mariadb/sql/item_vectorfunc.cc
Rucha Deodhar 2a0fcd3757 MDEV-32854: Make JSON_DEPTH_LIMIT unlimited
The initial hard capped limit on the depth was 32. It was implemented using
static arrays of relevant type and size 32.
Hence, to implement unlimited depth, dynamic array on mem_root was
implemented which grows by 3200 as needed. Relevant arrays were replaced
with this dynamic array.
2025-07-22 17:32:21 +05:30

280 lines
7.7 KiB
C++

/* Copyright (c) 2023, MariaDB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
/**
@file
@brief
This file defines all vector functions
*/
#include "item_vectorfunc.h"
#include "vector_mhnsw.h"
#include "sql_type_vector.h"
static double calc_distance_euclidean(float *v1, float *v2, size_t v_len)
{
double d= 0;
for (size_t i= 0; i < v_len; i++, v1++, v2++)
{
float dist= get_float(v1) - get_float(v2);
d+= dist * dist;
}
return sqrt(d);
}
static double calc_distance_cosine(float *v1, float *v2, size_t v_len)
{
double dotp=0, abs1=0, abs2=0;
for (size_t i= 0; i < v_len; i++, v1++, v2++)
{
float f1= get_float(v1), f2= get_float(v2);
abs1+= f1 * f1;
abs2+= f2 * f2;
dotp+= f1 * f2;
}
return 1 - dotp/sqrt(abs1*abs2);
}
Item_func_vec_distance::Item_func_vec_distance(THD *thd, Item *a, Item *b,
distance_kind kind)
:Item_real_func(thd, a, b), kind(kind)
{
}
bool Item_func_vec_distance::fix_length_and_dec(THD *thd)
{
switch (kind) {
case EUCLIDEAN: calc_distance= calc_distance_euclidean; break;
case COSINE: calc_distance= calc_distance_cosine; break;
case AUTO:
for (uint i=0; i < 2; i++)
if (auto *item= dynamic_cast<Item_field*>(args[i]->real_item()))
{
TABLE_SHARE *share= item->field->orig_table->s;
if (share->tmp_table)
break;
Field *f= share->field[item->field->field_index];
KEY *kinfo= share->key_info;
for (uint j= share->keys; j < share->total_keys; j++)
if (kinfo[j].algorithm == HA_KEY_ALG_VECTOR && f->key_start.is_set(j))
{
kind= mhnsw_uses_distance(f->table, kinfo + j);
return fix_length_and_dec(thd);
}
}
my_error(ER_VEC_DISTANCE_TYPE, MYF(0));
return 1;
}
set_maybe_null(); // if wrong dimensions
return Item_real_func::fix_length_and_dec(thd);
}
key_map Item_func_vec_distance::part_of_sortkey() const
{
key_map map(0);
if (Item_field *item= get_field_arg())
{
Field *f= item->field;
KEY *keyinfo= f->table->s->key_info;
for (uint i= f->table->s->keys; i < f->table->s->total_keys; i++)
if (!keyinfo[i].is_ignored && keyinfo[i].algorithm == HA_KEY_ALG_VECTOR
&& f->key_start.is_set(i)
&& mhnsw_uses_distance(f->table, keyinfo + i) == kind)
map.set_bit(i);
}
return map;
}
double Item_func_vec_distance::val_real()
{
String *r1= args[0]->val_str();
String *r2= args[1]->val_str();
null_value= !r1 || !r2 || r1->length() != r2->length() ||
r1->length() % sizeof(float);
if (null_value)
return 0;
float *v1= (float *) r1->ptr();
float *v2= (float *) r2->ptr();
return calc_distance(v1, v2, (r1->length()) / sizeof(float));
}
bool Item_func_vec_totext::fix_length_and_dec(THD *thd)
{
decimals= 0;
max_length= ((args[0]->max_length / 4) *
(MAX_FLOAT_STR_LENGTH + 1 /* comma */)) + 2 /* braces */;
fix_length_and_charset(max_length, default_charset());
set_maybe_null();
return false;
}
String *Item_func_vec_totext::val_str_ascii(String *str)
{
String *r1= args[0]->val_str();
if ((null_value= args[0]->null_value))
return nullptr;
// Wrong size returns null
if (r1->length() % 4)
{
THD *thd= current_thd;
push_warning(thd, Sql_condition::WARN_LEVEL_WARN,
ER_VECTOR_BINARY_FORMAT_INVALID,
ER_THD(thd, ER_VECTOR_BINARY_FORMAT_INVALID));
null_value= true;
return nullptr;
}
str->length(0);
str->set_charset(&my_charset_numeric);
str->reserve(r1->length() / 4 * (MAX_FLOAT_STR_LENGTH + 1) + 2);
str->append('[');
const char *ptr= r1->ptr();
for (size_t i= 0; i < r1->length(); i+= 4)
{
float val= get_float(ptr);
if (std::isinf(val))
if (val < 0)
str->append(STRING_WITH_LEN("-Inf"));
else
str->append(STRING_WITH_LEN("Inf"));
else if (std::isnan(val))
str->append(STRING_WITH_LEN("NaN"));
else
{
char buf[MAX_FLOAT_STR_LENGTH+1];
size_t l= my_gcvt(val, MY_GCVT_ARG_FLOAT, MAX_FLOAT_STR_LENGTH, buf, 0);
str->append(buf, l);
}
ptr+= 4;
if (r1->length() - i > 4)
str->append(',');
}
str->append(']');
return str;
}
Item_func_vec_totext::Item_func_vec_totext(THD *thd, Item *a)
: Item_str_ascii_checksum_func(thd, a)
{
}
Item_func_vec_fromtext::Item_func_vec_fromtext(THD *thd, Item *a)
: Item_str_func(thd, a)
{
mem_root_inited= false;
}
bool Item_func_vec_fromtext::fix_length_and_dec(THD *thd)
{
mem_root_dynamic_array_init(thd->mem_root, PSI_INSTRUMENT_MEM,
&je.stack, sizeof(int), NULL,
JSON_DEPTH_DEFAULT, JSON_DEPTH_INC, MYF(0));
decimals= 0;
/* Worst case scenario, for a valid input we have a string of the form:
[1,2,3,4,5,...] single digit numbers.
This means we can have (max_length - 1) / 2 floats.
Each float takes 4 bytes, so we do (max_length - 1) * 2. */
fix_length_and_charset((args[0]->max_length - 1) * 2, &my_charset_bin);
set_maybe_null();
return false;
}
String *Item_func_vec_fromtext::val_str(String *buf)
{
bool end_ok= false;
String *value = args[0]->val_json(&tmp_js);
if ((null_value= !value))
return nullptr;
buf->length(0);
buf->set_charset(&my_charset_bin);
CHARSET_INFO *cs= value->charset();
const uchar *start= reinterpret_cast<const uchar *>(value->ptr());
const uchar *end= start + value->length();
if (json_scan_start(&je, cs, start, end) ||
json_read_value(&je))
goto error;
if (je.value_type != JSON_VALUE_ARRAY)
goto error_format;
/* Accept only arrays of floats. */
do {
switch (je.state)
{
case JST_ARRAY_START:
continue;
case JST_ARRAY_END:
end_ok = true;
break;
case JST_VALUE:
{
if (json_read_value(&je))
goto error;
if (je.value_type != JSON_VALUE_NUMBER)
goto error_format;
int error;
char *start= (char *)je.value_begin, *end;
float f= (float)cs->strntod(start, je.value_len, &end, &error);
if (unlikely(error))
goto error_format;
char f_bin[4];
float4store(f_bin, f);
buf->append(f_bin, sizeof(f_bin));
break;
}
default:
goto error_format;
}
} while (json_scan_next(&je) == 0);
if (!end_ok)
goto error_format;
if (Type_handler_vector::is_valid(buf->ptr(), buf->length()))
return buf;
null_value= true;
push_warning_printf(current_thd, Sql_condition::WARN_LEVEL_WARN,
ER_TRUNCATED_WRONG_VALUE, ER(ER_TRUNCATED_WRONG_VALUE),
"vector", value->c_ptr_safe());
return nullptr;
error_format:
{
int position= (int)((const char *) je.s.c_str - value->ptr());
null_value= true;
push_warning_printf(current_thd, Sql_condition::WARN_LEVEL_WARN,
ER_VECTOR_FORMAT_INVALID, ER(ER_VECTOR_FORMAT_INVALID),
position, value->c_ptr_safe());
return nullptr;
}
error:
report_json_error_ex(value->ptr(), &je, func_name(),
0, Sql_condition::WARN_LEVEL_WARN);
null_value= true;
return nullptr;
}