mariadb/sql/sp_pcontext.cc
Alexander Barkov e9d541f912 Cleanup#1 for MDEV-34319: DECLARE TYPE .. TABLE OF .. INDEX BY
- Checking that the key expression is compatible with the INDEX BY data type
  for assignment in expressions:
    assoc_array_variable(key_expr)
    assoc_array_variable(key_expr).field

  in all contexts: SELECT, assignment target, INTO target.
  Raising an error in case it's not compatible.

- Disallowing non-constant expressions as a key,
  as the key is evaluated during the fix_fields() time.

- Disallowing stored functions as a key:
    assoc_array(stored_function())
    assoc_array(stored_function()).field

  The underlying MariaDB code is not ready to call a stored function
  during the fix_fields() time. This will be fixed in a separate MDEV.

- Removing the move Assoc_array_data's constructor.
  Using the usual constructor instead.

- Setting m_key.thread_specific and m_value.thread_specific to true
  in the Assoc_array_data constructor. This is needed to get assoc array
  element data counted by the @@session.memory_used status variable.

  Adding DBUG_ASSERTs to make sure the thread_specific flag never
  disappears in Assoc_array_data members.

- Removing my_free(item) from Field_assoc_array::element_by_key.
  It was a remainder from an earlier patch version.
  In the current patch version all Items behind an assoc array are
  created on a mem_root. It's wrong to use my_free() with them.

- Adding a helper method Field_assoc_array::assoc_tree_search()

- Fixing assoc_array_var.delete() to work as a procedure
  rather than a function. It does not need SELECT/DO any more.

- Fixing the crash in a few ctype_xxx tests, caused by the grammar change.

- Fixing compilation failure on Windows

- Adding a new method LEX::set_field_type_udt_or_typedef()
  and removing duplicate code from sql_yacc.yy

- Renaming the grammar rule field_type_all_with_composites to
  field_type_all_with_typedefs

- Removing the grammar rule assoc_array_index_types.
  Changing the grammar to "INDEX_SYM BY field_type".

  Removing the grammar rule field_type_all_with_record.
  Allow field_type_all_with_typedefs as an assoc array element.

  Catching wrong index and element data types has been moved to
  Type_handler_assoc_array::Column_definition_set_attributes().
  It raises an SQL error on things like:
  * assoc array of assoc arrays in TABLE OF
  * index by a non-supported types in INDEX BY

- Removing four methods:
  * sp_type_def_list::type_defs_add_record()
  * sp_type_def_list::type_defs_add_composite2()
  * sp_pcontext::type_defs_declare_record()
  * sp_type_def_list::type_defs_declare_composite2()
  Adding two methods instead:
  * sp_type_def_list::type_defs_add()
  * sp_pcontext::type_defs_add()
  This allows to get rid of the duplicate code detecting data type
  declarations with the same name in the same sp_pcontext frame.

- Adding new methods:
  * LEX::declare_type_assoc_array()
  * LEX::LEX::declare_type_record()
  They create a type specific sp_type_def_xxx and the call the generic
  sp_pcontext::type_defs_add().

- m_key_def.sp_prepare_create_field() inside
  Field_assoc_array::create_fields() is now called for all key data types
  (not only for integers)

- Removing the assignment of key_def->charset in
  Type_handler_assoc_array::sp_variable_declarations_finalize().
  The charset is now evaluated in m_key_def.sp_prepare_create_field().

- Fixing Item_assoc_array::get_key() to set the character set of the "key"
  to utf8mb3 instead of binary

- Fixing Field_assoc_array::copy_and_convert_key() to set the key length
  limit in terms of the character length as specified in
  INDEX BY VARCHAR(N), instead of octet length. This is needed to make
  keys with multi-byte characters work correctly.
  Also it now raises different errors depending on the reason of the
  key conversion failures:
  * ER_INVALID_CHARACTER_STRING
  * ER_CANNOT_CONVERT_CHARACTER

- Changing the prototype for Type_handler_composite::key_to_lex_cstring() to

   virtual LEX_CSTRING key_to_lex_cstring(THD *thd,
                                          const sp_rcontext_addr &var,
                                          Item **key,
                                          String *buffer) const;
   * Now it returns a LEX_CSTRING, instead of getting it as an out parameter.
   * Gets an sp_rcontext_addr instead of "name" and "def"
   * Gets a String buffer which can be used to be passed to val_str(),
     or for character set conversion purposes.

- Removing Field_assoc_array::m_key_def, as all required information
  is available from Field_assoc_array::m_key_field.
  In Field_assoc_array::create_fields turning m_key_def to a local variable
  key_def.

- Fixing Field_assoc_array::copy_and_convert_key() to follow MariaDB coding
  style: only constants can be passed by-reference, not-constants should
  be passed by-pointer.

- Adding DBUG_ASSERTs into Type_handler_assoc_array::get_item()
  and Type_handler_assoc_array::get_or_create_item() that the passed
  key in "name" is well formed according to the charset of INDEX BY.

- Changing the error ER_TOO_LONG_KEY to ER_WRONG_STRING_LENGTH.
  The former prints length limit in bytes, which is not applicable
  for INDEX BY values, because its limit is in characters.
  Also, the latter is more verbose.

- Fixing the problem that these wrong uses of an assoc array variable:

    BEGIN
      assoc_var;
      assoc_var(1);
    END;

  raised a weird error message:
    ERROR 1054 (42S22): Unknown column 'assoc_var' in '(null)'

  Now a more readable parse error is raised.

- Adding a "Duplicate key" warning for the cases when assigning
  between two assoc arrays rejects some records due to different
  collations in their INDEX BY key definitions.

- Disallow INDEX OF propagation from VARCHAR to TEXT.
  The underlying code cannot handle TEXT.
  Adding tests.

- Adding a helper class StringBufferKey to pass to val_str() when
  a key value is evaluated.
  Fixing all val_str() calls to val_str(&buffer), as the former is
  not desirable.

- Fixing a wrong use of args[0]->null_value in
  Item_func_assoc_array_exists::val_bool()

- Fixing a problem that using TABLE OF TEXT crashed the server.
  Thanks to Iqbal Hassan for the proposed patch.

- Changes in Qualified_ident:
  * Fixing the Qualified_ident constructors to get all parst as
    Lex_ident_cli_st, rather than the first part as Lex_ident_cli_st
    with the following parts Lex_ident_sys.
    This makes the code more symmetric.
  * Fixing the grammar in sql_yacc.yy accordinly.
  * Fixing the data type storing the possition in the client query
    from "const char *" to Lex_ident_cli.
  * Adding a new method Qualified_ident::is_sane().
    It allows to reduce the code side in sql_yacc.yy.
    Thanks to Iqbal Hassan for the idea.

- Replacing qs_append() to append_ulonglong() in:
  * Item_method_func::print()
  * Item_splocal_assoc_array_element::print()
  * Item_splocal_assoc_array_element_field::print()

  These methods do not use reserve()/alloc(), so calling qs_append()
  was wrong and caused a crash.

- Changing the output formats of these methods:
  * Item_splocal_assoc_array_element::print()
  * Item_splocal_assoc_array_element_field::print()
  not to print the key two times.
  Also moving the `@123` part (the variable offset) immediately
  after the variabl name and before the `[key]` part.

- Fixing a memory leak happened when trying to insert a duplicate
  key into an assoc array. Also adding a new "THD *" parameter to
  Field_assoc_array::insert_element(). Thanks to Iqbal Hassan for the fix.
  Adding a test into sp-assoc-array-ctype.test.

- In  Field_assoc_array::create_fields: m_element_field->field_name is now
  set for all element data types (not only for records).
  This fixed a wrong variable name in warnings. Adding tests.

- Adding tests:
  * Adding tests for assoc array elements in UNIONs.

  * Copying from an assoc array with a varchar key
    to an assoc array with a shorter varchar key.

  * A relatively big associative array.

  * Memory usage for x86_64.

  * Package variable as assoc array keys.

  * Character set conversion

  * TABLE OF TEXT

  * TABLE OF VARCHAR(>64k bytes) propagation to TABLE OF TEXT.

  * TEXT element fields in an array of records.

  * VARCHAR->TEXT propagation in elements in an array of records.

  * Some more tests
2025-08-01 18:03:20 +02:00

769 lines
20 KiB
C++

/* Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
Copyright (c) 2009, 2020, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
#include "mariadb.h"
#include "sql_priv.h"
#include "unireg.h"
#include "sp_pcontext.h"
#include "sp_head.h"
bool sp_condition_value::equals(const sp_condition_value *cv) const
{
DBUG_ASSERT(cv);
/*
The following test disallows duplicate handlers,
including user defined exceptions with the same WHEN clause:
DECLARE
a EXCEPTION;
b EXCEPTION;
BEGIN
RAUSE a;
EXCEPTION
WHEN a THEN RETURN 'a0';
WHEN a THEN RETURN 'a1';
END
*/
if (this == cv)
return true;
/*
The test below considers two conditions of the same type as equal
(except for the user defined exceptions) to avoid declaring duplicate
handlers.
All user defined conditions have type==SQLSTATE
with the same SQL state and error code.
It's OK to have multiple user defined conditions:
DECLARE
a EXCEPTION;
b EXCEPTION;
BEGIN
RAISE a;
EXCEPTION
WHEN a THEN RETURN 'a';
WHEN b THEN RETURN 'b';
END;
*/
if (type != cv->type || m_is_user_defined || cv->m_is_user_defined)
return false;
switch (type)
{
case sp_condition_value::ERROR_CODE:
return (get_sql_errno() == cv->get_sql_errno());
case sp_condition_value::SQLSTATE:
return Sql_state::eq(cv);
default:
return true;
}
}
sp_type_def_list::sp_type_def_list()
:m_type_defs(PSI_INSTRUMENT_MEM)
{ }
void sp_pcontext::init(uint var_offset,
uint cursor_offset,
int num_case_expressions)
{
m_var_offset= var_offset;
m_cursor_offset= cursor_offset;
m_num_case_exprs= num_case_expressions;
m_labels.empty();
m_goto_labels.empty();
}
sp_pcontext::sp_pcontext()
: Sql_alloc(),
m_max_var_index(0), m_max_cursor_index(0),
m_parent(NULL), m_pboundary(0),
m_vars(PSI_INSTRUMENT_MEM), m_case_expr_ids(PSI_INSTRUMENT_MEM),
m_conditions(PSI_INSTRUMENT_MEM), m_cursors(PSI_INSTRUMENT_MEM),
m_handlers(PSI_INSTRUMENT_MEM),
m_children(PSI_INSTRUMENT_MEM), m_scope(REGULAR_SCOPE)
{
init(0, 0, 0);
}
sp_pcontext::sp_pcontext(sp_pcontext *prev, sp_pcontext::enum_scope scope)
: Sql_alloc(),
m_max_var_index(0), m_max_cursor_index(0),
m_parent(prev), m_pboundary(0),
m_vars(PSI_INSTRUMENT_MEM), m_case_expr_ids(PSI_INSTRUMENT_MEM),
m_conditions(PSI_INSTRUMENT_MEM), m_cursors(PSI_INSTRUMENT_MEM),
m_handlers(PSI_INSTRUMENT_MEM),
m_children(PSI_INSTRUMENT_MEM), m_scope(scope)
{
init(prev->m_var_offset + prev->m_max_var_index,
prev->current_cursor_count(),
prev->get_num_case_exprs());
}
sp_pcontext::~sp_pcontext()
{
for (size_t i= 0; i < m_children.elements(); ++i)
delete m_children.at(i);
}
sp_pcontext *sp_pcontext::push_context(THD *thd, sp_pcontext::enum_scope scope)
{
sp_pcontext *child= new (thd->mem_root) sp_pcontext(this, scope);
if (child)
m_children.append(child);
return child;
}
bool cmp_labels(sp_label *a, sp_label *b)
{
return a->type == b->type && a->name.streq(b->name);
}
sp_pcontext *sp_pcontext::pop_context()
{
m_parent->m_max_var_index+= m_max_var_index;
uint submax= max_cursor_index();
if (submax > m_parent->m_max_cursor_index)
m_parent->m_max_cursor_index= submax;
if (m_num_case_exprs > m_parent->m_num_case_exprs)
m_parent->m_num_case_exprs= m_num_case_exprs;
/*
** Push unresolved goto label to parent context
*/
sp_label *label;
List_iterator_fast<sp_label> li(m_goto_labels);
while ((label= li++))
{
if (label->ip == 0)
{
m_parent->m_goto_labels.add_unique(label, &cmp_labels);
}
}
return m_parent;
}
uint sp_pcontext::diff_handlers(const sp_pcontext *ctx, bool exclusive) const
{
uint n= 0;
const sp_pcontext *pctx= this;
const sp_pcontext *last_ctx= NULL;
while (pctx && pctx != ctx)
{
n+= (uint)pctx->m_handlers.elements();
last_ctx= pctx;
pctx= pctx->parent_context();
}
if (pctx)
return (exclusive && last_ctx ? n -(uint) last_ctx->m_handlers.elements() : n);
return 0; // Didn't find ctx
}
uint sp_pcontext::diff_cursors(const sp_pcontext *ctx, bool exclusive) const
{
uint n= 0;
const sp_pcontext *pctx= this;
const sp_pcontext *last_ctx= NULL;
while (pctx && pctx != ctx)
{
n+= (uint)pctx->m_cursors.elements();
last_ctx= pctx;
pctx= pctx->parent_context();
}
if (pctx)
return (exclusive && last_ctx ? (uint)(n - last_ctx->m_cursors.elements()) : n);
return 0; // Didn't find ctx
}
sp_variable *sp_pcontext::find_variable(const LEX_CSTRING *name,
bool current_scope_only) const
{
size_t i= m_vars.elements() - m_pboundary;
while (i--)
{
sp_variable *p= m_vars.at(i);
if (p->name.streq(*name))
{
return p;
}
}
return (!current_scope_only && m_parent) ?
m_parent->find_variable(name, false) :
NULL;
}
/*
Find a variable by its run-time offset.
If the variable with a desired run-time offset is not found in this
context frame, it's recursively searched on parent context frames.
Note, context frames can have holes:
CREATE PROCEDURE p1() AS
x0 INT:=100;
CURSOR cur(p0 INT, p1 INT) IS SELECT p0, p1;
x1 INT:=101;
BEGIN
...
END;
The variables (x0 and x1) and the cursor parameters (p0 and p1)
reside in separate parse context frames.
The variables reside on the top level parse context frame:
- x0 has frame offset 0 and run-time offset 0
- x1 has frame offset 1 and run-time offset 3
The cursor parameters reside on the second level parse context frame:
- p0 has frame offset 0 and run-time offset 1
- p1 has frame offset 1 and run-time offset 2
Run-time offsets on a frame can have holes, but offsets monotonically grow,
so run-time offsets of all variables are not greater than the run-time offset
of the very last variable in this frame.
*/
sp_variable *sp_pcontext::find_variable(uint offset) const
{
if (m_var_offset <= offset &&
m_vars.elements() &&
offset <= get_last_context_variable()->offset)
{
for (uint i= 0; i < m_vars.elements(); i++)
{
if (m_vars.at(i)->offset == offset)
return m_vars.at(i); // This frame
}
}
return m_parent ?
m_parent->find_variable(offset) : // Some previous frame
NULL; // Index out of bounds
}
uint sp_pcontext::default_context_var_count() const
{
uint default_params= 0;
for (uint i= 0; i< context_var_count(); i++)
{
sp_variable *spvar= get_context_variable(i);
if (!spvar)
break;
if (spvar->default_value)
default_params++;
}
return default_params;
}
sp_variable *sp_pcontext::add_variable(THD *thd, const LEX_CSTRING *name)
{
sp_variable *p=
new (thd->mem_root) sp_variable(name, m_var_offset + m_max_var_index);
if (!p)
return NULL;
++m_max_var_index;
return m_vars.append(p) ? NULL : p;
}
sp_label *sp_pcontext::push_label(THD *thd, const LEX_CSTRING *name, uint ip,
sp_label::enum_type type,
List<sp_label> *list)
{
sp_label *label=
new (thd->mem_root) sp_label(name, ip, type, this);
if (!label)
return NULL;
list->push_front(label, thd->mem_root);
return label;
}
sp_label *sp_pcontext::find_goto_label(const LEX_CSTRING *name, bool recusive)
{
List_iterator_fast<sp_label> li(m_goto_labels);
sp_label *lab;
while ((lab= li++))
{
if (lab->name.streq(*name))
return lab;
}
if (!recusive)
return NULL;
/*
Note about exception handlers.
See SQL:2003 SQL/PSM (ISO/IEC 9075-4:2003),
section 13.1 <compound statement>,
syntax rule 4.
In short, a DECLARE HANDLER block can not refer
to labels from the parent context, as they are out of scope.
*/
if (m_scope == HANDLER_SCOPE && m_parent)
{
if (m_parent->m_parent)
{
// Skip the parent context
return m_parent->m_parent->find_goto_label(name);
}
}
return m_parent && (m_scope == REGULAR_SCOPE) ?
m_parent->find_goto_label(name) :
NULL;
}
sp_label *sp_pcontext::find_label(const LEX_CSTRING *name)
{
List_iterator_fast<sp_label> li(m_labels);
sp_label *lab;
while ((lab= li++))
{
if (lab->name.streq(*name))
return lab;
}
/*
Note about exception handlers.
See SQL:2003 SQL/PSM (ISO/IEC 9075-4:2003),
section 13.1 <compound statement>,
syntax rule 4.
In short, a DECLARE HANDLER block can not refer
to labels from the parent context, as they are out of scope.
*/
return (m_parent && (m_scope == REGULAR_SCOPE)) ?
m_parent->find_label(name) :
NULL;
}
sp_label *sp_pcontext::find_label_current_loop_start()
{
List_iterator_fast<sp_label> li(m_labels);
sp_label *lab;
while ((lab= li++))
{
if (lab->type == sp_label::ITERATION)
return lab;
}
// See a comment in sp_pcontext::find_label()
return (m_parent && (m_scope == REGULAR_SCOPE)) ?
m_parent->find_label_current_loop_start() :
NULL;
}
bool sp_pcontext::add_condition(THD *thd,
const Lex_ident_column &name,
sp_condition_value *value)
{
sp_condition *p= new (thd->mem_root) sp_condition(name, value);
if (p == NULL)
return true;
return m_conditions.append(p);
}
sp_condition_value *sp_pcontext::find_condition(const LEX_CSTRING *name,
bool current_scope_only) const
{
size_t i= m_conditions.elements();
while (i--)
{
sp_condition *p= m_conditions.at(i);
if (p->eq_name(name))
{
return p->value;
}
}
return (!current_scope_only && m_parent) ?
m_parent->find_condition(name, false) :
NULL;
}
sp_type_def *sp_pcontext::find_type_def(const LEX_CSTRING &name,
bool current_scope_only) const
{
auto p= sp_type_def_list::find_type_def(name);
if (p)
return p;
return (!current_scope_only && m_parent) ?
m_parent->find_type_def(name, false) :
NULL;
}
sp_condition_value *
sp_pcontext::find_declared_or_predefined_condition(THD *thd,
const LEX_CSTRING *name)
const
{
sp_condition_value *p= find_condition(name, false);
if (p)
return p;
if (thd->variables.sql_mode & MODE_ORACLE)
return find_predefined_condition(name);
return NULL;
}
static sp_condition_value
// Warnings
cond_no_data_found(ER_SP_FETCH_NO_DATA, "01000"),
// Errors
cond_invalid_cursor(ER_SP_CURSOR_NOT_OPEN, "24000"),
cond_dup_val_on_index(ER_DUP_ENTRY, "23000"),
cond_dup_val_on_index2(ER_DUP_ENTRY_WITH_KEY_NAME, "23000"),
cond_too_many_rows(ER_TOO_MANY_ROWS, "42000");
static sp_condition sp_predefined_conditions[]=
{
// Warnings
sp_condition("NO_DATA_FOUND"_Lex_ident_column, &cond_no_data_found),
// Errors
sp_condition("INVALID_CURSOR"_Lex_ident_column, &cond_invalid_cursor),
sp_condition("DUP_VAL_ON_INDEX"_Lex_ident_column, &cond_dup_val_on_index),
sp_condition("DUP_VAL_ON_INDEX"_Lex_ident_column, &cond_dup_val_on_index2),
sp_condition("TOO_MANY_ROWS"_Lex_ident_column, &cond_too_many_rows)
};
sp_condition_value *
sp_pcontext::find_predefined_condition(const LEX_CSTRING *name) const
{
for (uint i= 0; i < array_elements(sp_predefined_conditions) ; i++)
{
if (sp_predefined_conditions[i].eq_name(name))
return sp_predefined_conditions[i].value;
}
return NULL;
}
sp_handler *sp_pcontext::add_handler(THD *thd,
sp_handler::enum_type type)
{
sp_handler *h= new (thd->mem_root) sp_handler(type);
if (!h)
return NULL;
return m_handlers.append(h) ? NULL : h;
}
bool sp_pcontext::check_duplicate_handler(
const sp_condition_value *cond_value) const
{
for (size_t i= 0; i < m_handlers.elements(); ++i)
{
sp_handler *h= m_handlers.at(i);
List_iterator_fast<sp_condition_value> li(h->condition_values);
sp_condition_value *cv;
while ((cv= li++))
{
if (cond_value->equals(cv))
return true;
}
}
return false;
}
bool sp_condition_value::matches(const Sql_condition_identity &value,
const sp_condition_value *found_cv) const
{
bool user_value_matched= !value.get_user_condition_value() ||
this == value.get_user_condition_value();
switch (type)
{
case sp_condition_value::ERROR_CODE:
return user_value_matched &&
value.get_sql_errno() == get_sql_errno() &&
(!found_cv || found_cv->type > sp_condition_value::ERROR_CODE);
case sp_condition_value::SQLSTATE:
return user_value_matched &&
Sql_state::eq(&value) &&
(!found_cv || found_cv->type > sp_condition_value::SQLSTATE);
case sp_condition_value::WARNING:
return user_value_matched &&
(value.Sql_state::is_warning() ||
value.get_level() == Sql_condition::WARN_LEVEL_WARN) &&
!found_cv;
case sp_condition_value::NOT_FOUND:
return user_value_matched &&
value.Sql_state::is_not_found() &&
!found_cv;
case sp_condition_value::EXCEPTION:
/*
In sql_mode=ORACLE this construct should catch both errors and warnings:
EXCEPTION
WHEN OTHERS THEN ...;
E.g. NO_DATA_FOUND is more like a warning than an error,
and it should be caught.
We don't check user_value_matched here.
"WHEN OTHERS" catches all user defined exception.
*/
return (((current_thd->variables.sql_mode & MODE_ORACLE) ||
(value.Sql_state::is_exception() &&
value.get_level() == Sql_condition::WARN_LEVEL_ERROR)) &&
!found_cv);
}
return false;
}
sp_handler*
sp_pcontext::find_handler(const Sql_condition_identity &value) const
{
sp_handler *found_handler= NULL;
sp_condition_value *found_cv= NULL;
for (size_t i= 0; i < m_handlers.elements(); ++i)
{
sp_handler *h= m_handlers.at(i);
List_iterator_fast<sp_condition_value> li(h->condition_values);
sp_condition_value *cv;
while ((cv= li++))
{
if (cv->matches(value, found_cv))
{
found_cv= cv;
found_handler= h;
}
}
}
if (found_handler)
return found_handler;
// There is no appropriate handler in this parsing context. We need to look up
// in parent contexts. There might be two cases here:
//
// 1. The current context has REGULAR_SCOPE. That means, it's a simple
// BEGIN..END block:
// ...
// BEGIN
// ... # We're here.
// END
// ...
// In this case we simply call find_handler() on parent's context recursively.
//
// 2. The current context has HANDLER_SCOPE. That means, we're inside an
// SQL-handler block:
// ...
// DECLARE ... HANDLER FOR ...
// BEGIN
// ... # We're here.
// END
// ...
// In this case we can not just call parent's find_handler(), because
// parent's handler don't catch conditions from this scope. Instead, we should
// try to find first parent context (we might have nested handler
// declarations), which has REGULAR_SCOPE (i.e. which is regular BEGIN..END
// block).
const sp_pcontext *p= this;
while (p && p->m_scope == HANDLER_SCOPE)
p= p->m_parent;
if (!p || !p->m_parent)
return NULL;
return p->m_parent->find_handler(value);
}
bool sp_pcontext::add_cursor(const LEX_CSTRING *name, sp_pcontext *param_ctx,
sp_lex_cursor *lex)
{
if (m_cursors.elements() == m_max_cursor_index)
++m_max_cursor_index;
return m_cursors.append(sp_pcursor(name, param_ctx, lex));
}
const sp_pcursor *sp_pcontext::find_cursor(const LEX_CSTRING *name,
uint *poff,
bool current_scope_only) const
{
uint i= (uint)m_cursors.elements();
while (i--)
{
if (m_cursors.at(i).streq(*name))
{
*poff= m_cursor_offset + i;
return &m_cursors.at(i);
}
}
return (!current_scope_only && m_parent) ?
m_parent->find_cursor(name, poff, false) :
NULL;
}
void sp_pcontext::retrieve_field_definitions(
List<Spvar_definition> *field_def_lst) const
{
/* Put local/context fields in the result list. */
size_t next_child= 0;
for (size_t i= 0; i < m_vars.elements(); ++i)
{
sp_variable *var_def= m_vars.at(i);
/*
The context can have holes in run-time offsets,
the missing offsets reside on the children contexts in such cases.
Example:
CREATE PROCEDURE p1() AS
x0 INT:=100; -- context 0, position 0, run-time 0
CURSOR cur(
p0 INT, -- context 1, position 0, run-time 1
p1 INT -- context 1, position 1, run-time 2
) IS SELECT p0, p1;
x1 INT:=101; -- context 0, position 1, run-time 3
BEGIN
...
END;
See more comments in sp_pcontext::find_variable().
We must retrieve the definitions in the order of their run-time offsets.
Check that there are children that should go before the current variable.
*/
for ( ; next_child < m_children.elements(); next_child++)
{
sp_pcontext *child= m_children.at(next_child);
if (!child->context_var_count() ||
child->get_context_variable(0)->offset > var_def->offset)
break;
/*
All variables on the embedded context (that fills holes of the parent)
should have the run-time offset strictly less than var_def.
*/
DBUG_ASSERT(child->get_context_variable(0)->offset < var_def->offset);
DBUG_ASSERT(child->get_last_context_variable()->offset < var_def->offset);
child->retrieve_field_definitions(field_def_lst);
}
field_def_lst->push_back(&var_def->field_def);
}
/* Put the fields of the remaining enclosed contexts in the result list. */
for (size_t i= next_child; i < m_children.elements(); ++i)
m_children.at(i)->retrieve_field_definitions(field_def_lst);
}
const sp_pcursor *sp_pcontext::find_cursor(uint offset) const
{
if (m_cursor_offset <= offset &&
offset < m_cursor_offset + m_cursors.elements())
{
return &m_cursors.at(offset - m_cursor_offset); // This frame
}
return m_parent ?
m_parent->find_cursor(offset) : // Some previous frame
NULL; // Index out of bounds
}
bool sp_pcursor::check_param_count_with_error(uint param_count) const
{
if (param_count != (m_param_context ?
m_param_context->context_var_count() : 0))
{
my_error(ER_WRONG_PARAMCOUNT_TO_CURSOR, MYF(0), LEX_CSTRING::str);
return true;
}
return false;
}
const Spvar_definition *
sp_variable::find_row_field(const LEX_CSTRING *var_name,
const LEX_CSTRING *field_name,
uint *row_field_offset)
{
if (!field_def.is_row())
{
my_printf_error(ER_UNKNOWN_ERROR,
"'%s' is not a row variable", MYF(0), var_name->str);
return NULL;
}
const Spvar_definition *def;
if ((def= field_def.find_row_field_by_name(field_name, row_field_offset)))
return def;
my_error(ER_ROW_VARIABLE_DOES_NOT_HAVE_FIELD, MYF(0),
var_name->str, field_name->str);
return NULL;
}