mariadb/sql/sql_list.h
Alexander Barkov e9d541f912 Cleanup#1 for MDEV-34319: DECLARE TYPE .. TABLE OF .. INDEX BY
- Checking that the key expression is compatible with the INDEX BY data type
  for assignment in expressions:
    assoc_array_variable(key_expr)
    assoc_array_variable(key_expr).field

  in all contexts: SELECT, assignment target, INTO target.
  Raising an error in case it's not compatible.

- Disallowing non-constant expressions as a key,
  as the key is evaluated during the fix_fields() time.

- Disallowing stored functions as a key:
    assoc_array(stored_function())
    assoc_array(stored_function()).field

  The underlying MariaDB code is not ready to call a stored function
  during the fix_fields() time. This will be fixed in a separate MDEV.

- Removing the move Assoc_array_data's constructor.
  Using the usual constructor instead.

- Setting m_key.thread_specific and m_value.thread_specific to true
  in the Assoc_array_data constructor. This is needed to get assoc array
  element data counted by the @@session.memory_used status variable.

  Adding DBUG_ASSERTs to make sure the thread_specific flag never
  disappears in Assoc_array_data members.

- Removing my_free(item) from Field_assoc_array::element_by_key.
  It was a remainder from an earlier patch version.
  In the current patch version all Items behind an assoc array are
  created on a mem_root. It's wrong to use my_free() with them.

- Adding a helper method Field_assoc_array::assoc_tree_search()

- Fixing assoc_array_var.delete() to work as a procedure
  rather than a function. It does not need SELECT/DO any more.

- Fixing the crash in a few ctype_xxx tests, caused by the grammar change.

- Fixing compilation failure on Windows

- Adding a new method LEX::set_field_type_udt_or_typedef()
  and removing duplicate code from sql_yacc.yy

- Renaming the grammar rule field_type_all_with_composites to
  field_type_all_with_typedefs

- Removing the grammar rule assoc_array_index_types.
  Changing the grammar to "INDEX_SYM BY field_type".

  Removing the grammar rule field_type_all_with_record.
  Allow field_type_all_with_typedefs as an assoc array element.

  Catching wrong index and element data types has been moved to
  Type_handler_assoc_array::Column_definition_set_attributes().
  It raises an SQL error on things like:
  * assoc array of assoc arrays in TABLE OF
  * index by a non-supported types in INDEX BY

- Removing four methods:
  * sp_type_def_list::type_defs_add_record()
  * sp_type_def_list::type_defs_add_composite2()
  * sp_pcontext::type_defs_declare_record()
  * sp_type_def_list::type_defs_declare_composite2()
  Adding two methods instead:
  * sp_type_def_list::type_defs_add()
  * sp_pcontext::type_defs_add()
  This allows to get rid of the duplicate code detecting data type
  declarations with the same name in the same sp_pcontext frame.

- Adding new methods:
  * LEX::declare_type_assoc_array()
  * LEX::LEX::declare_type_record()
  They create a type specific sp_type_def_xxx and the call the generic
  sp_pcontext::type_defs_add().

- m_key_def.sp_prepare_create_field() inside
  Field_assoc_array::create_fields() is now called for all key data types
  (not only for integers)

- Removing the assignment of key_def->charset in
  Type_handler_assoc_array::sp_variable_declarations_finalize().
  The charset is now evaluated in m_key_def.sp_prepare_create_field().

- Fixing Item_assoc_array::get_key() to set the character set of the "key"
  to utf8mb3 instead of binary

- Fixing Field_assoc_array::copy_and_convert_key() to set the key length
  limit in terms of the character length as specified in
  INDEX BY VARCHAR(N), instead of octet length. This is needed to make
  keys with multi-byte characters work correctly.
  Also it now raises different errors depending on the reason of the
  key conversion failures:
  * ER_INVALID_CHARACTER_STRING
  * ER_CANNOT_CONVERT_CHARACTER

- Changing the prototype for Type_handler_composite::key_to_lex_cstring() to

   virtual LEX_CSTRING key_to_lex_cstring(THD *thd,
                                          const sp_rcontext_addr &var,
                                          Item **key,
                                          String *buffer) const;
   * Now it returns a LEX_CSTRING, instead of getting it as an out parameter.
   * Gets an sp_rcontext_addr instead of "name" and "def"
   * Gets a String buffer which can be used to be passed to val_str(),
     or for character set conversion purposes.

- Removing Field_assoc_array::m_key_def, as all required information
  is available from Field_assoc_array::m_key_field.
  In Field_assoc_array::create_fields turning m_key_def to a local variable
  key_def.

- Fixing Field_assoc_array::copy_and_convert_key() to follow MariaDB coding
  style: only constants can be passed by-reference, not-constants should
  be passed by-pointer.

- Adding DBUG_ASSERTs into Type_handler_assoc_array::get_item()
  and Type_handler_assoc_array::get_or_create_item() that the passed
  key in "name" is well formed according to the charset of INDEX BY.

- Changing the error ER_TOO_LONG_KEY to ER_WRONG_STRING_LENGTH.
  The former prints length limit in bytes, which is not applicable
  for INDEX BY values, because its limit is in characters.
  Also, the latter is more verbose.

- Fixing the problem that these wrong uses of an assoc array variable:

    BEGIN
      assoc_var;
      assoc_var(1);
    END;

  raised a weird error message:
    ERROR 1054 (42S22): Unknown column 'assoc_var' in '(null)'

  Now a more readable parse error is raised.

- Adding a "Duplicate key" warning for the cases when assigning
  between two assoc arrays rejects some records due to different
  collations in their INDEX BY key definitions.

- Disallow INDEX OF propagation from VARCHAR to TEXT.
  The underlying code cannot handle TEXT.
  Adding tests.

- Adding a helper class StringBufferKey to pass to val_str() when
  a key value is evaluated.
  Fixing all val_str() calls to val_str(&buffer), as the former is
  not desirable.

- Fixing a wrong use of args[0]->null_value in
  Item_func_assoc_array_exists::val_bool()

- Fixing a problem that using TABLE OF TEXT crashed the server.
  Thanks to Iqbal Hassan for the proposed patch.

- Changes in Qualified_ident:
  * Fixing the Qualified_ident constructors to get all parst as
    Lex_ident_cli_st, rather than the first part as Lex_ident_cli_st
    with the following parts Lex_ident_sys.
    This makes the code more symmetric.
  * Fixing the grammar in sql_yacc.yy accordinly.
  * Fixing the data type storing the possition in the client query
    from "const char *" to Lex_ident_cli.
  * Adding a new method Qualified_ident::is_sane().
    It allows to reduce the code side in sql_yacc.yy.
    Thanks to Iqbal Hassan for the idea.

- Replacing qs_append() to append_ulonglong() in:
  * Item_method_func::print()
  * Item_splocal_assoc_array_element::print()
  * Item_splocal_assoc_array_element_field::print()

  These methods do not use reserve()/alloc(), so calling qs_append()
  was wrong and caused a crash.

- Changing the output formats of these methods:
  * Item_splocal_assoc_array_element::print()
  * Item_splocal_assoc_array_element_field::print()
  not to print the key two times.
  Also moving the `@123` part (the variable offset) immediately
  after the variabl name and before the `[key]` part.

- Fixing a memory leak happened when trying to insert a duplicate
  key into an assoc array. Also adding a new "THD *" parameter to
  Field_assoc_array::insert_element(). Thanks to Iqbal Hassan for the fix.
  Adding a test into sp-assoc-array-ctype.test.

- In  Field_assoc_array::create_fields: m_element_field->field_name is now
  set for all element data types (not only for records).
  This fixed a wrong variable name in warnings. Adding tests.

- Adding tests:
  * Adding tests for assoc array elements in UNIONs.

  * Copying from an assoc array with a varchar key
    to an assoc array with a shorter varchar key.

  * A relatively big associative array.

  * Memory usage for x86_64.

  * Package variable as assoc array keys.

  * Character set conversion

  * TABLE OF TEXT

  * TABLE OF VARCHAR(>64k bytes) propagation to TABLE OF TEXT.

  * TEXT element fields in an array of records.

  * VARCHAR->TEXT propagation in elements in an array of records.

  * Some more tests
2025-08-01 18:03:20 +02:00

886 lines
22 KiB
C++

#ifndef INCLUDES_MYSQL_SQL_LIST_H
#define INCLUDES_MYSQL_SQL_LIST_H
/* Copyright (c) 2000, 2012, Oracle and/or its affiliates.
Copyright (c) 2019, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
#include "sql_alloc.h"
#include <iterator>
/**
Simple intrusive linked list.
@remark Similar in nature to base_list, but intrusive. It keeps a
a pointer to the first element in the list and a indirect
reference to the last element.
*/
template <typename T>
class SQL_I_List :public Sql_alloc
{
public:
uint elements;
/** The first element in the list. */
T *first;
/** A reference to the next element in the list. */
T **next;
SQL_I_List() { empty(); }
SQL_I_List(const SQL_I_List &tmp) : Sql_alloc()
{
elements= tmp.elements;
first= tmp.first;
next= elements ? tmp.next : &first;
}
SQL_I_List& operator=(const SQL_I_List &tmp)
{
elements= tmp.elements;
first= tmp.first;
next= elements ? tmp.next : &first;;
return *this;
}
inline void empty()
{
elements= 0;
first= NULL;
next= &first;
}
inline void insert(T *element, T **next_ptr)
{
elements++;
(*next)= element;
next= next_ptr;
*next= NULL;
}
inline void save_and_clear(SQL_I_List<T> *save)
{
*save= *this;
empty();
}
inline void push_front(SQL_I_List<T> *save)
{
/* link current list last */
*save->next= first;
first= save->first;
elements+= save->elements;
}
inline void push_back(SQL_I_List<T> *save)
{
if (save->first)
{
*next= save->first;
next= save->next;
elements+= save->elements;
}
}
};
/*
Basic single linked list
Used for item and item_buffs.
All list ends with a pointer to the 'end_of_list' element, which
data pointer is a null pointer and the next pointer points to itself.
This makes it very fast to traverse lists as we don't have to
test for a specialend condition for list that can't contain a null
pointer.
*/
/**
list_node - a node of a single-linked list.
@note We never call a destructor for instances of this class.
*/
struct list_node :public Sql_alloc
{
list_node *next;
void *info;
list_node(const void *info_par, list_node *next_par)
:next(next_par), info(const_cast<void *>(info_par))
{}
list_node() /* For end_of_list */
{
info= 0;
next= this;
}
};
extern MYSQL_PLUGIN_IMPORT list_node end_of_list;
class base_list :public Sql_alloc
{
protected:
list_node *first,**last;
public:
uint elements;
bool operator==(const base_list &rhs) const
{
return
elements == rhs.elements &&
first == rhs.first &&
last == rhs.last;
}
base_list& operator=(const base_list &rhs)
{
elements= rhs.elements;
first= rhs.first;
last= elements ? rhs.last : &first;
return *this;
}
inline uint size() { return elements; }
inline void empty() { elements=0; first= &end_of_list; last=&first;}
inline base_list() { empty(); }
/**
This is a shallow copy constructor that implicitly passes the ownership
from the source list to the new instance. The old instance is not
updated, so both objects end up sharing the same nodes. If one of
the instances then adds or removes a node, the other becomes out of
sync ('last' pointer), while still operational. Some old code uses and
relies on this behaviour. This logic is quite tricky: please do not use
it in any new code.
*/
inline base_list(const base_list &tmp) :Sql_alloc()
{
*this= tmp;
}
/**
Construct a deep copy of the argument in memory root mem_root.
The elements themselves are copied by pointer. If you also
need to copy elements by value, you should employ
list_copy_and_replace_each_value after creating a copy.
*/
bool copy(const base_list *rhs, MEM_ROOT *mem_root);
base_list(const base_list &rhs, MEM_ROOT *mem_root) { copy(&rhs, mem_root); }
inline base_list(bool) {}
inline bool push_back(void *info)
{
if (((*last)=new list_node(info, &end_of_list)))
{
last= &(*last)->next;
elements++;
return 0;
}
return 1;
}
inline bool push_back(void *info, MEM_ROOT *mem_root)
{
if (((*last)=new (mem_root) list_node(info, &end_of_list)))
{
last= &(*last)->next;
elements++;
return 0;
}
return 1;
}
bool push_front_impl(list_node *node)
{
if (node)
{
if (last == &first)
last= &node->next;
first=node;
elements++;
return 0;
}
return 1;
}
inline bool push_front(const void *info)
{ return push_front_impl(new list_node(info, first)); }
inline bool push_front(const void *info, MEM_ROOT *mem_root)
{ return push_front_impl(new (mem_root) list_node(info,first)); }
void remove(list_node **prev)
{
list_node *node=(*prev)->next;
if (!--elements)
last= &first;
else if (last == &(*prev)->next)
last= prev;
delete *prev;
*prev=node;
}
inline void append(base_list *list)
{
if (!list->is_empty())
{
if (is_empty())
{
*this= *list;
return;
}
*last= list->first;
last= list->last;
elements+= list->elements;
}
}
inline void *pop(void)
{
if (first == &end_of_list) return 0;
list_node *tmp=first;
first=first->next;
if (!--elements)
last= &first;
return tmp->info;
}
/*
Remove from this list elements that are contained in the passed list.
We assume that the passed list is a tail of this list (that is, the whole
list_node* elements are shared).
*/
inline void disjoin(const base_list *list)
{
list_node **prev= &first;
list_node *node= first;
list_node *list_first= list->first;
elements=0;
while (node != &end_of_list && node != list_first)
{
prev= &node->next;
node= node->next;
elements++;
if (node == &end_of_list)
return;
}
*prev= &end_of_list;
last= prev;
}
inline void prepend(base_list *list)
{
if (!list->is_empty())
{
if (is_empty())
last= list->last;
*list->last= first;
first= list->first;
elements+= list->elements;
}
}
/**
Swap two lists.
*/
inline void swap(base_list &rhs)
{
list_node **rhs_last=rhs.last;
swap_variables(list_node *, first, rhs.first);
swap_variables(uint, elements, rhs.elements);
rhs.last= last == &first ? &rhs.first : last;
last = rhs_last == &rhs.first ? &first : rhs_last;
}
inline list_node* last_node() { return *last; }
inline list_node* first_node() { return first;}
inline void *head() { return first->info; }
inline const void *head() const { return first->info; }
inline void **head_ref() { return first != &end_of_list ? &first->info : 0; }
inline bool is_empty() const { return first == &end_of_list ; }
inline list_node *last_ref() { return &end_of_list; }
template <typename T= void>
inline bool add_unique(T *info, bool (*eq)(T *a, T *b))
{
list_node *node= first;
for (;
node != &end_of_list && (!(*eq)(static_cast<T *>(node->info), info));
node= node->next) ;
if (node == &end_of_list)
return push_back(info);
return 1;
}
friend class base_list_iterator;
friend class error_list;
friend class error_list_iterator;
/*
Return N-th element in the list, or NULL if the list has
less than N elements.
*/
void *elem(uint n)
{
list_node *node= first;
void *data= NULL;
for (uint i= 0; i <= n; i++)
{
if (node == &end_of_list)
{
data= NULL;
break;
}
data= node->info;
node= node->next;
}
return data;
}
#ifdef LIST_EXTRA_DEBUG
/*
Check list invariants and print results into trace. Invariants are:
- (*last) points to end_of_list
- There are no NULLs in the list.
- base_list::elements is the number of elements in the list.
SYNOPSIS
check_list()
name Name to print to trace file
RETURN
1 The list is Ok.
0 List invariants are not met.
*/
bool check_list(const char *name)
{
base_list *list= this;
list_node *node= first;
uint cnt= 0;
while (node->next != &end_of_list)
{
if (!node->info)
{
DBUG_PRINT("list_invariants",("%s: error: NULL element in the list",
name));
return FALSE;
}
node= node->next;
cnt++;
}
if (last != &(node->next))
{
DBUG_PRINT("list_invariants", ("%s: error: wrong last pointer", name));
return FALSE;
}
if (cnt+1 != elements)
{
DBUG_PRINT("list_invariants", ("%s: error: wrong element count", name));
return FALSE;
}
DBUG_PRINT("list_invariants", ("%s: list is ok", name));
return TRUE;
}
#endif // LIST_EXTRA_DEBUG
protected:
void after(const void *info, list_node *node)
{
list_node *new_node=new list_node(info,node->next);
node->next=new_node;
elements++;
if (last == &(node->next))
last= &new_node->next;
}
};
class base_list_iterator
{
protected:
base_list *list;
list_node **el,**prev,*current;
void sublist(base_list &ls, uint elm)
{
ls.first= *el;
ls.last= list->last;
ls.elements= elm;
}
public:
base_list_iterator()
:list(0), el(0), prev(0), current(0)
{}
base_list_iterator(base_list &list_par)
{ init(list_par); }
inline void init(base_list &list_par)
{
list= &list_par;
el= &list_par.first;
prev= 0;
current= 0;
}
inline void *next(void)
{
prev=el;
current= *el;
el= &current->next;
return current->info;
}
/* Get what calling next() would return, without moving the iterator */
inline void *peek()
{
return (*el)->info;
}
inline void *next_fast(void)
{
list_node *tmp;
tmp= *el;
el= &tmp->next;
return tmp->info;
}
inline void rewind(void)
{
el= &list->first;
}
inline void *replace(const void *element)
{ // Return old element
void *tmp=current->info;
DBUG_ASSERT(current->info != 0);
current->info= const_cast<void *>(element);
return tmp;
}
void *replace(base_list &new_list)
{
void *ret_value=current->info;
if (!new_list.is_empty())
{
*new_list.last=current->next;
current->info=new_list.first->info;
current->next=new_list.first->next;
if ((list->last == &current->next) && (new_list.elements > 1))
list->last= new_list.last;
list->elements+=new_list.elements-1;
}
return ret_value; // return old element
}
inline void remove(void) // Remove current
{
list->remove(prev);
el=prev;
current=0; // Safeguard
}
void after(const void *element) // Insert element after current
{
list->after(element,current);
current=current->next;
el= &current->next;
}
inline void **ref(void) // Get reference pointer
{
return &current->info;
}
inline bool is_last(void)
{
return el == &list->last_ref()->next;
}
inline bool at_end()
{
return current == &end_of_list;
}
friend class error_list_iterator;
};
template <class T> class List :public base_list
{
public:
inline List() :base_list() {}
inline List(const List<T> &tmp, MEM_ROOT *mem_root) :
base_list(tmp, mem_root) {}
inline bool push_back(const T *a) { return base_list::push_back((void *)a); }
inline bool push_back(const T *a, MEM_ROOT *mem_root)
{ return base_list::push_back((void*) a, mem_root); }
inline bool push_front(const T *a) { return base_list::push_front(a); }
inline bool push_front(const T *a, MEM_ROOT *mem_root)
{ return base_list::push_front((void*) a, mem_root); }
inline T* head() {return (T*) base_list::head(); }
inline const T* head() const {return (const T*) base_list::head(); }
inline T** head_ref() {return (T**) base_list::head_ref(); }
inline T* pop() {return (T*) base_list::pop(); }
inline void append(List<T> *list) { base_list::append(list); }
inline void prepend(List<T> *list) { base_list::prepend(list); }
inline void disjoin(List<T> *list) { base_list::disjoin(list); }
inline bool add_unique(T *a, bool (*eq)(T *a, T *b))
{ return base_list::add_unique<T>(a, eq); }
inline bool copy(const List<T> *list, MEM_ROOT *root)
{ return base_list::copy(list, root); }
void delete_elements(void)
{
list_node *element,*next;
for (element=first; element != &end_of_list; element=next)
{
next=element->next;
delete (T*) element->info;
}
empty();
}
T *elem(uint n) { return (T*) base_list::elem(n); }
// Create a new list with one element
static List<T> *make(MEM_ROOT *mem_root, T *first)
{
List<T> *res= new (mem_root) List<T>;
return res == NULL || res->push_back(first, mem_root) ? NULL : res;
}
class Iterator;
using value_type= T;
using iterator= Iterator;
iterator begin() const { return iterator(first); }
iterator end() const { return iterator(); }
class Iterator
{
public:
using iterator_category= std::forward_iterator_tag;
using value_type= T;
using difference_type= std::ptrdiff_t;
using pointer= T *;
using reference= T &;
Iterator(list_node *p= &end_of_list) : node{p} {}
Iterator &operator++()
{
DBUG_ASSERT(node != &end_of_list);
node= node->next;
return *this;
}
Iterator operator++(int)
{
Iterator tmp(*this);
operator++();
return tmp;
}
T &operator*() { return *static_cast<T *>(node->info); }
T *operator->() { return static_cast<T *>(node->info); }
bool operator==(const typename List<T>::iterator &rhs)
{
return node == rhs.node;
}
bool operator!=(const typename List<T>::iterator &rhs)
{
return node != rhs.node;
}
private:
list_node *node{&end_of_list};
};
};
template <class T> class List_iterator :public base_list_iterator
{
public:
List_iterator(List<T> &a) : base_list_iterator(a) {}
List_iterator() : base_list_iterator() {}
inline void init(List<T> &a) { base_list_iterator::init(a); }
inline T* operator++(int) { return (T*) base_list_iterator::next(); }
inline T* peek() { return (T*) base_list_iterator::peek(); }
inline T *replace(T *a) { return (T*) base_list_iterator::replace(a); }
inline T *replace(List<T> &a) { return (T*) base_list_iterator::replace(a); }
inline void rewind(void) { base_list_iterator::rewind(); }
inline void remove() { base_list_iterator::remove(); }
inline void after(T *a) { base_list_iterator::after(a); }
inline T** ref(void) { return (T**) base_list_iterator::ref(); }
};
template <class T> class List_iterator_fast :public base_list_iterator
{
protected:
inline T *replace(T *) { return (T*) 0; }
inline T *replace(List<T> &) { return (T*) 0; }
inline void remove(void) {}
inline void after(T *) {}
inline T** ref(void) { return (T**) 0; }
public:
inline List_iterator_fast(List<T> &a) : base_list_iterator(a) {}
inline List_iterator_fast() : base_list_iterator() {}
inline void init(List<T> &a) { base_list_iterator::init(a); }
inline T* operator++(int) { return (T*) base_list_iterator::next_fast(); }
inline void rewind(void) { base_list_iterator::rewind(); }
void sublist(List<T> &list_arg, uint el_arg)
{
base_list_iterator::sublist(list_arg, el_arg);
}
};
/*
Bubble sort algorithm for List<T>.
This sort function is supposed to be used only for very short list.
Currently it is used for the lists of Item_equal objects and
for some lists in the table elimination algorithms. In both
cases the sorted lists are very short.
*/
template <class T>
inline void bubble_sort(List<T> *list_to_sort,
int (*sort_func)(T *a, T *b, void *arg), void *arg)
{
bool swap;
T **ref1= 0;
T **ref2= 0;
List_iterator<T> it(*list_to_sort);
do
{
T **last_ref= ref1;
T *item1= it++;
ref1= it.ref();
T *item2;
swap= FALSE;
while ((item2= it++) && (ref2= it.ref()) != last_ref)
{
if (sort_func(item1, item2, arg) > 0)
{
*ref1= item2;
*ref2= item1;
swap= TRUE;
}
else
item1= item2;
ref1= ref2;
}
it.rewind();
} while (swap);
}
/*
A simple intrusive list which automaticly removes element from list
on delete (for THD element)
*/
struct ilink
{
struct ilink **prev,*next;
static void *operator new(size_t size) throw ()
{
return (void*)my_malloc(PSI_INSTRUMENT_ME,
(uint)size, MYF(MY_WME | MY_FAE | ME_FATAL));
}
static void operator delete(void* ptr_arg, size_t)
{
my_free(ptr_arg);
}
inline ilink()
{
prev=0; next=0;
}
inline void unlink()
{
/* Extra tests because element doesn't have to be linked */
if (prev) *prev= next;
if (next) next->prev=prev;
prev=0 ; next=0;
}
inline void assert_linked()
{
DBUG_ASSERT(prev != 0 && next != 0);
}
inline void assert_not_linked()
{
DBUG_ASSERT(prev == 0 && next == 0);
}
virtual ~ilink() { unlink(); } /*lint -e1740 */
};
/* Needed to be able to have an I_List of char* strings in mysqld.cc. */
class i_string: public ilink
{
public:
const char* ptr;
i_string():ptr(0) { }
i_string(const char* s) : ptr(s) {}
};
/* needed for linked list of two strings for replicate-rewrite-db */
class i_string_pair: public ilink
{
public:
const char* key;
const char* val;
i_string_pair():key(0),val(0) { }
i_string_pair(const char* key_arg, const char* val_arg) :
key(key_arg),val(val_arg) {}
};
template <class T> class I_List_iterator;
class base_ilist
{
struct ilink *first;
struct ilink last;
public:
inline void empty() { first= &last; last.prev= &first; }
base_ilist() { empty(); }
inline bool is_empty() const { return first == &last; }
// Returns true if p is the last "real" object in the list,
// i.e. p->next points to the sentinel.
inline bool is_last(ilink *p) { return p->next == NULL || p->next == &last; }
inline void append(ilink *a)
{
first->prev= &a->next;
a->next=first; a->prev= &first; first=a;
}
inline void push_back(ilink *a)
{
*last.prev= a;
a->next= &last;
a->prev= last.prev;
last.prev= &a->next;
}
inline struct ilink *get()
{
struct ilink *first_link=first;
if (first_link == &last)
return 0;
first_link->unlink(); // Unlink from list
return first_link;
}
inline struct ilink *head()
{
return (first != &last) ? first : 0;
}
/**
Moves list elements to new owner, and empties current owner (i.e. this).
@param[in,out] new_owner The new owner of the list elements.
Should be empty in input.
*/
void move_elements_to(base_ilist *new_owner)
{
DBUG_ASSERT(new_owner->is_empty());
new_owner->first= first;
new_owner->last= last;
empty();
}
friend class base_ilist_iterator;
private:
/*
We don't want to allow copying of this class, as that would give us
two list heads containing the same elements.
So we declare, but don't define copy CTOR and assignment operator.
*/
base_ilist(const base_ilist&);
void operator=(const base_ilist&);
};
class base_ilist_iterator
{
base_ilist *list;
struct ilink **el;
protected:
struct ilink *current;
public:
base_ilist_iterator(base_ilist &list_par) :list(&list_par),
el(&list_par.first),current(0) {}
void *next(void)
{
/* This is coded to allow push_back() while iterating */
current= *el;
if (current == &list->last) return 0;
el= &current->next;
return current;
}
/* Unlink element returned by last next() call */
inline void unlink(void)
{
struct ilink **tmp= current->prev;
current->unlink();
el= tmp;
}
};
template <class T>
class I_List :private base_ilist
{
public:
I_List() :base_ilist() {}
inline bool is_last(T *p) { return base_ilist::is_last(p); }
inline void empty() { base_ilist::empty(); }
inline bool is_empty() { return base_ilist::is_empty(); }
inline void append(T* a) { base_ilist::append(a); }
inline void push_back(T* a) { base_ilist::push_back(a); }
inline T* get() { return (T*) base_ilist::get(); }
inline T* head() { return (T*) base_ilist::head(); }
inline void move_elements_to(I_List<T>* new_owner) {
base_ilist::move_elements_to(new_owner);
}
#ifndef _lint
friend class I_List_iterator<T>;
#endif
};
template <class T> class I_List_iterator :public base_ilist_iterator
{
public:
I_List_iterator(I_List<T> &a) : base_ilist_iterator(a) {}
inline T* operator++(int) { return (T*) base_ilist_iterator::next(); }
/* Remove element returned by last next() call */
inline void remove(void)
{
unlink();
delete (T*) current;
current= 0; // Safety
}
};
/**
Make a deep copy of each list element.
@note A template function and not a template method of class List
is employed because of explicit template instantiation:
in server code there are explicit instantiations of List<T> and
an explicit instantiation of a template requires that any method
of the instantiated class used in the template can be resolved.
Evidently not all template arguments have clone() method with
the right signature.
@return You must query the error state in THD for out-of-memory
situation after calling this function.
*/
template <typename T>
inline
void
list_copy_and_replace_each_value(List<T> &list, MEM_ROOT *mem_root)
{
/* Make a deep copy of each element */
List_iterator<T> it(list);
T *el;
while ((el= it++))
it.replace(el->clone(mem_root));
}
void free_list(I_List <i_string> *list);
#endif // INCLUDES_MYSQL_SQL_LIST_H