mirror of
				https://github.com/MariaDB/server.git
				synced 2025-10-31 10:56:12 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			224 lines
		
	
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			224 lines
		
	
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright (c) 2007, 2011, Oracle and/or its affiliates.
 | |
|    Copyright (c) 2009, 2020, MariaDB Corporation.
 | |
| 
 | |
|    This program is free software; you can redistribute it and/or modify
 | |
|    it under the terms of the GNU General Public License as published by
 | |
|    the Free Software Foundation; version 2 of the License.
 | |
| 
 | |
|    This program is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|    GNU General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU General Public License
 | |
|    along with this program; if not, write to the Free Software
 | |
|    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335  USA */
 | |
| 
 | |
| #ifndef MY_BIT_INCLUDED
 | |
| #define MY_BIT_INCLUDED
 | |
| 
 | |
| /*
 | |
|   Some useful bit functions
 | |
| */
 | |
| 
 | |
| C_MODE_START
 | |
| 
 | |
| extern const uchar _my_bits_reverse_table[256];
 | |
| 
 | |
| 
 | |
| /*
 | |
|   my_bit_log2_xxx()
 | |
| 
 | |
|   In the given value, find the highest bit set,
 | |
|   which is the smallest X that satisfies the condition: (2^X >= value).
 | |
|   Can be used as a reverse operation for (1<<X), to find X.
 | |
| 
 | |
|   Examples:
 | |
|   - returns 0 for (1<<0)
 | |
|   - returns 1 for (1<<1)
 | |
|   - returns 2 for (1<<2)
 | |
|   - returns 1 for 3, which has (1<<1) as the highest bit set.
 | |
| 
 | |
|   Note, the behaviour of log2(0) is not defined.
 | |
|   Let's return 0 for the input 0, for the code simplicity.
 | |
|   See the 000x branch. It covers both (1<<0) and 0.
 | |
| */
 | |
| static inline CONSTEXPR uint my_bit_log2_hex_digit(uint8 value)
 | |
| {
 | |
|   return value & 0x0C ? /*1100*/ (value & 0x08 ? /*1000*/ 3 : /*0100*/ 2) :
 | |
|                         /*0010*/ (value & 0x02 ? /*0010*/ 1 : /*000x*/ 0);
 | |
| }
 | |
| static inline CONSTEXPR uint my_bit_log2_uint8(uint8 value)
 | |
| {
 | |
|   return value & 0xF0 ? my_bit_log2_hex_digit((uint8) (value >> 4)) + 4:
 | |
|                         my_bit_log2_hex_digit(value);
 | |
| }
 | |
| static inline CONSTEXPR uint my_bit_log2_uint16(uint16 value)
 | |
| {
 | |
|   return value & 0xFF00 ? my_bit_log2_uint8((uint8) (value >> 8)) + 8 :
 | |
|                           my_bit_log2_uint8((uint8) value);
 | |
| }
 | |
| static inline CONSTEXPR uint my_bit_log2_uint32(uint32 value)
 | |
| {
 | |
|   return value & 0xFFFF0000UL ?
 | |
|          my_bit_log2_uint16((uint16) (value >> 16)) + 16 :
 | |
|          my_bit_log2_uint16((uint16) value);
 | |
| }
 | |
| static inline CONSTEXPR uint my_bit_log2_uint64(ulonglong value)
 | |
| {
 | |
|   return value & 0xFFFFFFFF00000000ULL ?
 | |
|          my_bit_log2_uint32((uint32) (value >> 32)) + 32 :
 | |
|          my_bit_log2_uint32((uint32) value);
 | |
| }
 | |
| static inline CONSTEXPR uint my_bit_log2_size_t(size_t value)
 | |
| {
 | |
| #ifdef __cplusplus
 | |
|   static_assert(sizeof(size_t) <= sizeof(ulonglong),
 | |
|                 "size_t <= ulonglong is an assumption that needs to be fixed "
 | |
|                 "for this architecture. Please create an issue on "
 | |
|                 "https://jira.mariadb.org");
 | |
| #endif
 | |
|   return my_bit_log2_uint64((ulonglong) value);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| Count bits in 32bit integer
 | |
| 
 | |
|   Algorithm by Sean Anderson, according to:
 | |
|   http://graphics.stanford.edu/~seander/bithacks.html
 | |
|   under "Counting bits set, in parallel"
 | |
| 
 | |
|  (Original code public domain).
 | |
| */
 | |
| static inline uint my_count_bits_uint32(uint32 v)
 | |
| {
 | |
|   v = v - ((v >> 1) & 0x55555555);
 | |
|   v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
 | |
|   return (((v + (v >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline uint my_count_bits(ulonglong x)
 | |
| {
 | |
|   return my_count_bits_uint32((uint32)x) + my_count_bits_uint32((uint32)(x >> 32));
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Next highest power of two
 | |
| 
 | |
|   SYNOPSIS
 | |
|     my_round_up_to_next_power()
 | |
|     v		Value to check
 | |
| 
 | |
|   RETURN
 | |
|     Next or equal power of 2
 | |
|     Note: 0 will return 0
 | |
| 
 | |
|   NOTES
 | |
|     Algorithm by Sean Anderson, according to:
 | |
|     http://graphics.stanford.edu/~seander/bithacks.html
 | |
|     (Original code public domain)
 | |
| 
 | |
|     Comments shows how this works with 01100000000000000000000000001011
 | |
| */
 | |
| 
 | |
| static inline uint32 my_round_up_to_next_power(uint32 v)
 | |
| {
 | |
|   v--;			/* 01100000000000000000000000001010 */
 | |
|   v|= v >> 1;		/* 01110000000000000000000000001111 */
 | |
|   v|= v >> 2;		/* 01111100000000000000000000001111 */
 | |
|   v|= v >> 4;		/* 01111111110000000000000000001111 */
 | |
|   v|= v >> 8;		/* 01111111111111111100000000001111 */
 | |
|   v|= v >> 16;		/* 01111111111111111111111111111111 */
 | |
|   return v+1;		/* 10000000000000000000000000000000 */
 | |
| }
 | |
| 
 | |
| static inline uint32 my_clear_highest_bit(uint32 v)
 | |
| {
 | |
|   uint32 w=v >> 1;
 | |
|   w|= w >> 1;
 | |
|   w|= w >> 2;
 | |
|   w|= w >> 4;
 | |
|   w|= w >> 8;
 | |
|   w|= w >> 16;
 | |
|   return v & w;
 | |
| }
 | |
| 
 | |
| static inline uint32 my_reverse_bits(uint32 key)
 | |
| {
 | |
|   return
 | |
|     ((uint32)_my_bits_reverse_table[ key      & 255] << 24) |
 | |
|     ((uint32)_my_bits_reverse_table[(key>> 8) & 255] << 16) |
 | |
|     ((uint32)_my_bits_reverse_table[(key>>16) & 255] <<  8) |
 | |
|      (uint32)_my_bits_reverse_table[(key>>24)      ];
 | |
| }
 | |
| 
 | |
| /*
 | |
|   a number with the n lowest bits set
 | |
|   an overflow-safe version of  (1 << n) - 1
 | |
| */
 | |
| static inline uint64 my_set_bits(int n)
 | |
| {
 | |
|   return (((1ULL << (n - 1)) - 1) << 1) | 1;
 | |
| }
 | |
| 
 | |
| /* Create a mask of the significant bits for the last byte (1,3,7,..255) */
 | |
| static inline uchar last_byte_mask(uint bits)
 | |
| {
 | |
|   /* Get the number of used bits-1 (0..7) in the last byte */
 | |
|   unsigned int const used = (bits - 1U) & 7U;
 | |
|   /* Return bitmask for the significant bits */
 | |
|   return (uchar) ((2U << used) - 1);
 | |
| }
 | |
| 
 | |
| static inline uint my_bits_in_bytes(uint n)
 | |
| {
 | |
|   return ((n + 7) / 8);
 | |
| }
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #include <intrin.h>
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|   Find the position of the first(least significant) bit set in
 | |
|   the argument. Returns 64 if the argument was 0.
 | |
| */
 | |
| static inline uint my_find_first_bit(ulonglong n)
 | |
| {
 | |
|   if(!n)
 | |
|     return 64;
 | |
| #if defined(__GNUC__)
 | |
|   return __builtin_ctzll(n);
 | |
| #elif defined(_MSC_VER)
 | |
| #if defined(_M_IX86)
 | |
|   unsigned long bit;
 | |
|   if( _BitScanForward(&bit, (uint)n))
 | |
|     return bit;
 | |
|   _BitScanForward(&bit, (uint)(n>>32));
 | |
|   return bit + 32;
 | |
| #else
 | |
|   unsigned long bit;
 | |
|   _BitScanForward64(&bit, n);
 | |
|   return bit;
 | |
| #endif
 | |
| #else
 | |
|   /* Generic case */
 | |
|   uint  shift= 0;
 | |
|   static const uchar last_bit[16] = { 32, 0, 1, 0,
 | |
|                                       2, 0, 1, 0,
 | |
|                                       3, 0, 1, 0,
 | |
|                                       2, 0, 1, 0};
 | |
|   uint bit;
 | |
|   while ((bit = last_bit[(n >> shift) & 0xF]) == 32)
 | |
|     shift+= 4;
 | |
|   return shift+bit;
 | |
| #endif
 | |
| }
 | |
| C_MODE_END
 | |
| 
 | |
| #endif /* MY_BIT_INCLUDED */
 | 
