield_t) + size));
|
|
|
|
ut_ad(len != UNIV_SQL_DEFAULT);
|
|
obj->ext = ext;
|
|
obj->len = len;
|
|
obj->type = type;
|
|
obj->spatial_status = spatial_status;
|
|
|
|
if (len != UNIV_SQL_NULL) {
|
|
obj->data = obj + 1;
|
|
memcpy(obj->data, data, len);
|
|
} else {
|
|
obj->data = 0;
|
|
}
|
|
|
|
return(obj);
|
|
}
|