mirror of
				https://github.com/MariaDB/server.git
				synced 2025-10-30 18:36:12 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			3271 lines
		
	
	
	
		
			90 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3271 lines
		
	
	
	
		
			90 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright (c) 2004, 2014, Oracle and/or its affiliates.
 | |
|    Copyright (c) 2009, 2014, Monty Program Ab.
 | |
| 
 | |
|    This program is free software; you can redistribute it and/or modify
 | |
|    it under the terms of the GNU General Public License as published by
 | |
|    the Free Software Foundation; version 2 of the License.
 | |
| 
 | |
|    This program is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|    GNU General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU General Public License
 | |
|    along with this program; if not, write to the Free Software
 | |
|    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1335  USA */
 | |
| 
 | |
| /*
 | |
| =======================================================================
 | |
|   NOTE: this library implements SQL standard "exact numeric" type
 | |
|   and is not at all generic, but rather intentionally crippled to
 | |
|   follow the standard :)
 | |
| =======================================================================
 | |
|   Quoting the standard
 | |
|   (SQL:2003, Part 2 Foundations, aka ISO/IEC 9075-2:2003)
 | |
| 
 | |
| 4.4.2 Characteristics of numbers, page 27:
 | |
| 
 | |
|   An exact numeric type has a precision P and a scale S. P is a positive
 | |
|   integer that determines the number of significant digits in a
 | |
|   particular radix R, where R is either 2 or 10. S is a non-negative
 | |
|   integer. Every value of an exact numeric type of scale S is of the
 | |
|   form n*10^{-S}, where n is an integer such that -R^P <= n <= R^P.
 | |
| 
 | |
|   [...]
 | |
| 
 | |
|   If an assignment of some number would result in a loss of its most
 | |
|   significant digit, an exception condition is raised. If least
 | |
|   significant digits are lost, implementation-defined rounding or
 | |
|   truncating occurs, with no exception condition being raised.
 | |
| 
 | |
|   [...]
 | |
| 
 | |
|   Whenever an exact or approximate numeric value is assigned to an exact
 | |
|   numeric value site, an approximation of its value that preserves
 | |
|   leading significant digits after rounding or truncating is represented
 | |
|   in the declared type of the target. The value is converted to have the
 | |
|   precision and scale of the target. The choice of whether to truncate
 | |
|   or round is implementation-defined.
 | |
| 
 | |
|   [...]
 | |
| 
 | |
|   All numeric values between the smallest and the largest value,
 | |
|   inclusive, in a given exact numeric type have an approximation
 | |
|   obtained by rounding or truncation for that type; it is
 | |
|   implementation-defined which other numeric values have such
 | |
|   approximations.
 | |
| 
 | |
| 5.3 <literal>, page 143
 | |
| 
 | |
|   <exact numeric literal> ::=
 | |
|     <unsigned integer> [ <period> [ <unsigned integer> ] ]
 | |
|   | <period> <unsigned integer>
 | |
| 
 | |
| 6.1 <data type>, page 165:
 | |
| 
 | |
|   19) The <scale> of an <exact numeric type> shall not be greater than
 | |
|       the <precision> of the <exact numeric type>.
 | |
| 
 | |
|   20) For the <exact numeric type>s DECIMAL and NUMERIC:
 | |
| 
 | |
|     a) The maximum value of <precision> is implementation-defined.
 | |
|        <precision> shall not be greater than this value.
 | |
|     b) The maximum value of <scale> is implementation-defined. <scale>
 | |
|        shall not be greater than this maximum value.
 | |
| 
 | |
|   21) NUMERIC specifies the data type exact numeric, with the decimal
 | |
|       precision and scale specified by the <precision> and <scale>.
 | |
| 
 | |
|   22) DECIMAL specifies the data type exact numeric, with the decimal
 | |
|       scale specified by the <scale> and the implementation-defined
 | |
|       decimal precision equal to or greater than the value of the
 | |
|       specified <precision>.
 | |
| 
 | |
| 6.26 <numeric value expression>, page 241:
 | |
| 
 | |
|   1) If the declared type of both operands of a dyadic arithmetic
 | |
|      operator is exact numeric, then the declared type of the result is
 | |
|      an implementation-defined exact numeric type, with precision and
 | |
|      scale determined as follows:
 | |
| 
 | |
|    a) Let S1 and S2 be the scale of the first and second operands
 | |
|       respectively.
 | |
|    b) The precision of the result of addition and subtraction is
 | |
|       implementation-defined, and the scale is the maximum of S1 and S2.
 | |
|    c) The precision of the result of multiplication is
 | |
|       implementation-defined, and the scale is S1 + S2.
 | |
|    d) The precision and scale of the result of division are
 | |
|       implementation-defined.
 | |
| */
 | |
| 
 | |
| #include "strings_def.h"
 | |
| #include <m_ctype.h>
 | |
| #include <myisampack.h>
 | |
| #include <my_sys.h> /* for my_alloca */
 | |
| #include <decimal.h>
 | |
| 
 | |
| /*
 | |
|   Internally decimal numbers are stored base 10^9 (see DIG_BASE below)
 | |
|   So one variable of type decimal_digit_t is limited:
 | |
| 
 | |
|       0 < decimal_digit <= DIG_MAX < DIG_BASE
 | |
| 
 | |
|   in the struct st_decimal_t:
 | |
| 
 | |
|     intg is the number of *decimal* digits (NOT number of decimal_digit_t's !)
 | |
|          before the point
 | |
|     frac - number of decimal digits after the point
 | |
|     buf is an array of decimal_digit_t's
 | |
|     len is the length of buf (length of allocated space) in decimal_digit_t's,
 | |
|         not in bytes
 | |
| */
 | |
| typedef decimal_digit_t dec1;
 | |
| typedef longlong      dec2;
 | |
| 
 | |
| #define DIG_PER_DEC1 9
 | |
| #define DIG_MASK     100000000
 | |
| #define DIG_BASE     1000000000
 | |
| #define DIG_MAX      (DIG_BASE-1)
 | |
| #define DIG_BASE2    ((dec2)DIG_BASE * (dec2)DIG_BASE)
 | |
| static const dec1 powers10[DIG_PER_DEC1+1]={
 | |
|   1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000};
 | |
| static const int dig2bytes[DIG_PER_DEC1+1]={0, 1, 1, 2, 2, 3, 3, 4, 4, 4};
 | |
| static const dec1 frac_max[DIG_PER_DEC1-1]={
 | |
|   900000000, 990000000, 999000000,
 | |
|   999900000, 999990000, 999999000,
 | |
|   999999900, 999999990 };
 | |
| 
 | |
| static inline int ROUND_UP(int x)
 | |
| {
 | |
|   return (x + (x > 0 ? DIG_PER_DEC1 - 1 : 0)) / DIG_PER_DEC1;
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_valgrind
 | |
| #define sanity(d) DBUG_ASSERT((d)->len > 0)
 | |
| #else
 | |
| #define sanity(d) DBUG_ASSERT((d)->len >0 && ((d)->buf[0] | \
 | |
|                               (d)->buf[(d)->len-1] | 1))
 | |
| #endif
 | |
| 
 | |
| #define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error)                   \
 | |
|         do                                                              \
 | |
|         {                                                               \
 | |
|           if (unlikely(intg1+frac1 > (len)))                            \
 | |
|           {                                                             \
 | |
|             if (unlikely(intg1 > (len)))                                \
 | |
|             {                                                           \
 | |
|               intg1=(len);                                              \
 | |
|               frac1=0;                                                  \
 | |
|               error=E_DEC_OVERFLOW;                                     \
 | |
|             }                                                           \
 | |
|             else                                                        \
 | |
|             {                                                           \
 | |
|               frac1=(len)-intg1;                                        \
 | |
|               error=E_DEC_TRUNCATED;                                    \
 | |
|             }                                                           \
 | |
|           }                                                             \
 | |
|           else                                                          \
 | |
|             error=E_DEC_OK;                                             \
 | |
|         } while(0)
 | |
| 
 | |
| #define ADD(to, from1, from2, carry)  /* assume carry <= 1 */           \
 | |
|         do                                                              \
 | |
|         {                                                               \
 | |
|           dec1 a=(from1)+(from2)+(carry);                               \
 | |
|           DBUG_ASSERT((carry) <= 1);                                    \
 | |
|           if (((carry)= a >= DIG_BASE)) /* no division here! */         \
 | |
|             a-=DIG_BASE;                                                \
 | |
|           (to)=a;                                                       \
 | |
|         } while(0)
 | |
| 
 | |
| #define ADD2(to, from1, from2, carry)                                   \
 | |
|         do                                                              \
 | |
|         {                                                               \
 | |
|           dec2 a=((dec2)(from1))+(from2)+(carry);                       \
 | |
|           if (((carry)= a >= DIG_BASE))                                 \
 | |
|             a-=DIG_BASE;                                                \
 | |
|           if (unlikely(a >= DIG_BASE))                                  \
 | |
|           {                                                             \
 | |
|             a-=DIG_BASE;                                                \
 | |
|             carry++;                                                    \
 | |
|           }                                                             \
 | |
|           (to)=(dec1) a;                                                \
 | |
|         } while(0)
 | |
| 
 | |
| #define SUB(to, from1, from2, carry) /* to=from1-from2 */               \
 | |
|         do                                                              \
 | |
|         {                                                               \
 | |
|           dec1 a=(from1)-(from2)-(carry);                               \
 | |
|           if (((carry)= a < 0))                                         \
 | |
|             a+=DIG_BASE;                                                \
 | |
|           (to)=a;                                                       \
 | |
|         } while(0)
 | |
| 
 | |
| #define SUB2(to, from1, from2, carry) /* to=from1-from2 */              \
 | |
|         do                                                              \
 | |
|         {                                                               \
 | |
|           dec1 a=(from1)-(from2)-(carry);                               \
 | |
|           if (((carry)= a < 0))                                         \
 | |
|             a+=DIG_BASE;                                                \
 | |
|           if (unlikely(a < 0))                                          \
 | |
|           {                                                             \
 | |
|             a+=DIG_BASE;                                                \
 | |
|             carry++;                                                    \
 | |
|           }                                                             \
 | |
|           (to)=a;                                                       \
 | |
|         } while(0)
 | |
| 
 | |
| /*
 | |
|   Get maximum value for given precision and scale
 | |
| 
 | |
|   SYNOPSIS
 | |
|     max_decimal()
 | |
|     precision/scale - see decimal_bin_size() below
 | |
|     to              - decimal where where the result will be stored
 | |
|                       to->buf and to->len must be set.
 | |
| */
 | |
| 
 | |
| void max_decimal(decimal_digits_t precision, decimal_digits_t frac,
 | |
|                  decimal_t *to)
 | |
| {
 | |
|   decimal_digits_t intpart;
 | |
|   dec1 *buf= to->buf;
 | |
|   DBUG_ASSERT(precision && precision >= frac);
 | |
| 
 | |
|   to->sign= 0;
 | |
|   if ((intpart= to->intg= (precision - frac)))
 | |
|   {
 | |
|     int firstdigits= intpart % DIG_PER_DEC1;
 | |
|     if (firstdigits)
 | |
|       *buf++= powers10[firstdigits] - 1; /* get 9 99 999 ... */
 | |
|     for(intpart/= DIG_PER_DEC1; intpart; intpart--)
 | |
|       *buf++= DIG_MAX;
 | |
|   }
 | |
| 
 | |
|   if ((to->frac= frac))
 | |
|   {
 | |
|     int lastdigits= frac % DIG_PER_DEC1;
 | |
|     for(frac/= DIG_PER_DEC1; frac; frac--)
 | |
|       *buf++= DIG_MAX;
 | |
|     if (lastdigits)
 | |
|       *buf= frac_max[lastdigits - 1];
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| static dec1 *remove_leading_zeroes(const decimal_t *from,
 | |
|                                    decimal_digits_t *intg_result)
 | |
| {
 | |
|   decimal_digits_t intg= from->intg, i;
 | |
|   dec1 *buf0= from->buf;
 | |
|   i= ((intg - 1) % DIG_PER_DEC1) + 1;
 | |
|   while (intg > 0 && *buf0 == 0)
 | |
|   {
 | |
|     intg-= i;
 | |
|     i= DIG_PER_DEC1;
 | |
|     buf0++;
 | |
|   }
 | |
|   if (intg > 0)
 | |
|   {
 | |
|     for (i= (intg - 1) % DIG_PER_DEC1; *buf0 < powers10[i--]; intg--) ;
 | |
|     DBUG_ASSERT(intg > 0);
 | |
|   }
 | |
|   else
 | |
|     intg=0;
 | |
|   *intg_result= intg;
 | |
|   return buf0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Count actual length of fraction part (without ending zeroes)
 | |
| 
 | |
|   SYNOPSIS
 | |
|     decimal_actual_fraction()
 | |
|     from    number for processing
 | |
| */
 | |
| 
 | |
| decimal_digits_t decimal_actual_fraction(const decimal_t *from)
 | |
| {
 | |
|   decimal_digits_t frac= from->frac, i;
 | |
|   dec1 *buf0= from->buf + ROUND_UP(from->intg) + ROUND_UP(frac) - 1;
 | |
| 
 | |
|   if (frac == 0)
 | |
|     return 0;
 | |
| 
 | |
|   i= ((frac - 1) % DIG_PER_DEC1 + 1);
 | |
|   while (frac > 0 && *buf0 == 0)
 | |
|   {
 | |
|     frac-= i;
 | |
|     i= DIG_PER_DEC1;
 | |
|     buf0--;
 | |
|   }
 | |
|   if (frac > 0)
 | |
|   {
 | |
|     for (i= DIG_PER_DEC1 - ((frac - 1) % DIG_PER_DEC1);
 | |
|          *buf0 % powers10[i++] == 0;
 | |
|          frac--) {}
 | |
|   }
 | |
|   return frac;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Convert decimal to its printable string representation
 | |
| 
 | |
|   SYNOPSIS
 | |
|     decimal2string()
 | |
|       from            - value to convert
 | |
|       to              - points to buffer where string representation
 | |
|                         should be stored
 | |
|       *to_len         - in:  size of to buffer (incl. terminating '\0')
 | |
|                         out: length of the actually written string (excl. '\0')
 | |
|       fixed_precision - 0 if representation can be variable length and
 | |
|                         fixed_decimals will not be checked in this case.
 | |
|                         Put number as with fixed point position with this
 | |
|                         number of digits (sign counted and decimal point is
 | |
|                         counted)
 | |
|       fixed_decimals  - number digits after point.
 | |
|       filler          - character to fill gaps in case of fixed_precision > 0
 | |
| 
 | |
|   RETURN VALUE
 | |
|     E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
 | |
| */
 | |
| 
 | |
| int decimal2string(const decimal_t *from, char *to, int *to_len,
 | |
|                    decimal_digits_t fixed_precision,
 | |
|                    decimal_digits_t fixed_decimals,
 | |
|                    char filler)
 | |
| {
 | |
|   /* {intg_len, frac_len} output widths; {intg, frac} places in input */
 | |
|   int len, frac= from->frac, i, intg_len, frac_len, fill, intg;
 | |
|   decimal_digits_t intg_tmp;
 | |
|   /* number digits before decimal point */
 | |
|   int fixed_intg= (fixed_precision ?
 | |
|                    (fixed_precision - fixed_decimals) : 0);
 | |
|   int error=E_DEC_OK;
 | |
|   char *s=to;
 | |
|   dec1 *buf, *buf0=from->buf, tmp;
 | |
| 
 | |
|   DBUG_ASSERT(*to_len >= 2+ (int) from->sign);
 | |
| 
 | |
|   /* removing leading zeroes */
 | |
|   buf0= remove_leading_zeroes(from, &intg_tmp);
 | |
|   intg= (int) intg_tmp;               /* intg can be negative later */
 | |
|   if (unlikely(intg+frac==0))
 | |
|   {
 | |
|     intg=1;
 | |
|     tmp=0;
 | |
|     buf0=&tmp;
 | |
|   }
 | |
| 
 | |
|   if (!(intg_len= fixed_precision ? fixed_intg : intg))
 | |
|     intg_len= 1;
 | |
|   frac_len= fixed_precision ? fixed_decimals : frac;
 | |
|   len= from->sign + intg_len + MY_TEST(frac) + frac_len;
 | |
|   if (fixed_precision)
 | |
|   {
 | |
|     if (frac > fixed_decimals)
 | |
|     {
 | |
|       error= E_DEC_TRUNCATED;
 | |
|       frac= fixed_decimals;
 | |
|     }
 | |
|     if (intg > fixed_intg)
 | |
|     {
 | |
|       error= E_DEC_OVERFLOW;
 | |
|       intg= fixed_intg;
 | |
|     }
 | |
|   }
 | |
|   else if (unlikely(len > --*to_len)) /* reserve one byte for \0 */
 | |
|   {
 | |
|     int j= len-*to_len;
 | |
|     error= (frac && j <= frac + 1) ? E_DEC_TRUNCATED : E_DEC_OVERFLOW;
 | |
|     if (frac && j >= frac + 1) j--;
 | |
|     if (j > frac)
 | |
|     {
 | |
|       intg-= j-frac;
 | |
|       frac= 0;
 | |
|     }
 | |
|     else
 | |
|       frac-=j;
 | |
|     frac_len= frac;
 | |
|     len= from->sign + intg_len + MY_TEST(frac) + frac_len;
 | |
|   }
 | |
|   *to_len=len;
 | |
|   s[len]=0;
 | |
| 
 | |
|   if (from->sign)
 | |
|     *s++='-';
 | |
| 
 | |
|   if (frac)
 | |
|   {
 | |
|     char *s1= s + intg_len;
 | |
|     fill= frac_len - frac;
 | |
|     buf=buf0+ROUND_UP(intg);
 | |
|     *s1++='.';
 | |
|     for (; frac>0; frac-=DIG_PER_DEC1)
 | |
|     {
 | |
|       dec1 x=*buf++;
 | |
|       for (i=MY_MIN(frac, DIG_PER_DEC1); i; i--)
 | |
|       {
 | |
|         dec1 y=x/DIG_MASK;
 | |
|         *s1++='0'+(uchar)y;
 | |
|         x-=y*DIG_MASK;
 | |
|         x*=10;
 | |
|       }
 | |
|     }
 | |
|     for(; fill; fill--)
 | |
|       *s1++=filler;
 | |
|   }
 | |
| 
 | |
|   fill= intg_len - intg;
 | |
|   if (intg == 0)
 | |
|   {
 | |
|     DBUG_ASSERT(fill > 0);
 | |
|     fill--; /* symbol 0 before digital point */
 | |
|   }
 | |
|   for(; fill; fill--)
 | |
|     *s++=filler;
 | |
|   if (intg)
 | |
|   {
 | |
|     s+=intg;
 | |
|     for (buf=buf0+ROUND_UP(intg); intg>0; intg-=DIG_PER_DEC1)
 | |
|     {
 | |
|       dec1 x=*--buf;
 | |
|       for (i=MY_MIN(intg, DIG_PER_DEC1); i; i--)
 | |
|       {
 | |
|         dec1 y=x/10;
 | |
|         *--s='0'+(uchar)(x-y*10);
 | |
|         x=y;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   else
 | |
|     *s= '0';
 | |
|   return error;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Return bounds of decimal digits in the number
 | |
| 
 | |
|   SYNOPSIS
 | |
|     digits_bounds()
 | |
|       from         - decimal number for processing
 | |
|       start_result - index (from 0 ) of first decimal digits will
 | |
|                      be written by this address
 | |
|       end_result   - index of position just after last decimal digit
 | |
|                      be written by this address
 | |
| */
 | |
| 
 | |
| static void digits_bounds(decimal_t *from, int *start_result, int *end_result)
 | |
| {
 | |
|   int start, stop, i;
 | |
|   dec1 *buf_beg= from->buf;
 | |
|   dec1 *end= from->buf + ROUND_UP(from->intg) + ROUND_UP(from->frac);
 | |
|   dec1 *buf_end= end - 1;
 | |
| 
 | |
|   /* find non-zero digit from number beginning */
 | |
|   while (buf_beg < end && *buf_beg == 0)
 | |
|     buf_beg++;
 | |
| 
 | |
|   if (buf_beg >= end)
 | |
|   {
 | |
|     /* it is zero */
 | |
|     *start_result= *end_result= 0;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   /* find non-zero decimal digit from number beginning */
 | |
|   if (buf_beg == from->buf && from->intg)
 | |
|   {
 | |
|     start= DIG_PER_DEC1 - (i= ((from->intg-1) % DIG_PER_DEC1 + 1));
 | |
|     i--;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     i= DIG_PER_DEC1 - 1;
 | |
|     start= (int) ((buf_beg - from->buf) * DIG_PER_DEC1);
 | |
|   }
 | |
|   if (buf_beg < end)
 | |
|     for (; *buf_beg < powers10[i--]; start++) ;
 | |
|   *start_result= start; /* index of first decimal digit (from 0) */
 | |
| 
 | |
|   /* find non-zero digit at the end */
 | |
|   while (buf_end > buf_beg  && *buf_end == 0)
 | |
|     buf_end--;
 | |
|   /* find non-zero decimal digit from the end */
 | |
|   if (buf_end == end - 1 && from->frac)
 | |
|   {
 | |
|     stop= (int) (((buf_end - from->buf) * DIG_PER_DEC1 +
 | |
|            (i= ((from->frac - 1) % DIG_PER_DEC1 + 1))));
 | |
|     i= DIG_PER_DEC1 - i + 1;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     stop= (int) ((buf_end - from->buf + 1) * DIG_PER_DEC1);
 | |
|     i= 1;
 | |
|   }
 | |
|   for (; *buf_end % powers10[i++] == 0; stop--) {}
 | |
|   *end_result= stop; /* index of position after last decimal digit (from 0) */
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Left shift for alignment of data in buffer
 | |
| 
 | |
|   SYNOPSIS
 | |
|     do_mini_left_shift()
 | |
|     dec     pointer to decimal number which have to be shifted
 | |
|     shift   number of decimal digits on which it should be shifted
 | |
|     beg/end bounds of decimal digits (see digits_bounds())
 | |
| 
 | |
|   NOTE
 | |
|     Result fitting in the buffer should be garanted.
 | |
|     'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
 | |
| */
 | |
| 
 | |
| void do_mini_left_shift(decimal_t *dec, int shift, int beg, int last)
 | |
| {
 | |
|   dec1 *from= dec->buf + ROUND_UP(beg + 1) - 1;
 | |
|   dec1 *end= dec->buf + ROUND_UP(last) - 1;
 | |
|   int c_shift= DIG_PER_DEC1 - shift;
 | |
|   DBUG_ASSERT(from >= dec->buf);
 | |
|   DBUG_ASSERT(end < dec->buf + dec->len);
 | |
|   if (beg % DIG_PER_DEC1 < shift)
 | |
|     *(from - 1)= (*from) / powers10[c_shift];
 | |
|   for(; from < end; from++)
 | |
|     *from= ((*from % powers10[c_shift]) * powers10[shift] +
 | |
|             (*(from + 1)) / powers10[c_shift]);
 | |
|   *from= (*from % powers10[c_shift]) * powers10[shift];
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Right shift for alignment of data in buffer
 | |
| 
 | |
|   SYNOPSIS
 | |
|     do_mini_left_shift()
 | |
|     dec     pointer to decimal number which have to be shifted
 | |
|     shift   number of decimal digits on which it should be shifted
 | |
|     beg/end bounds of decimal digits (see digits_bounds())
 | |
| 
 | |
|   NOTE
 | |
|     Result fitting in the buffer should be garanted.
 | |
|     'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
 | |
| */
 | |
| 
 | |
| void do_mini_right_shift(decimal_t *dec, int shift, int beg, int last)
 | |
| {
 | |
|   dec1 *from= dec->buf + ROUND_UP(last) - 1;
 | |
|   dec1 *end= dec->buf + ROUND_UP(beg + 1) - 1;
 | |
|   int c_shift= DIG_PER_DEC1 - shift;
 | |
|   DBUG_ASSERT(from < dec->buf + dec->len);
 | |
|   DBUG_ASSERT(end >= dec->buf);
 | |
|   if (DIG_PER_DEC1 - ((last - 1) % DIG_PER_DEC1 + 1) < shift)
 | |
|     *(from + 1)= (*from % powers10[shift]) * powers10[c_shift];
 | |
|   for(; from > end; from--)
 | |
|     *from= (*from / powers10[shift] +
 | |
|             (*(from - 1) % powers10[shift]) * powers10[c_shift]);
 | |
|   *from= *from / powers10[shift];
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Shift of decimal digits in given number (with rounding if it need)
 | |
| 
 | |
|   SYNOPSIS
 | |
|     decimal_shift()
 | |
|     dec       number to be shifted
 | |
|     shift     number of decimal positions
 | |
|               shift > 0 means shift to left shift
 | |
|               shift < 0 means right shift
 | |
|   NOTE
 | |
|     In fact it is multiplying on 10^shift.
 | |
|   RETURN
 | |
|     E_DEC_OK          OK
 | |
|     E_DEC_OVERFLOW    operation lead to overflow, number is untouched
 | |
|     E_DEC_TRUNCATED   number was rounded to fit into buffer
 | |
| */
 | |
| 
 | |
| int decimal_shift(decimal_t *dec, int shift)
 | |
| {
 | |
|   /* index of first non zero digit (all indexes from 0) */
 | |
|   int beg;
 | |
|   /* index of position after last decimal digit */
 | |
|   int end;
 | |
|   /* index of digit position just after point */
 | |
|   int point= ROUND_UP(dec->intg) * DIG_PER_DEC1;
 | |
|   /* new point position */
 | |
|   int new_point= point + shift;
 | |
|   /* number of digits in result */
 | |
|   int digits_int, digits_frac;
 | |
|   /* length of result and new fraction in big digits*/
 | |
|   int new_len, new_frac_len;
 | |
|   /* return code */
 | |
|   int err= E_DEC_OK;
 | |
|   int new_front;
 | |
| 
 | |
|   if (shift == 0)
 | |
|     return E_DEC_OK;
 | |
| 
 | |
|   digits_bounds(dec, &beg, &end);
 | |
| 
 | |
|   if (beg == end)
 | |
|   {
 | |
|     decimal_make_zero(dec);
 | |
|     return E_DEC_OK;
 | |
|   }
 | |
| 
 | |
|   digits_int= new_point - beg;
 | |
|   set_if_bigger(digits_int, 0);
 | |
|   digits_frac= end - new_point;
 | |
|   set_if_bigger(digits_frac, 0);
 | |
| 
 | |
|   if ((new_len= ROUND_UP(digits_int) + (new_frac_len= ROUND_UP(digits_frac))) >
 | |
|       dec->len)
 | |
|   {
 | |
|     int lack= new_len - dec->len;
 | |
|     int diff;
 | |
| 
 | |
|     if (new_frac_len < lack)
 | |
|       return E_DEC_OVERFLOW; /* lack more then we have in fraction */
 | |
| 
 | |
|     /* cat off fraction part to allow new number to fit in our buffer */
 | |
|     err= E_DEC_TRUNCATED;
 | |
|     new_frac_len-= lack;
 | |
|     diff= digits_frac - (new_frac_len * DIG_PER_DEC1);
 | |
|     /* Make rounding method as parameter? */
 | |
|     decimal_round(dec, dec, end - point - diff, HALF_UP);
 | |
|     end-= diff;
 | |
|     digits_frac= new_frac_len * DIG_PER_DEC1;
 | |
| 
 | |
|     if (end <= beg)
 | |
|     {
 | |
|       /*
 | |
|         we lost all digits (they will be shifted out of buffer), so we can
 | |
|         just return 0
 | |
|       */
 | |
|       decimal_make_zero(dec);
 | |
|       return E_DEC_TRUNCATED;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (shift % DIG_PER_DEC1)
 | |
|   {
 | |
|     int l_mini_shift, r_mini_shift, mini_shift;
 | |
|     int do_left;
 | |
|     /*
 | |
|       Calculate left/right shift to align decimal digits inside our bug
 | |
|       digits correctly
 | |
|     */
 | |
|     if (shift > 0)
 | |
|     {
 | |
|       l_mini_shift= shift % DIG_PER_DEC1;
 | |
|       r_mini_shift= DIG_PER_DEC1 - l_mini_shift;
 | |
|       /*
 | |
|         It is left shift so prefer left shift, but if we have not place from
 | |
|         left, we have to have it from right, because we checked length of
 | |
|         result
 | |
|       */
 | |
|       do_left= l_mini_shift <= beg;
 | |
|       DBUG_ASSERT(do_left || (dec->len * DIG_PER_DEC1 - end) >= r_mini_shift);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       r_mini_shift= (-shift) % DIG_PER_DEC1;
 | |
|       l_mini_shift= DIG_PER_DEC1 - r_mini_shift;
 | |
|       /* see comment above */
 | |
|       do_left= !((dec->len * DIG_PER_DEC1 - end) >= r_mini_shift);
 | |
|       DBUG_ASSERT(!do_left || l_mini_shift <= beg);
 | |
|     }
 | |
|     if (do_left)
 | |
|     {
 | |
|       do_mini_left_shift(dec, l_mini_shift, beg, end);
 | |
|       mini_shift= -l_mini_shift;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       do_mini_right_shift(dec, r_mini_shift, beg, end);
 | |
|       mini_shift= r_mini_shift;
 | |
|     }
 | |
|     new_point+= mini_shift;
 | |
|     /*
 | |
|       If number is shifted and correctly aligned in buffer we can
 | |
|       finish
 | |
|     */
 | |
|     if (!(shift+= mini_shift) && (new_point - digits_int) < DIG_PER_DEC1)
 | |
|     {
 | |
|       dec->intg= digits_int;
 | |
|       dec->frac= digits_frac;
 | |
|       return err;                 /* already shifted as it should be */
 | |
|     }
 | |
|     beg+= mini_shift;
 | |
|     end+= mini_shift;
 | |
|   }
 | |
| 
 | |
|   /* if new 'decimal front' is in first digit, we do not need move digits */
 | |
|   if ((new_front= (new_point - digits_int)) >= DIG_PER_DEC1 ||
 | |
|       new_front < 0)
 | |
|   {
 | |
|     /* need to move digits */
 | |
|     int d_shift;
 | |
|     dec1 *to, *barier;
 | |
|     if (new_front > 0)
 | |
|     {
 | |
|       /* move left */
 | |
|       d_shift= new_front / DIG_PER_DEC1;
 | |
|       to= dec->buf + (ROUND_UP(beg + 1) - 1 - d_shift);
 | |
|       barier= dec->buf + (ROUND_UP(end) - 1 - d_shift);
 | |
|       DBUG_ASSERT(to >= dec->buf);
 | |
|       DBUG_ASSERT(barier + d_shift < dec->buf + dec->len);
 | |
|       for(; to <= barier; to++)
 | |
|         *to= *(to + d_shift);
 | |
|       for(barier+= d_shift; to <= barier; to++)
 | |
|         *to= 0;
 | |
|       d_shift= -d_shift;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       /* move right */
 | |
|       d_shift= (1 - new_front) / DIG_PER_DEC1;
 | |
|       to= dec->buf + ROUND_UP(end) - 1 + d_shift;
 | |
|       barier= dec->buf + ROUND_UP(beg + 1) - 1 + d_shift;
 | |
|       DBUG_ASSERT(to < dec->buf + dec->len);
 | |
|       DBUG_ASSERT(barier - d_shift >= dec->buf);
 | |
|       for(; to >= barier; to--)
 | |
|         *to= *(to - d_shift);
 | |
|       for(barier-= d_shift; to >= barier; to--)
 | |
|         *to= 0;
 | |
|     }
 | |
|     d_shift*= DIG_PER_DEC1;
 | |
|     beg+= d_shift;
 | |
|     end+= d_shift;
 | |
|     new_point+= d_shift;
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|     If there are gaps then fill ren with 0.
 | |
| 
 | |
|     Only one of following 'for' loops will work because beg <= end
 | |
|   */
 | |
|   beg= ROUND_UP(beg + 1) - 1;
 | |
|   end= ROUND_UP(end) - 1;
 | |
|   DBUG_ASSERT(new_point >= 0);
 | |
|   
 | |
|   /* We don't want negative new_point below */
 | |
|   if (new_point != 0)
 | |
|     new_point= ROUND_UP(new_point) - 1;
 | |
| 
 | |
|   if (new_point > end)
 | |
|   {
 | |
|     do
 | |
|     {
 | |
|       dec->buf[new_point]=0;
 | |
|     } while (--new_point > end);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     for (; new_point < beg; new_point++)
 | |
|       dec->buf[new_point]= 0;
 | |
|   }
 | |
|   dec->intg= digits_int;
 | |
|   dec->frac= digits_frac;
 | |
|   return err;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Convert string to decimal
 | |
| 
 | |
|   SYNOPSIS
 | |
|     internal_str2decl()
 | |
|       from    - value to convert. Doesn't have to be \0 terminated!
 | |
|       to      - decimal where where the result will be stored
 | |
|                 to->buf and to->len must be set.
 | |
|       end     - Pointer to pointer to end of string. Will on return be
 | |
| 		set to the char after the last used character
 | |
|       fixed   - use to->intg, to->frac as limits for input number
 | |
| 
 | |
|   NOTE
 | |
|     to->intg and to->frac can be modified even when fixed=1
 | |
|     (but only decreased, in this case)
 | |
| 
 | |
|   RETURN VALUE
 | |
|     E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM
 | |
|     In case of E_DEC_FATAL_ERROR *to is set to decimal zero
 | |
|     (to make error handling easier)
 | |
| */
 | |
| 
 | |
| int
 | |
| internal_str2dec(const char *from, decimal_t *to, char **end, my_bool fixed)
 | |
| {
 | |
|   const char *s= from, *s1, *endp, *end_of_string= *end;
 | |
|   int i, intg, frac, error, intg1, frac1;
 | |
|   dec1 x,*buf;
 | |
|   sanity(to);
 | |
| 
 | |
|   error= E_DEC_BAD_NUM;                         /* In case of bad number */
 | |
|   while (s < end_of_string && my_isspace(&my_charset_latin1, *s))
 | |
|     s++;
 | |
|   if (s == end_of_string)
 | |
|     goto fatal_error;
 | |
| 
 | |
|   if ((to->sign= (*s == '-')))
 | |
|     s++;
 | |
|   else if (*s == '+')
 | |
|     s++;
 | |
| 
 | |
|   s1=s;
 | |
|   while (s < end_of_string && my_isdigit(&my_charset_latin1, *s))
 | |
|     s++;
 | |
|   intg= (int) (s-s1);
 | |
|   /*
 | |
|     If the integer part is long enough and it has multiple leading zeros,
 | |
|     let's trim them, so this expression can return 1 without overflowing:
 | |
|       CAST(CONCAT(REPEAT('0',90),'1') AS DECIMAL(10))
 | |
|   */
 | |
|   if (intg > DIG_PER_DEC1 && s1[0] == '0' && s1[1] == '0')
 | |
|   {
 | |
|     /*
 | |
|       Keep at least one digit, to avoid an empty string.
 | |
|       So we trim '0000' to '0' rather than to ''.
 | |
|       Otherwise the below code (converting digits to to->buf)
 | |
|       would fail on a fatal error.
 | |
|     */
 | |
|     const char *iend= s - 1;
 | |
|     for ( ; s1 < iend && *s1 == '0'; s1++)
 | |
|     { }
 | |
|     intg= (int) (s-s1);
 | |
|   }
 | |
|   if (s < end_of_string && *s=='.')
 | |
|   {
 | |
|     endp= s+1;
 | |
|     while (endp < end_of_string && my_isdigit(&my_charset_latin1, *endp))
 | |
|       endp++;
 | |
|     frac= (int) (endp - s - 1);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     frac= 0;
 | |
|     endp= s;
 | |
|   }
 | |
| 
 | |
|   *end= (char*) endp;
 | |
| 
 | |
|   if (frac+intg == 0)
 | |
|     goto fatal_error;
 | |
| 
 | |
|   error= 0;
 | |
|   if (fixed)
 | |
|   {
 | |
|     if (frac > to->frac)
 | |
|     {
 | |
|       error=E_DEC_TRUNCATED;
 | |
|       frac=to->frac;
 | |
|     }
 | |
|     if (intg > to->intg)
 | |
|     {
 | |
|       error=E_DEC_OVERFLOW;
 | |
|       intg=to->intg;
 | |
|     }
 | |
|     intg1=ROUND_UP(intg);
 | |
|     frac1=ROUND_UP(frac);
 | |
|     if (intg1+frac1 > to->len)
 | |
|     {
 | |
|       error= E_DEC_OOM;
 | |
|       goto fatal_error;
 | |
|     }
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     intg1=ROUND_UP(intg);
 | |
|     frac1=ROUND_UP(frac);
 | |
|     FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
 | |
|     if (unlikely(error))
 | |
|     {
 | |
|       frac=frac1*DIG_PER_DEC1;
 | |
|       if (error == E_DEC_OVERFLOW)
 | |
|         intg=intg1*DIG_PER_DEC1;
 | |
|     }
 | |
|   }
 | |
|   /* Error is guaranteed to be set here */
 | |
|   to->intg=intg;
 | |
|   to->frac=frac;
 | |
| 
 | |
|   buf=to->buf+intg1;
 | |
|   s1=s;
 | |
| 
 | |
|   for (x=0, i=0; intg; intg--)
 | |
|   {
 | |
|     x+= (*--s - '0')*powers10[i];
 | |
| 
 | |
|     if (unlikely(++i == DIG_PER_DEC1))
 | |
|     {
 | |
|       *--buf=x;
 | |
|       x=0;
 | |
|       i=0;
 | |
|     }
 | |
|   }
 | |
|   if (i)
 | |
|     *--buf=x;
 | |
| 
 | |
|   buf=to->buf+intg1;
 | |
|   for (x=0, i=0; frac; frac--)
 | |
|   {
 | |
|     x= (*++s1 - '0') + x*10;
 | |
| 
 | |
|     if (unlikely(++i == DIG_PER_DEC1))
 | |
|     {
 | |
|       *buf++=x;
 | |
|       x=0;
 | |
|       i=0;
 | |
|     }
 | |
|   }
 | |
|   if (i)
 | |
|     *buf=x*powers10[DIG_PER_DEC1-i];
 | |
| 
 | |
|   /* Handle exponent */
 | |
|   if (endp+1 < end_of_string && (*endp == 'e' || *endp == 'E'))
 | |
|   {
 | |
|     int str_error;
 | |
|     const char *end_of_exponent= end_of_string;
 | |
|     longlong exponent= my_strtoll10(endp+1, (char**) &end_of_exponent,
 | |
|                                     &str_error);
 | |
| 
 | |
|     if (end_of_exponent != endp +1)               /* If at least one digit */
 | |
|     {
 | |
|       *end= (char*) end_of_exponent;
 | |
|       if (str_error > 0)
 | |
|       {
 | |
|         if (str_error == MY_ERRNO_ERANGE)
 | |
|         {
 | |
|           /*
 | |
|             Exponent is:
 | |
|             - a huge positive number that does not fit into ulonglong
 | |
|             - a huge negative number that does not fit into longlong
 | |
|             Skip all remaining digits.
 | |
|           */
 | |
|           for ( ; end_of_exponent < end_of_string &&
 | |
|                   my_isdigit(&my_charset_latin1, *end_of_exponent)
 | |
|                 ; end_of_exponent++)
 | |
|           { }
 | |
|           *end= (char*) end_of_exponent;
 | |
|           if (exponent == ~0)
 | |
|           {
 | |
|             if (!decimal_is_zero(to))
 | |
|             {
 | |
|               /*
 | |
|                 Non-zero mantissa and a huge positive exponent that
 | |
|                 does not fit into ulonglong, e.g.:
 | |
|                   1e111111111111111111111
 | |
|               */
 | |
|               error= E_DEC_OVERFLOW;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|               /*
 | |
|                 Zero mantissa and a huge positive exponent that
 | |
|                 does not fit into ulonglong, e.g.:
 | |
|                   0e111111111111111111111
 | |
|                 Return zero without warnings.
 | |
|               */
 | |
|             }
 | |
|           }
 | |
|           else
 | |
|           {
 | |
|             /*
 | |
|               Huge negative exponent that does not fit into longlong, e.g.
 | |
|                 1e-111111111111111111111
 | |
|                 0e-111111111111111111111
 | |
|               Return zero without warnings.
 | |
|             */
 | |
|           }
 | |
|           goto fatal_error;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|           Some other error, e.g. MY_ERRNO_EDOM
 | |
|         */
 | |
|         error= E_DEC_BAD_NUM;
 | |
|         goto fatal_error;
 | |
|       }
 | |
|       if (exponent > INT_MAX/2 || (str_error == 0 && exponent < 0))
 | |
|       {
 | |
|         /*
 | |
|           The exponent fits into ulonglong, but it's still huge, e.g.
 | |
|             1e1111111111
 | |
|         */
 | |
|         if (!decimal_is_zero(to))
 | |
|           error= E_DEC_OVERFLOW;
 | |
|         goto fatal_error;
 | |
|       }
 | |
|       if (exponent < INT_MIN/2 && error != E_DEC_OVERFLOW)
 | |
|       {
 | |
|         error= E_DEC_TRUNCATED;
 | |
|         goto fatal_error;
 | |
|       }
 | |
|       if (error != E_DEC_OVERFLOW)
 | |
|         error= decimal_shift(to, (int) exponent);
 | |
|     }
 | |
|   }
 | |
|   if (to->sign && decimal_is_zero(to))
 | |
|     to->sign= 0;
 | |
|   return error;
 | |
| 
 | |
| fatal_error:
 | |
|   decimal_make_zero(to);
 | |
|   return error;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Convert decimal to double
 | |
| 
 | |
|   SYNOPSIS
 | |
|     decimal2double()
 | |
|       from    - value to convert
 | |
|       to      - result will be stored there
 | |
| 
 | |
|   RETURN VALUE
 | |
|     E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
 | |
| */
 | |
| 
 | |
| int decimal2double(const decimal_t *from, double *to)
 | |
| {
 | |
|   char strbuf[FLOATING_POINT_BUFFER], *end;
 | |
|   int len= sizeof(strbuf);
 | |
|   int rc, error;
 | |
| 
 | |
|   rc = decimal2string(from, strbuf, &len, 0, 0, 0);
 | |
|   end= strbuf + len;
 | |
| 
 | |
|   DBUG_PRINT("info", ("interm.: %s", strbuf));
 | |
| 
 | |
|   *to= my_strtod(strbuf, &end, &error);
 | |
| 
 | |
|   DBUG_PRINT("info", ("result: %f", *to));
 | |
| 
 | |
|   return (rc != E_DEC_OK) ? rc : (error ? E_DEC_OVERFLOW : E_DEC_OK);
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Convert double to decimal
 | |
| 
 | |
|   SYNOPSIS
 | |
|     double2decimal()
 | |
|       from    - value to convert
 | |
|       to      - result will be stored there
 | |
| 
 | |
|   RETURN VALUE
 | |
|     E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
 | |
| */
 | |
| 
 | |
| int double2decimal(double from, decimal_t *to)
 | |
| {
 | |
|   char buff[FLOATING_POINT_BUFFER], *end;
 | |
|   int res;
 | |
|   DBUG_ENTER("double2decimal");
 | |
|   end= buff + my_gcvt(from, MY_GCVT_ARG_DOUBLE, sizeof(buff) - 1, buff, NULL);
 | |
|   res= string2decimal(buff, to, &end);
 | |
|   DBUG_PRINT("exit", ("res: %d", res));
 | |
|   DBUG_RETURN(res);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int ull2dec(ulonglong from, decimal_t *to)
 | |
| {
 | |
|   int intg1, error=E_DEC_OK;
 | |
|   ulonglong x=from;
 | |
|   dec1 *buf;
 | |
| 
 | |
|   sanity(to);
 | |
| 
 | |
|   if (!from)
 | |
|   {
 | |
|     decimal_make_zero(to);
 | |
|     return E_DEC_OK;
 | |
|   }
 | |
| 
 | |
|   for (intg1=1; from >= DIG_BASE; intg1++, from/=DIG_BASE) {}
 | |
|   if (unlikely(intg1 > to->len))
 | |
|   {
 | |
|     intg1=to->len;
 | |
|     error=E_DEC_OVERFLOW;
 | |
|   }
 | |
|   to->frac=0;
 | |
|   for(to->intg= (intg1-1)*DIG_PER_DEC1; from; to->intg++, from/=10) {}
 | |
| 
 | |
|   for (buf=to->buf+intg1; intg1; intg1--)
 | |
|   {
 | |
|     ulonglong y=x/DIG_BASE;
 | |
|     *--buf=(dec1)(x-y*DIG_BASE);
 | |
|     x=y;
 | |
|   }
 | |
|   return error;
 | |
| }
 | |
| 
 | |
| int ulonglong2decimal(ulonglong from, decimal_t *to)
 | |
| {
 | |
|   to->sign=0;
 | |
|   return ull2dec(from, to);
 | |
| }
 | |
| 
 | |
| int longlong2decimal(longlong from, decimal_t *to)
 | |
| {
 | |
|   if ((to->sign= from < 0))
 | |
|   {
 | |
|     if (from == LONGLONG_MIN) // avoid undefined behavior
 | |
|       return ull2dec((ulonglong)LONGLONG_MIN, to);
 | |
|     return ull2dec(-from, to);
 | |
|   }
 | |
|   return ull2dec(from, to);
 | |
| }
 | |
| 
 | |
| int decimal2ulonglong(const decimal_t *from, ulonglong *to)
 | |
| {
 | |
|   dec1 *buf=from->buf;
 | |
|   ulonglong x=0;
 | |
|   int intg, frac;
 | |
| 
 | |
|   if (from->sign)
 | |
|   {
 | |
|       *to= 0;
 | |
|       return E_DEC_OVERFLOW;
 | |
|   }
 | |
| 
 | |
|   for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1)
 | |
|   {
 | |
|     /*
 | |
|       Check that the decimal is bigger than any possible integer.
 | |
|       Do it before we do the x*=DIB_BASE to avoid integer
 | |
|       overflow.
 | |
|     */
 | |
|     if (unlikely (
 | |
|           x >= ULONGLONG_MAX/DIG_BASE &&
 | |
|           (x > ULONGLONG_MAX/DIG_BASE ||
 | |
|              *buf > (dec1) (ULONGLONG_MAX%DIG_BASE))))
 | |
|     {
 | |
|       *to=ULONGLONG_MAX;
 | |
|       return E_DEC_OVERFLOW;
 | |
|     }
 | |
| 
 | |
|     x=x*DIG_BASE + *buf++;
 | |
|   }
 | |
|   *to=x;
 | |
|   for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1)
 | |
|     if (*buf++)
 | |
|       return E_DEC_TRUNCATED;
 | |
|   return E_DEC_OK;
 | |
| }
 | |
| 
 | |
| int decimal2longlong(const decimal_t *from, longlong *to)
 | |
| {
 | |
|   dec1 *buf=from->buf;
 | |
|   longlong x=0;
 | |
|   int intg, frac;
 | |
| 
 | |
|   for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1)
 | |
|   {
 | |
|     /*
 | |
|       Check that the decimal is less than any possible integer.
 | |
|       Do it before we do the x*=DIB_BASE to avoid integer
 | |
|       overflow.
 | |
|       Attention: trick!
 | |
|       we're calculating -|from| instead of |from| here
 | |
|       because |LONGLONG_MIN| > LONGLONG_MAX
 | |
|       so we can convert -9223372036854775808 correctly.
 | |
|     */
 | |
|     if (unlikely (
 | |
|           x <= LONGLONG_MIN/DIG_BASE &&
 | |
|           (x < LONGLONG_MIN/DIG_BASE ||
 | |
|             *buf > (dec1) (-(LONGLONG_MIN%DIG_BASE)))))
 | |
|     {
 | |
|       /*
 | |
|          the decimal is bigger than any possible integer
 | |
|          return border integer depending on the sign
 | |
|       */
 | |
|       *to= from->sign ? LONGLONG_MIN : LONGLONG_MAX;
 | |
|       return E_DEC_OVERFLOW;
 | |
|     }
 | |
| 
 | |
|     x=x*DIG_BASE - *buf++;
 | |
|   }
 | |
|   /* boundary case: 9223372036854775808 */
 | |
|   if (unlikely(from->sign==0 && x == LONGLONG_MIN))
 | |
|   {
 | |
|     *to= LONGLONG_MAX;
 | |
|     return E_DEC_OVERFLOW;
 | |
|   }
 | |
| 
 | |
|   *to=from->sign ? x : -x;
 | |
|   for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1)
 | |
|     if (*buf++)
 | |
|       return E_DEC_TRUNCATED;
 | |
|   return E_DEC_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Convert decimal to its binary fixed-length representation
 | |
|   two representations of the same length can be compared with memcmp
 | |
|   with the correct -1/0/+1 result
 | |
| 
 | |
|   SYNOPSIS
 | |
|     decimal2bin()
 | |
|       from    - value to convert
 | |
|       to      - points to buffer where string representation should be stored
 | |
|       precision/scale - see decimal_bin_size() below
 | |
| 
 | |
|   NOTE
 | |
|     the buffer is assumed to be of the size decimal_bin_size(precision, scale)
 | |
| 
 | |
|   RETURN VALUE
 | |
|     E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
 | |
| 
 | |
|   DESCRIPTION
 | |
|     for storage decimal numbers are converted to the "binary" format.
 | |
| 
 | |
|     This format has the following properties:
 | |
|       1. length of the binary representation depends on the {precision, scale}
 | |
|       as provided by the caller and NOT on the intg/frac of the decimal to
 | |
|       convert.
 | |
|       2. binary representations of the same {precision, scale} can be compared
 | |
|       with memcmp - with the same result as decimal_cmp() of the original
 | |
|       decimals (not taking into account possible precision loss during
 | |
|       conversion).
 | |
| 
 | |
|     This binary format is as follows:
 | |
|       1. First the number is converted to have a requested precision and scale.
 | |
|       2. Every full DIG_PER_DEC1 digits of intg part are stored in 4 bytes
 | |
|          as is
 | |
|       3. The first intg % DIG_PER_DEC1 digits are stored in the reduced
 | |
|          number of bytes (enough bytes to store this number of digits -
 | |
|          see dig2bytes)
 | |
|       4. same for frac - full decimal_digit_t's are stored as is,
 | |
|          the last frac % DIG_PER_DEC1 digits - in the reduced number of bytes.
 | |
|       5. If the number is negative - every byte is inversed.
 | |
|       5. The very first bit of the resulting byte array is inverted (because
 | |
|          memcmp compares unsigned bytes, see property 2 above)
 | |
| 
 | |
|     Example:
 | |
| 
 | |
|       1234567890.1234
 | |
| 
 | |
|     internally is represented as 3 decimal_digit_t's
 | |
| 
 | |
|       1 234567890 123400000
 | |
| 
 | |
|     (assuming we want a binary representation with precision=14, scale=4)
 | |
|     in hex it's
 | |
| 
 | |
|       00-00-00-01  0D-FB-38-D2  07-5A-EF-40
 | |
| 
 | |
|     now, middle decimal_digit_t is full - it stores 9 decimal digits. It goes
 | |
|     into binary representation as is:
 | |
| 
 | |
| 
 | |
|       ...........  0D-FB-38-D2 ............
 | |
| 
 | |
|     First decimal_digit_t has only one decimal digit. We can store one digit in
 | |
|     one byte, no need to waste four:
 | |
| 
 | |
|                 01 0D-FB-38-D2 ............
 | |
| 
 | |
|     now, last digit. It's 123400000. We can store 1234 in two bytes:
 | |
| 
 | |
|                 01 0D-FB-38-D2 04-D2
 | |
| 
 | |
|     So, we've packed 12 bytes number in 7 bytes.
 | |
|     And now we invert the highest bit to get the final result:
 | |
| 
 | |
|                 81 0D FB 38 D2 04 D2
 | |
| 
 | |
|     And for -1234567890.1234 it would be
 | |
| 
 | |
|                 7E F2 04 C7 2D FB 2D
 | |
| */
 | |
| int decimal2bin(const decimal_t *from, uchar *to, decimal_digits_t precision,
 | |
|                 decimal_digits_t frac)
 | |
| {
 | |
|   dec1 mask=from->sign ? -1 : 0, *buf1=from->buf, *stop1;
 | |
|   int error=E_DEC_OK, intg=precision-frac,
 | |
|       isize1, intg1, intg1x,
 | |
|       intg0=intg/DIG_PER_DEC1,
 | |
|       frac0=frac/DIG_PER_DEC1,
 | |
|       intg0x=intg-intg0*DIG_PER_DEC1,
 | |
|       frac0x=frac-frac0*DIG_PER_DEC1,
 | |
|       frac1=from->frac/DIG_PER_DEC1,
 | |
|       frac1x=from->frac-frac1*DIG_PER_DEC1,
 | |
|       isize0=intg0*sizeof(dec1)+dig2bytes[intg0x],
 | |
|       fsize0=frac0*sizeof(dec1)+dig2bytes[frac0x],
 | |
|       fsize1=frac1*sizeof(dec1)+dig2bytes[frac1x];
 | |
|   decimal_digits_t from_intg;
 | |
|   const int orig_isize0= isize0;
 | |
|   const int orig_fsize0= fsize0;
 | |
|   uchar *orig_to= to;
 | |
| 
 | |
|   buf1= remove_leading_zeroes(from, &from_intg);
 | |
| 
 | |
|   if (unlikely(from_intg+fsize1==0))
 | |
|   {
 | |
|     mask=0; /* just in case */
 | |
|     intg=1;
 | |
|     buf1=&mask;
 | |
|   }
 | |
| 
 | |
|   intg1=from_intg/DIG_PER_DEC1;
 | |
|   intg1x=from_intg-intg1*DIG_PER_DEC1;
 | |
|   isize1=intg1*sizeof(dec1)+dig2bytes[intg1x];
 | |
| 
 | |
|   if (intg < from_intg)
 | |
|   {
 | |
|     buf1+=intg1-intg0+(intg1x>0)-(intg0x>0);
 | |
|     intg1=intg0; intg1x=intg0x;
 | |
|     error=E_DEC_OVERFLOW;
 | |
|   }
 | |
|   else if (isize0 > isize1)
 | |
|   {
 | |
|     while (isize0-- > isize1)
 | |
|       *to++= (char)mask;
 | |
|   }
 | |
|   if (fsize0 < fsize1)
 | |
|   {
 | |
|     frac1=frac0; frac1x=frac0x;
 | |
|     error=E_DEC_TRUNCATED;
 | |
|   }
 | |
|   else if (fsize0 > fsize1 && frac1x)
 | |
|   {
 | |
|     if (frac0 == frac1)
 | |
|     {
 | |
|       frac1x=frac0x;
 | |
|       fsize0= fsize1;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       frac1++;
 | |
|       frac1x=0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* intg1x part */
 | |
|   if (intg1x)
 | |
|   {
 | |
|     int i=dig2bytes[intg1x];
 | |
|     dec1 x=(*buf1++ % powers10[intg1x]) ^ mask;
 | |
|     switch (i)
 | |
|     {
 | |
|       case 1: mi_int1store(to, x); break;
 | |
|       case 2: mi_int2store(to, x); break;
 | |
|       case 3: mi_int3store(to, x); break;
 | |
|       case 4: mi_int4store(to, x); break;
 | |
|       default: DBUG_ASSERT(0);
 | |
|     }
 | |
|     to+=i;
 | |
|   }
 | |
| 
 | |
|   /* intg1+frac1 part */
 | |
|   for (stop1=buf1+intg1+frac1; buf1 < stop1; to+=sizeof(dec1))
 | |
|   {
 | |
|     dec1 x=*buf1++ ^ mask;
 | |
|     DBUG_ASSERT(sizeof(dec1) == 4);
 | |
|     mi_int4store(to, x);
 | |
|   }
 | |
| 
 | |
|   /* frac1x part */
 | |
|   if (frac1x)
 | |
|   {
 | |
|     dec1 x;
 | |
|     int i=dig2bytes[frac1x],
 | |
|         lim=(frac1 < frac0 ? DIG_PER_DEC1 : frac0x);
 | |
|     while (frac1x < lim && dig2bytes[frac1x] == i)
 | |
|       frac1x++;
 | |
|     x=(*buf1 / powers10[DIG_PER_DEC1 - frac1x]) ^ mask;
 | |
|     switch (i)
 | |
|     {
 | |
|       case 1: mi_int1store(to, x); break;
 | |
|       case 2: mi_int2store(to, x); break;
 | |
|       case 3: mi_int3store(to, x); break;
 | |
|       case 4: mi_int4store(to, x); break;
 | |
|       default: DBUG_ASSERT(0);
 | |
|     }
 | |
|     to+=i;
 | |
|   }
 | |
|   if (fsize0 > fsize1)
 | |
|   {
 | |
|     uchar *to_end= orig_to + orig_fsize0 + orig_isize0;
 | |
| 
 | |
|     while (fsize0-- > fsize1 && to < to_end)
 | |
|       *to++= (uchar)mask;
 | |
|   }
 | |
|   orig_to[0]^= 0x80;
 | |
| 
 | |
|   /* Check that we have written the whole decimal and nothing more */
 | |
|   DBUG_ASSERT(to == orig_to + orig_fsize0 + orig_isize0);
 | |
|   return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Restores decimal from its binary fixed-length representation
 | |
| 
 | |
|   SYNOPSIS
 | |
|     bin2decimal()
 | |
|       from    - value to convert
 | |
|       to      - result
 | |
|       precision/scale - see decimal_bin_size() below
 | |
| 
 | |
|   NOTE
 | |
|     see decimal2bin()
 | |
|     the buffer is assumed to be of the size decimal_bin_size(precision, scale)
 | |
| 
 | |
|   RETURN VALUE
 | |
|     E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
 | |
| */
 | |
| 
 | |
| int bin2decimal(const uchar *from, decimal_t *to, decimal_digits_t precision,
 | |
|                 decimal_digits_t scale)
 | |
| {
 | |
|   int error=E_DEC_OK, intg=precision-scale,
 | |
|       intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1,
 | |
|       intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1,
 | |
|       intg1=intg0+(intg0x>0), frac1=frac0+(frac0x>0);
 | |
|   dec1 *buf=to->buf, mask=(*from & 0x80) ? 0 : -1;
 | |
|   const uchar *stop;
 | |
|   uchar *d_copy;
 | |
|   int bin_size= decimal_bin_size(precision, scale);
 | |
| 
 | |
|   sanity(to);
 | |
|   d_copy= (uchar*) my_alloca(bin_size);
 | |
|   memcpy(d_copy, from, bin_size);
 | |
|   d_copy[0]^= 0x80;
 | |
|   from= d_copy;
 | |
| 
 | |
|   FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
 | |
|   if (unlikely(error))
 | |
|   {
 | |
|     if (intg1 < intg0+(intg0x>0))
 | |
|     {
 | |
|       from+=dig2bytes[intg0x]+sizeof(dec1)*(intg0-intg1);
 | |
|       frac0=frac0x=intg0x=0;
 | |
|       intg0=intg1;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       frac0x=0;
 | |
|       frac0=frac1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   to->sign=(mask != 0);
 | |
|   to->intg=intg0*DIG_PER_DEC1+intg0x;
 | |
|   to->frac=frac0*DIG_PER_DEC1+frac0x;
 | |
| 
 | |
|   if (intg0x)
 | |
|   {
 | |
|     int i=dig2bytes[intg0x];
 | |
|     dec1 UNINIT_VAR(x);
 | |
|     switch (i)
 | |
|     {
 | |
|       case 1: x=mi_sint1korr(from); break;
 | |
|       case 2: x=mi_sint2korr(from); break;
 | |
|       case 3: x=mi_sint3korr(from); break;
 | |
|       case 4: x=mi_sint4korr(from); break;
 | |
|       default: abort();
 | |
|     }
 | |
|     from+=i;
 | |
|     *buf=x ^ mask;
 | |
|     if (((ulonglong)*buf) >= (ulonglong) powers10[intg0x+1])
 | |
|       goto err;
 | |
|     if (buf > to->buf || *buf != 0)
 | |
|       buf++;
 | |
|     else
 | |
|       to->intg-=intg0x;
 | |
|   }
 | |
|   for (stop=from+intg0*sizeof(dec1); from < stop; from+=sizeof(dec1))
 | |
|   {
 | |
|     DBUG_ASSERT(sizeof(dec1) == 4);
 | |
|     *buf=mi_sint4korr(from) ^ mask;
 | |
|     if (((uint32)*buf) > DIG_MAX)
 | |
|       goto err;
 | |
|     if (buf > to->buf || *buf != 0)
 | |
|       buf++;
 | |
|     else
 | |
|       to->intg-=DIG_PER_DEC1;
 | |
|   }
 | |
|   DBUG_ASSERT(to->intg >=0);
 | |
|   for (stop=from+frac0*sizeof(dec1); from < stop; from+=sizeof(dec1))
 | |
|   {
 | |
|     DBUG_ASSERT(sizeof(dec1) == 4);
 | |
|     *buf=mi_sint4korr(from) ^ mask;
 | |
|     if (((uint32)*buf) > DIG_MAX)
 | |
|       goto err;
 | |
|     buf++;
 | |
|   }
 | |
|   if (frac0x)
 | |
|   {
 | |
|     int i=dig2bytes[frac0x];
 | |
|     dec1 UNINIT_VAR(x);
 | |
|     switch (i)
 | |
|     {
 | |
|       case 1: x=mi_sint1korr(from); break;
 | |
|       case 2: x=mi_sint2korr(from); break;
 | |
|       case 3: x=mi_sint3korr(from); break;
 | |
|       case 4: x=mi_sint4korr(from); break;
 | |
|       default: abort();
 | |
|     }
 | |
|     *buf=(x ^ mask) * powers10[DIG_PER_DEC1 - frac0x];
 | |
|     if (((uint32)*buf) > DIG_MAX)
 | |
|       goto err;
 | |
|     buf++;
 | |
|   }
 | |
|   my_afree(d_copy);
 | |
| 
 | |
|   /*
 | |
|     No digits? We have read the number zero, of unspecified precision.
 | |
|     Make it a proper zero, with non-zero precision.
 | |
|   */
 | |
|   if (to->intg == 0 && to->frac == 0)
 | |
|     decimal_make_zero(to);
 | |
|   return error;
 | |
| 
 | |
| err:
 | |
|   my_afree(d_copy);
 | |
|   decimal_make_zero(to);
 | |
|   return(E_DEC_BAD_NUM);
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Returns the size of array to hold a decimal with given precision and scale
 | |
| 
 | |
|   RETURN VALUE
 | |
|     size in dec1
 | |
|     (multiply by sizeof(dec1) to get the size if bytes)
 | |
| */
 | |
| 
 | |
| uint decimal_size(decimal_digits_t precision, decimal_digits_t scale)
 | |
| {
 | |
|   DBUG_ASSERT(precision > 0 && scale <= precision);
 | |
|   return ROUND_UP(precision-scale)+ROUND_UP(scale);
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Returns the size of array to hold a binary representation of a decimal
 | |
| 
 | |
|   RETURN VALUE
 | |
|     size in bytes
 | |
| */
 | |
| 
 | |
| uint decimal_bin_size(decimal_digits_t precision, decimal_digits_t scale)
 | |
| {
 | |
|   int intg=precision-scale,
 | |
|       intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1,
 | |
|       intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1;
 | |
| 
 | |
|   DBUG_ASSERT(precision > 0);
 | |
|   DBUG_ASSERT(scale <= precision);
 | |
|   return intg0*sizeof(dec1)+dig2bytes[intg0x]+
 | |
|          frac0*sizeof(dec1)+dig2bytes[frac0x];
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Rounds the decimal to "scale" digits
 | |
| 
 | |
|   SYNOPSIS
 | |
|     decimal_round()
 | |
|       from    - decimal to round,
 | |
|       to      - result buffer. from==to is allowed
 | |
|       scale   - to what position to round. can be negative!
 | |
|       mode    - round to nearest even or truncate
 | |
| 
 | |
|   NOTES
 | |
|     scale can be negative !
 | |
|     one TRUNCATED error (line XXX below) isn't treated very logical :(
 | |
| 
 | |
|   RETURN VALUE
 | |
|     E_DEC_OK/E_DEC_TRUNCATED
 | |
| */
 | |
| 
 | |
| int
 | |
| decimal_round(const decimal_t *from, decimal_t *to, int scale,
 | |
|               decimal_round_mode mode)
 | |
| {
 | |
|   int frac0=scale>0 ? ROUND_UP(scale) : scale/DIG_PER_DEC1,
 | |
|     frac1=ROUND_UP(from->frac), UNINIT_VAR(round_digit),
 | |
|     intg0=ROUND_UP(from->intg), error=E_DEC_OK, len=to->len;
 | |
| 
 | |
|   dec1 *buf0=from->buf, *buf1=to->buf, x, y, carry=0;
 | |
|   int first_dig;
 | |
| 
 | |
|   sanity(to);
 | |
| 
 | |
|   switch (mode) {
 | |
|   case HALF_UP:
 | |
|   case HALF_EVEN:       round_digit=5; break;
 | |
|   case CEILING:         round_digit= from->sign ? 10 : 0; break;
 | |
|   case FLOOR:           round_digit= from->sign ? 0 : 10; break;
 | |
|   case TRUNCATE:        round_digit=10; break;
 | |
|   default: DBUG_ASSERT(0);
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|     For my_decimal we always use len == DECIMAL_BUFF_LENGTH == 9
 | |
|     For internal testing here (ifdef MAIN) we always use len == 100/4
 | |
|    */
 | |
|   DBUG_ASSERT(from->len == to->len);
 | |
| 
 | |
|   if (unlikely(frac0+intg0 > len))
 | |
|   {
 | |
|     frac0=len-intg0;
 | |
|     scale=frac0*DIG_PER_DEC1;
 | |
|     error=E_DEC_TRUNCATED;
 | |
|   }
 | |
| 
 | |
|   if (scale+from->intg < 0)
 | |
|   {
 | |
|     decimal_make_zero(to);
 | |
|     return E_DEC_OK;
 | |
|   }
 | |
| 
 | |
|   if (to != from)
 | |
|   {
 | |
|     dec1 *p0= buf0+intg0+MY_MAX(frac1, frac0);
 | |
|     dec1 *p1= buf1+intg0+MY_MAX(frac1, frac0);
 | |
| 
 | |
|     DBUG_ASSERT(p0 - buf0 <= len);
 | |
|     DBUG_ASSERT(p1 - buf1 <= len);
 | |
| 
 | |
|     while (buf0 < p0)
 | |
|       *(--p1) = *(--p0);
 | |
| 
 | |
|     buf0=to->buf;
 | |
|     buf1=to->buf;
 | |
|     to->sign=from->sign;
 | |
|     to->intg=MY_MIN(intg0, len)*DIG_PER_DEC1;
 | |
|   }
 | |
| 
 | |
|   if (frac0 > frac1)
 | |
|   {
 | |
|     buf1+=intg0+frac1;
 | |
|     while (frac0-- > frac1)
 | |
|       *buf1++=0;
 | |
|     goto done;
 | |
|   }
 | |
| 
 | |
|   if (scale >= from->frac)
 | |
|     goto done; /* nothing to do */
 | |
| 
 | |
|   buf0+=intg0+frac0-1;
 | |
|   buf1+=intg0+frac0-1;
 | |
|   if (scale == frac0*DIG_PER_DEC1)
 | |
|   {
 | |
|     int do_inc= FALSE;
 | |
|     DBUG_ASSERT(frac0+intg0 >= 0);
 | |
|     switch (round_digit) {
 | |
|     case 0:
 | |
|     {
 | |
|       dec1 *p0= buf0 + (frac1-frac0);
 | |
|       for (; p0 > buf0; p0--)
 | |
|       {
 | |
|         if (*p0)
 | |
|         {
 | |
|           do_inc= TRUE;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case 5:
 | |
|     {
 | |
|       x= buf0[1]/DIG_MASK;
 | |
|       do_inc= (x>5) || ((x == 5) &&
 | |
|                         (mode == HALF_UP || (frac0+intg0 > 0 && *buf0 & 1)));
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|     if (do_inc)
 | |
|     {
 | |
|       if (frac0+intg0>0)
 | |
|         (*buf1)++;
 | |
|       else
 | |
|         *(++buf1)=DIG_BASE;
 | |
|     }
 | |
|     else if (frac0+intg0==0)
 | |
|     {
 | |
|       decimal_make_zero(to);
 | |
|       return E_DEC_OK;
 | |
|     }
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     /* TODO - fix this code as it won't work for CEILING mode */
 | |
|     int pos=frac0*DIG_PER_DEC1-scale-1;
 | |
|     DBUG_ASSERT(frac0+intg0 > 0);
 | |
|     x=*buf1 / powers10[pos];
 | |
|     y=x % 10;
 | |
|     if (y > round_digit ||
 | |
|         (round_digit == 5 && y == 5 && (mode == HALF_UP || (x/10) & 1)))
 | |
|       x+=10;
 | |
|     *buf1=powers10[pos]*(x-y);
 | |
|   }
 | |
|   if (*buf1 >= DIG_BASE)
 | |
|   {
 | |
|     carry=1;
 | |
|     *buf1-=DIG_BASE;
 | |
|     while (carry && --buf1 >= to->buf)
 | |
|       ADD(*buf1, *buf1, 0, carry);
 | |
|     if (unlikely(carry))
 | |
|     {
 | |
|       /* shifting the number to create space for new digit */
 | |
|       if (frac0+intg0 >= len)
 | |
|       {
 | |
|         frac0--;
 | |
|         scale=frac0*DIG_PER_DEC1;
 | |
|         error=E_DEC_TRUNCATED; /* XXX */
 | |
|       }
 | |
|       for (buf1=to->buf+intg0+MY_MAX(frac0,0); buf1 > to->buf; buf1--)
 | |
|       {
 | |
|         buf1[0]=buf1[-1];
 | |
|       }
 | |
|       *buf1=1;
 | |
|       to->intg++;
 | |
|       intg0++;
 | |
|     }
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     for (;;)
 | |
|     {
 | |
|       if (likely(*buf1))
 | |
|         break;
 | |
|       if (buf1-- == to->buf)
 | |
|       {
 | |
|         /* making 'zero' with the proper scale */
 | |
|         dec1 *p0= to->buf + frac0 + 1;
 | |
|         to->intg=1;
 | |
|         to->frac= MY_MAX(scale, 0);
 | |
|         to->sign= 0;
 | |
|         for (buf1= to->buf; buf1<p0; buf1++)
 | |
|           *buf1= 0;
 | |
|         return E_DEC_OK;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   /*
 | |
|     In case we're rounding e.g. 1.5e9 to 2.0e9, the decimal_digit_t's inside
 | |
|     the buffer are as follows.
 | |
| 
 | |
|     Before <1, 5e8>
 | |
|     After  <2, 5e8>
 | |
| 
 | |
|     Hence we need to set the 2nd field to 0.
 | |
|     The same holds if we round 1.5e-9 to 2e-9.
 | |
|    */
 | |
|   if (frac0 < frac1)
 | |
|   {
 | |
|     dec1 *buf= to->buf + ((scale == 0 && intg0 == 0) ? 1 : intg0 + frac0);
 | |
|     dec1 *end= to->buf + len;
 | |
| 
 | |
|     while (buf < end)
 | |
|       *buf++=0;
 | |
|   }
 | |
| 
 | |
|   /* Here we  check 999.9 -> 1000 case when we need to increase intg */
 | |
|   first_dig= to->intg % DIG_PER_DEC1;
 | |
|   if (first_dig && (*buf1 >= powers10[first_dig]))
 | |
|     to->intg++;
 | |
| 
 | |
|   if (scale<0)
 | |
|     scale=0;
 | |
| 
 | |
| done:
 | |
|   to->frac=scale;
 | |
|   return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Returns the size of the result of the operation
 | |
| 
 | |
|   SYNOPSIS
 | |
|     decimal_result_size()
 | |
|       from1   - operand of the unary operation or first operand of the
 | |
|                 binary operation
 | |
|       from2   - second operand of the binary operation
 | |
|       op      - operation. one char '+', '-', '*', '/' are allowed
 | |
|                 others may be added later
 | |
|       param   - extra param to the operation. unused for '+', '-', '*'
 | |
|                 scale increment for '/'
 | |
| 
 | |
|   NOTE
 | |
|     returned valued may be larger than the actual buffer required
 | |
|     in the operation, as decimal_result_size, by design, operates on
 | |
|     precision/scale values only and not on the actual decimal number
 | |
| 
 | |
|   RETURN VALUE
 | |
|     size of to->buf array in dec1 elements. to get size in bytes
 | |
|     multiply by sizeof(dec1)
 | |
| */
 | |
| 
 | |
| uint decimal_result_size(decimal_t *from1, decimal_t *from2, char op, int param)
 | |
| {
 | |
|   switch (op) {
 | |
|   case '-':
 | |
|     return ROUND_UP(MY_MAX(from1->intg, from2->intg)) +
 | |
|            ROUND_UP(MY_MAX(from1->frac, from2->frac));
 | |
|   case '+':
 | |
|     return ROUND_UP(MY_MAX(from1->intg, from2->intg)+1) +
 | |
|            ROUND_UP(MY_MAX(from1->frac, from2->frac));
 | |
|   case '*':
 | |
|     return ROUND_UP(from1->intg+from2->intg)+
 | |
|            ROUND_UP(from1->frac)+ROUND_UP(from2->frac);
 | |
|   case '/':
 | |
|     return ROUND_UP(from1->intg+from2->intg+1+from1->frac+from2->frac+param);
 | |
|   default: DBUG_ASSERT(0);
 | |
|   }
 | |
|   return 0; /* shut up the warning */
 | |
| }
 | |
| 
 | |
| static int do_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
 | |
| {
 | |
|   int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
 | |
|       frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
 | |
|       frac0=MY_MAX(frac1, frac2), intg0=MY_MAX(intg1, intg2), error;
 | |
|   dec1 *buf1, *buf2, *buf0, *stop, *stop2, x, carry;
 | |
| 
 | |
|   sanity(to);
 | |
| 
 | |
|   /* is there a need for extra word because of carry ? */
 | |
|   x=intg1 > intg2 ? from1->buf[0] :
 | |
|     intg2 > intg1 ? from2->buf[0] :
 | |
|     from1->buf[0] + from2->buf[0] ;
 | |
|   if (unlikely(x > DIG_MAX-1)) /* yes, there is */
 | |
|   {
 | |
|     intg0++;
 | |
|     to->buf[0]=0; /* safety */
 | |
|   }
 | |
| 
 | |
|   FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
 | |
|   if (unlikely(error == E_DEC_OVERFLOW))
 | |
|   {
 | |
|     max_decimal(to->len * DIG_PER_DEC1, 0, to);
 | |
|     return error;
 | |
|   }
 | |
| 
 | |
|   buf0=to->buf+intg0+frac0;
 | |
| 
 | |
|   to->sign=from1->sign;
 | |
|   to->frac=MY_MAX(from1->frac, from2->frac);
 | |
|   to->intg=intg0*DIG_PER_DEC1;
 | |
|   if (unlikely(error))
 | |
|   {
 | |
|     set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
 | |
|     set_if_smaller(frac1, frac0);
 | |
|     set_if_smaller(frac2, frac0);
 | |
|     set_if_smaller(intg1, intg0);
 | |
|     set_if_smaller(intg2, intg0);
 | |
|   }
 | |
| 
 | |
|   /* part 1 - MY_MAX(frac) ... min (frac) */
 | |
|   if (frac1 > frac2)
 | |
|   {
 | |
|     buf1=from1->buf+intg1+frac1;
 | |
|     stop=from1->buf+intg1+frac2;
 | |
|     buf2=from2->buf+intg2+frac2;
 | |
|     stop2=from1->buf+(intg1 > intg2 ? intg1-intg2 : 0);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     buf1=from2->buf+intg2+frac2;
 | |
|     stop=from2->buf+intg2+frac1;
 | |
|     buf2=from1->buf+intg1+frac1;
 | |
|     stop2=from2->buf+(intg2 > intg1 ? intg2-intg1 : 0);
 | |
|   }
 | |
|   while (buf1 > stop)
 | |
|     *--buf0=*--buf1;
 | |
| 
 | |
|   /* part 2 - MY_MIN(frac) ... MY_MIN(intg) */
 | |
|   carry=0;
 | |
|   while (buf1 > stop2)
 | |
|   {
 | |
|     ADD(*--buf0, *--buf1, *--buf2, carry);
 | |
|   }
 | |
| 
 | |
|   /* part 3 - MY_MIN(intg) ... MY_MAX(intg) */
 | |
|   buf1= intg1 > intg2 ? ((stop=from1->buf)+intg1-intg2) :
 | |
|                         ((stop=from2->buf)+intg2-intg1) ;
 | |
|   while (buf1 > stop)
 | |
|   {
 | |
|     ADD(*--buf0, *--buf1, 0, carry);
 | |
|   }
 | |
| 
 | |
|   if (unlikely(carry))
 | |
|     *--buf0=1;
 | |
|   DBUG_ASSERT(buf0 == to->buf || buf0 == to->buf+1);
 | |
| 
 | |
|   return error;
 | |
| }
 | |
| 
 | |
| /* to=from1-from2.
 | |
|    if to==0, return -1/0/+1 - the result of the comparison */
 | |
| static int do_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
 | |
| {
 | |
|   int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
 | |
|       frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac);
 | |
|   int frac0=MY_MAX(frac1, frac2), error;
 | |
|   dec1 *buf1, *buf2, *buf0, *stop1, *stop2, *start1, *start2;
 | |
|   my_bool carry=0;
 | |
| 
 | |
|   /* let carry:=1 if from2 > from1 */
 | |
|   start1=buf1=from1->buf; stop1=buf1+intg1;
 | |
|   start2=buf2=from2->buf; stop2=buf2+intg2;
 | |
|   if (unlikely(*buf1 == 0))
 | |
|   {
 | |
|     while (buf1 < stop1 && *buf1 == 0)
 | |
|       buf1++;
 | |
|     start1=buf1;
 | |
|     intg1= (int) (stop1-buf1);
 | |
|   }
 | |
|   if (unlikely(*buf2 == 0))
 | |
|   {
 | |
|     while (buf2 < stop2 && *buf2 == 0)
 | |
|       buf2++;
 | |
|     start2=buf2;
 | |
|     intg2= (int) (stop2-buf2);
 | |
|   }
 | |
|   if (intg2 > intg1)
 | |
|     carry=1;
 | |
|   else if (intg2 == intg1)
 | |
|   {
 | |
|     dec1 *end1= stop1 + (frac1 - 1);
 | |
|     dec1 *end2= stop2 + (frac2 - 1);
 | |
|     while (unlikely((buf1 <= end1) && (*end1 == 0)))
 | |
|       end1--;
 | |
|     while (unlikely((buf2 <= end2) && (*end2 == 0)))
 | |
|       end2--;
 | |
|     frac1= (int) (end1 - stop1) + 1;
 | |
|     frac2= (int) (end2 - stop2) + 1;
 | |
|     while (buf1 <=end1 && buf2 <= end2 && *buf1 == *buf2)
 | |
|       buf1++, buf2++;
 | |
|     if (buf1 <= end1)
 | |
|     {
 | |
|       if (buf2 <= end2)
 | |
|         carry= *buf2 > *buf1;
 | |
|       else
 | |
|         carry= 0;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       if (buf2 <= end2)
 | |
|         carry=1;
 | |
|       else /* short-circuit everything: from1 == from2 */
 | |
|       {
 | |
|         if (to == 0) /* decimal_cmp() */
 | |
|           return 0;
 | |
|         decimal_make_zero(to);
 | |
|         return E_DEC_OK;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (to == 0) /* decimal_cmp() */
 | |
|     return carry == from1->sign ? 1 : -1;
 | |
| 
 | |
|   sanity(to);
 | |
| 
 | |
|   to->sign=from1->sign;
 | |
| 
 | |
|   /* ensure that always from1 > from2 (and intg1 >= intg2) */
 | |
|   if (carry)
 | |
|   {
 | |
|     swap_variables(const decimal_t *, from1, from2);
 | |
|     swap_variables(dec1 *,start1, start2);
 | |
|     swap_variables(int,intg1,intg2);
 | |
|     swap_variables(int,frac1,frac2);
 | |
|     to->sign= !to->sign;
 | |
|   }
 | |
| 
 | |
|   FIX_INTG_FRAC_ERROR(to->len, intg1, frac0, error);
 | |
|   buf0=to->buf+intg1+frac0;
 | |
| 
 | |
|   to->frac=MY_MAX(from1->frac, from2->frac);
 | |
|   to->intg=intg1*DIG_PER_DEC1;
 | |
|   if (unlikely(error))
 | |
|   {
 | |
|     set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
 | |
|     set_if_smaller(frac1, frac0);
 | |
|     set_if_smaller(frac2, frac0);
 | |
|     set_if_smaller(intg2, intg1);
 | |
|   }
 | |
|   carry=0;
 | |
| 
 | |
|   /* part 1 - MY_MAX(frac) ... min (frac) */
 | |
|   if (frac1 > frac2)
 | |
|   {
 | |
|     buf1=start1+intg1+frac1;
 | |
|     stop1=start1+intg1+frac2;
 | |
|     buf2=start2+intg2+frac2;
 | |
|     while (frac0-- > frac1)
 | |
|       *--buf0=0;
 | |
|     while (buf1 > stop1)
 | |
|       *--buf0=*--buf1;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     buf1=start1+intg1+frac1;
 | |
|     buf2=start2+intg2+frac2;
 | |
|     stop2=start2+intg2+frac1;
 | |
|     while (frac0-- > frac2)
 | |
|       *--buf0=0;
 | |
|     while (buf2 > stop2)
 | |
|     {
 | |
|       SUB(*--buf0, 0, *--buf2, carry);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* part 2 - MY_MIN(frac) ... intg2 */
 | |
|   while (buf2 > start2)
 | |
|   {
 | |
|     SUB(*--buf0, *--buf1, *--buf2, carry);
 | |
|   }
 | |
| 
 | |
|   /* part 3 - intg2 ... intg1 */
 | |
|   while (carry && buf1 > start1)
 | |
|   {
 | |
|     SUB(*--buf0, *--buf1, 0, carry);
 | |
|   }
 | |
| 
 | |
|   while (buf1 > start1)
 | |
|     *--buf0=*--buf1;
 | |
| 
 | |
|   while (buf0 > to->buf)
 | |
|     *--buf0=0;
 | |
| 
 | |
|   return error;
 | |
| }
 | |
| 
 | |
| decimal_digits_t decimal_intg(const decimal_t *from)
 | |
| {
 | |
|   decimal_digits_t res;
 | |
|   remove_leading_zeroes(from, &res);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| int decimal_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
 | |
| {
 | |
|   if (likely(from1->sign == from2->sign))
 | |
|     return do_add(from1, from2, to);
 | |
|   return do_sub(from1, from2, to);
 | |
| }
 | |
| 
 | |
| int decimal_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
 | |
| {
 | |
|   if (likely(from1->sign == from2->sign))
 | |
|     return do_sub(from1, from2, to);
 | |
|   return do_add(from1, from2, to);
 | |
| }
 | |
| 
 | |
| int decimal_cmp(const decimal_t *from1, const decimal_t *from2)
 | |
| {
 | |
|   if (likely(from1->sign == from2->sign))
 | |
|     return do_sub(from1, from2, 0);
 | |
|   return from1->sign > from2->sign ? -1 : 1;
 | |
| }
 | |
| 
 | |
| int decimal_is_zero(const decimal_t *from)
 | |
| {
 | |
|   dec1 *buf1=from->buf,
 | |
|        *end=buf1+ROUND_UP(from->intg)+ROUND_UP(from->frac);
 | |
|   while (buf1 < end)
 | |
|     if (*buf1++)
 | |
|       return 0;
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   multiply two decimals
 | |
| 
 | |
|   SYNOPSIS
 | |
|     decimal_mul()
 | |
|       from1, from2 - factors
 | |
|       to      - product
 | |
| 
 | |
|   RETURN VALUE
 | |
|     E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW;
 | |
| 
 | |
|   NOTES
 | |
|     in this implementation, with sizeof(dec1)=4 we have DIG_PER_DEC1=9,
 | |
|     and 63-digit number will take only 7 dec1 words (basically a 7-digit
 | |
|     "base 999999999" number).  Thus there's no need in fast multiplication
 | |
|     algorithms, 7-digit numbers can be multiplied with a naive O(n*n)
 | |
|     method.
 | |
| 
 | |
|     XXX if this library is to be used with huge numbers of thousands of
 | |
|     digits, fast multiplication must be implemented.
 | |
| */
 | |
| int decimal_mul(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
 | |
| {
 | |
|   int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
 | |
|       frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
 | |
|       intg0=ROUND_UP(from1->intg+from2->intg),
 | |
|       frac0=frac1+frac2, error, i, j, d_to_move;
 | |
|   dec1 *buf1=from1->buf+intg1, *buf2=from2->buf+intg2, *buf0,
 | |
|        *start2, *stop2, *stop1, *start0, carry;
 | |
| 
 | |
|   sanity(to);
 | |
| 
 | |
|   i=intg0;                                       /* save 'ideal' values */
 | |
|   j=frac0;
 | |
|   FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);  /* bound size */
 | |
|   to->sign=from1->sign != from2->sign;
 | |
|   to->frac=from1->frac+from2->frac;              /* store size in digits */
 | |
|   to->intg=intg0*DIG_PER_DEC1;
 | |
| 
 | |
|   if (unlikely(error))
 | |
|   {
 | |
|     set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
 | |
|     set_if_smaller(to->intg, intg0*DIG_PER_DEC1);
 | |
|     if (unlikely(i > intg0))                     /* bounded integer-part */
 | |
|     {
 | |
|       i-=intg0;
 | |
|       j=i >> 1;
 | |
|       intg1-= j;
 | |
|       intg2-=i-j;
 | |
|       frac1=frac2=0; /* frac0 is already 0 here */
 | |
|     }
 | |
|     else                                         /* bounded fract part */
 | |
|     {
 | |
|       j-=frac0;
 | |
|       i=j >> 1;
 | |
|       if (frac1 <= frac2)
 | |
|       {
 | |
|         frac1-= i;
 | |
|         frac2-=j-i;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         frac2-= i;
 | |
|         frac1-=j-i;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   start0=to->buf+intg0+frac0-1;
 | |
|   start2=buf2+frac2-1;
 | |
|   stop1=buf1-intg1;
 | |
|   stop2=buf2-intg2;
 | |
| 
 | |
|   bzero(to->buf, (intg0+frac0)*sizeof(dec1));
 | |
| 
 | |
|   for (buf1+=frac1-1; buf1 >= stop1; buf1--, start0--)
 | |
|   {
 | |
|     carry=0;
 | |
|     for (buf0=start0, buf2=start2; buf2 >= stop2; buf2--, buf0--)
 | |
|     {
 | |
|       dec1 hi, lo;
 | |
|       dec2 p= ((dec2)*buf1) * ((dec2)*buf2);
 | |
|       hi=(dec1)(p/DIG_BASE);
 | |
|       lo=(dec1)(p-((dec2)hi)*DIG_BASE);
 | |
|       ADD2(*buf0, *buf0, lo, carry);
 | |
|       carry+=hi;
 | |
|     }
 | |
|     if (carry)
 | |
|     {
 | |
|       if (buf0 < to->buf)
 | |
|         return E_DEC_OVERFLOW;
 | |
|       ADD2(*buf0, *buf0, 0, carry);
 | |
|     }
 | |
|     for (buf0--; carry; buf0--)
 | |
|     {
 | |
|       if (buf0 < to->buf)
 | |
|         return E_DEC_OVERFLOW;
 | |
|       ADD(*buf0, *buf0, 0, carry);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Remove trailing zero words in frac part */
 | |
|   frac0= ROUND_UP(to->frac);
 | |
| 
 | |
|   if (frac0 > 0 && to->buf[intg0 + frac0 - 1] == 0)
 | |
|   {
 | |
|     do
 | |
|     {
 | |
|       frac0--;
 | |
|     } while (frac0 > 0 && to->buf[intg0 + frac0 - 1] == 0);
 | |
|     to->frac= DIG_PER_DEC1 * frac0;
 | |
|   }
 | |
| 
 | |
|   /* Remove heading zero words in intg part */
 | |
|   buf1= to->buf;
 | |
|   d_to_move= intg0 + frac0;
 | |
|   while (!*buf1 && (to->intg > DIG_PER_DEC1))
 | |
|   {
 | |
|     buf1++;
 | |
|     to->intg-= DIG_PER_DEC1;
 | |
|     d_to_move--;
 | |
|   }
 | |
|   if (to->buf < buf1)
 | |
|   {
 | |
|     dec1 *cur_d= to->buf;
 | |
|     for (; d_to_move--; cur_d++, buf1++)
 | |
|       *cur_d= *buf1;
 | |
|   }
 | |
| 
 | |
|   /* Now we have to check for -0.000 case */
 | |
|   if (to->sign && to->frac == 0 && to->buf[0] == 0)
 | |
|   {
 | |
|     DBUG_ASSERT(to->intg <= DIG_PER_DEC1);
 | |
|     /* We got decimal zero */
 | |
|     decimal_make_zero(to);
 | |
|   }
 | |
|   return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   naive division algorithm (Knuth's Algorithm D in 4.3.1) -
 | |
|   it's ok for short numbers
 | |
|   also we're using alloca() to allocate a temporary buffer
 | |
| 
 | |
|   XXX if this library is to be used with huge numbers of thousands of
 | |
|   digits, fast division must be implemented and alloca should be
 | |
|   changed to malloc (or at least fallback to malloc if alloca() fails)
 | |
|   but then, decimal_mul() should be rewritten too :(
 | |
| */
 | |
| static int do_div_mod(const decimal_t *from1, const decimal_t *from2,
 | |
|                       decimal_t *to, decimal_t *mod, int scale_incr)
 | |
| {
 | |
|   int frac1=ROUND_UP(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1,
 | |
|       frac2=ROUND_UP(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2,
 | |
|       UNINIT_VAR(error), i, intg0, frac0, len1, len2, dintg, div_mod=(!mod);
 | |
|   dec1 *buf0, *buf1=from1->buf, *buf2=from2->buf, *tmp1,
 | |
|        *start2, *stop2, *stop1, *stop0, norm2, carry, *start1, dcarry;
 | |
|   dec2 norm_factor, x, guess, y;
 | |
| 
 | |
|   if (mod)
 | |
|     to=mod;
 | |
| 
 | |
|   sanity(to);
 | |
| 
 | |
|   /* removing all the leading zeroes */
 | |
|   i= ((prec2 - 1) % DIG_PER_DEC1) + 1;
 | |
|   while (prec2 > 0 && *buf2 == 0)
 | |
|   {
 | |
|     prec2-= i;
 | |
|     i= DIG_PER_DEC1;
 | |
|     buf2++;
 | |
|   }
 | |
|   if (prec2 <= 0) /* short-circuit everything: from2 == 0 */
 | |
|     return E_DEC_DIV_ZERO;
 | |
|   for (i= (prec2 - 1) % DIG_PER_DEC1; *buf2 < powers10[i--]; prec2--) ;
 | |
|   DBUG_ASSERT(prec2 > 0);
 | |
| 
 | |
|   i=((prec1-1) % DIG_PER_DEC1)+1;
 | |
|   while (prec1 > 0 && *buf1 == 0)
 | |
|   {
 | |
|     prec1-=i;
 | |
|     i=DIG_PER_DEC1;
 | |
|     buf1++;
 | |
|   }
 | |
|   if (prec1 <= 0)
 | |
|   { /* short-circuit everything: from1 == 0 */
 | |
|     decimal_make_zero(to);
 | |
|     return E_DEC_OK;
 | |
|   }
 | |
|   for (i=(prec1-1) % DIG_PER_DEC1; *buf1 < powers10[i--]; prec1--) ;
 | |
|   DBUG_ASSERT(prec1 > 0);
 | |
| 
 | |
|   /* let's fix scale_incr, taking into account frac1,frac2 increase */
 | |
|   if ((scale_incr-= frac1 - from1->frac + frac2 - from2->frac) < 0)
 | |
|     scale_incr=0;
 | |
| 
 | |
|   dintg=(prec1-frac1)-(prec2-frac2)+(*buf1 >= *buf2);
 | |
|   if (dintg < 0)
 | |
|   {
 | |
|     dintg/=DIG_PER_DEC1;
 | |
|     intg0=0;
 | |
|   }
 | |
|   else
 | |
|     intg0=ROUND_UP(dintg);
 | |
|   if (mod)
 | |
|   {
 | |
|     /* we're calculating N1 % N2.
 | |
|        The result will have
 | |
|          frac=MY_MAX(frac1, frac2), as for subtraction
 | |
|          intg=intg2
 | |
|     */
 | |
|     to->sign=from1->sign;
 | |
|     to->frac=MY_MAX(from1->frac, from2->frac);
 | |
|     frac0=0;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     /*
 | |
|       we're calculating N1/N2. N1 is in the buf1, has prec1 digits
 | |
|       N2 is in the buf2, has prec2 digits. Scales are frac1 and
 | |
|       frac2 accordingly.
 | |
|       Thus, the result will have
 | |
|          frac = ROUND_UP(frac1+frac2+scale_incr)
 | |
|       and
 | |
|          intg = (prec1-frac1) - (prec2-frac2) + 1
 | |
|          prec = intg+frac
 | |
|     */
 | |
|     frac0=ROUND_UP(frac1+frac2+scale_incr);
 | |
|     FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
 | |
|     to->sign=from1->sign != from2->sign;
 | |
|     to->intg=intg0*DIG_PER_DEC1;
 | |
|     to->frac=frac0*DIG_PER_DEC1;
 | |
|   }
 | |
|   buf0=to->buf;
 | |
|   stop0=buf0+intg0+frac0;
 | |
|   if (likely(div_mod))
 | |
|     while (dintg++ < 0 && buf0 < &to->buf[to->len])
 | |
|     {
 | |
|       *buf0++=0;
 | |
|     }
 | |
| 
 | |
|   len1=(i=ROUND_UP(prec1))+ROUND_UP(2*frac2+scale_incr+1) + 1;
 | |
|   set_if_bigger(len1, 3);
 | |
|   if (!(tmp1=(dec1 *)my_alloca(len1*sizeof(dec1))))
 | |
|     return E_DEC_OOM;
 | |
|   memcpy(tmp1, buf1, i*sizeof(dec1));
 | |
|   bzero(tmp1+i, (len1-i)*sizeof(dec1));
 | |
| 
 | |
|   start1=tmp1;
 | |
|   stop1=start1+len1;
 | |
|   start2=buf2;
 | |
|   stop2=buf2+ROUND_UP(prec2)-1;
 | |
| 
 | |
|   /* removing end zeroes */
 | |
|   while (*stop2 == 0 && stop2 >= start2)
 | |
|     stop2--;
 | |
|   len2= (int) (stop2++ - start2);
 | |
| 
 | |
|   /*
 | |
|     calculating norm2 (normalized *start2) - we need *start2 to be large
 | |
|     (at least > DIG_BASE/2), but unlike Knuth's Alg. D we don't want to
 | |
|     normalize input numbers (as we don't make a copy of the divisor).
 | |
|     Thus we normalize first dec1 of buf2 only, and we'll normalize *start1
 | |
|     on the fly for the purpose of guesstimation only.
 | |
|     It's also faster, as we're saving on normalization of buf2
 | |
|   */
 | |
|   norm_factor=DIG_BASE/(*start2+1);
 | |
|   norm2=(dec1)(norm_factor*start2[0]);
 | |
|   if (unlikely(len2>0))
 | |
|     norm2+=(dec1)(norm_factor*start2[1]/DIG_BASE);
 | |
| 
 | |
|   if (*start1 < *start2)
 | |
|     dcarry=*start1++;
 | |
|   else
 | |
|     dcarry=0;
 | |
| 
 | |
|   /* main loop */
 | |
|   for (; buf0 < stop0; buf0++)
 | |
|   {
 | |
|     /* short-circuit, if possible */
 | |
|     if (unlikely(dcarry == 0 && *start1 < *start2))
 | |
|       guess=0;
 | |
|     else
 | |
|     {
 | |
|       /* D3: make a guess */
 | |
|       x=start1[0]+((dec2)dcarry)*DIG_BASE;
 | |
|       y=start1[1];
 | |
|       guess=(norm_factor*x+norm_factor*y/DIG_BASE)/norm2;
 | |
|       if (unlikely(guess >= DIG_BASE))
 | |
|         guess=DIG_BASE-1;
 | |
|       if (unlikely(len2>0))
 | |
|       {
 | |
|         /* hmm, this is a suspicious trick - I removed normalization here */
 | |
|         if (start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y)
 | |
|           guess--;
 | |
|         if (unlikely(start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y))
 | |
|           guess--;
 | |
|         DBUG_ASSERT(start2[1]*guess <= (x-guess*start2[0])*DIG_BASE+y);
 | |
|       }
 | |
| 
 | |
|       /* D4: multiply and subtract */
 | |
|       buf2=stop2;
 | |
|       buf1=start1+len2;
 | |
|       DBUG_ASSERT(buf1 < stop1);
 | |
|       for (carry=0; buf2 > start2; buf1--)
 | |
|       {
 | |
|         dec1 hi, lo;
 | |
|         x=guess * (*--buf2);
 | |
|         hi=(dec1)(x/DIG_BASE);
 | |
|         lo=(dec1)(x-((dec2)hi)*DIG_BASE);
 | |
|         SUB2(*buf1, *buf1, lo, carry);
 | |
|         carry+=hi;
 | |
|       }
 | |
|       carry= dcarry < carry;
 | |
| 
 | |
|       /* D5: check the remainder */
 | |
|       if (unlikely(carry))
 | |
|       {
 | |
|         /* D6: correct the guess */
 | |
|         guess--;
 | |
|         buf2=stop2;
 | |
|         buf1=start1+len2;
 | |
|         for (carry=0; buf2 > start2; buf1--)
 | |
|         {
 | |
|           ADD(*buf1, *buf1, *--buf2, carry);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (likely(div_mod))
 | |
|     {
 | |
|       DBUG_ASSERT(buf0 < to->buf + to->len);
 | |
|       *buf0=(dec1)guess;
 | |
|     }
 | |
| #ifdef WORKAROUND_GCC_4_3_2_BUG
 | |
|     dcarry= *(volatile dec1 *)start1;
 | |
| #else
 | |
|     dcarry= *start1;
 | |
| #endif
 | |
|     start1++;
 | |
|   }
 | |
|   if (mod)
 | |
|   {
 | |
|     /*
 | |
|       now the result is in tmp1, it has
 | |
|         intg=prec1-frac1
 | |
|         frac=MY_MAX(frac1, frac2)=to->frac
 | |
|     */
 | |
|     if (dcarry)
 | |
|       *--start1=dcarry;
 | |
|     buf0=to->buf;
 | |
|     intg0=(int) (ROUND_UP(prec1-frac1)-(start1-tmp1));
 | |
|     frac0=ROUND_UP(to->frac);
 | |
|     error=E_DEC_OK;
 | |
|     if (unlikely(frac0==0 && intg0==0))
 | |
|     {
 | |
|       decimal_make_zero(to);
 | |
|       goto done;
 | |
|     }
 | |
|     if (intg0<=0)
 | |
|     {
 | |
|       if (unlikely(-intg0 >= to->len))
 | |
|       {
 | |
|         decimal_make_zero(to);
 | |
|         error=E_DEC_TRUNCATED;
 | |
|         goto done;
 | |
|       }
 | |
|       stop1= start1 + frac0 + intg0;
 | |
|       frac0+=intg0;
 | |
|       to->intg=0;
 | |
|       while (intg0++ < 0)
 | |
|         *buf0++=0;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       if (unlikely(intg0 > to->len))
 | |
|       {
 | |
|         frac0=0;
 | |
|         intg0=to->len;
 | |
|         error=E_DEC_OVERFLOW;
 | |
|         goto done;
 | |
|       }
 | |
|       DBUG_ASSERT(intg0 <= ROUND_UP(from2->intg));
 | |
|       stop1=start1+frac0+intg0;
 | |
|       to->intg=MY_MIN(intg0*DIG_PER_DEC1, from2->intg);
 | |
|     }
 | |
|     if (unlikely(intg0+frac0 > to->len))
 | |
|     {
 | |
|       stop1-=frac0+intg0-to->len;
 | |
|       frac0=to->len-intg0;
 | |
|       to->frac=frac0*DIG_PER_DEC1;
 | |
|         error=E_DEC_TRUNCATED;
 | |
|     }
 | |
|     DBUG_ASSERT(buf0 + (stop1 - start1) <= to->buf + to->len);
 | |
|     while (start1 < stop1)
 | |
|         *buf0++=*start1++;
 | |
|   }
 | |
| done:
 | |
|   my_afree(tmp1);
 | |
|   return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   division of two decimals
 | |
| 
 | |
|   SYNOPSIS
 | |
|     decimal_div()
 | |
|       from1   - dividend
 | |
|       from2   - divisor
 | |
|       to      - quotient
 | |
| 
 | |
|   RETURN VALUE
 | |
|     E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
 | |
| 
 | |
|   NOTES
 | |
|     see do_div_mod()
 | |
| */
 | |
| 
 | |
| int
 | |
| decimal_div(const decimal_t *from1, const decimal_t *from2, decimal_t *to,
 | |
|             int scale_incr)
 | |
| {
 | |
|   return do_div_mod(from1, from2, to, 0, scale_incr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|   modulus
 | |
| 
 | |
|   SYNOPSIS
 | |
|     decimal_mod()
 | |
|       from1   - dividend
 | |
|       from2   - divisor
 | |
|       to      - modulus
 | |
| 
 | |
|   RETURN VALUE
 | |
|     E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
 | |
| 
 | |
|   NOTES
 | |
|     see do_div_mod()
 | |
| 
 | |
|   DESCRIPTION
 | |
|     the modulus R in    R = M mod N
 | |
| 
 | |
|    is defined as
 | |
| 
 | |
|      0 <= |R| < |M|
 | |
|      sign R == sign M
 | |
|      R = M - k*N, where k is integer
 | |
| 
 | |
|    thus, there's no requirement for M or N to be integers
 | |
| */
 | |
| 
 | |
| int decimal_mod(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
 | |
| {
 | |
|   return do_div_mod(from1, from2, 0, to, 0);
 | |
| }
 | |
| 
 | |
| #ifdef MAIN
 | |
| 
 | |
| int full= 0;
 | |
| decimal_t a, b, c;
 | |
| char buf1[100], buf2[100], buf3[100];
 | |
| 
 | |
| void dump_decimal(decimal_t *d)
 | |
| {
 | |
|   int i;
 | |
|   printf("/* intg=%d, frac=%d, sign=%d, buf[]={", d->intg, d->frac, d->sign);
 | |
|   for (i=0; i < ROUND_UP(d->frac)+ROUND_UP(d->intg)-1; i++)
 | |
|     printf("%09d, ", d->buf[i]);
 | |
|   printf("%09d} */ ", d->buf[i]);
 | |
| }
 | |
| 
 | |
| 
 | |
| void check_result_code(int actual, int want)
 | |
| {
 | |
|   if (actual != want)
 | |
|   {
 | |
|     printf("\n^^^^^^^^^^^^^ must return %d\n", want);
 | |
|     exit(1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void print_decimal(decimal_t *d, const char *orig, int actual, int want)
 | |
| {
 | |
|   char s[100];
 | |
|   int slen=sizeof(s);
 | |
| 
 | |
|   if (full) dump_decimal(d);
 | |
|   decimal2string(d, s, &slen, 0, 0, 0);
 | |
|   printf("'%s'", s);
 | |
|   check_result_code(actual, want);
 | |
|   if (orig && strcmp(orig, s))
 | |
|   {
 | |
|     printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig);
 | |
|     exit(1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void test_d2s()
 | |
| {
 | |
|   char s[100];
 | |
|   int slen, res;
 | |
| 
 | |
|   /***********************************/
 | |
|   printf("==== decimal2string ====\n");
 | |
|   a.buf[0]=12345; a.intg=5; a.frac=0; a.sign=0;
 | |
|   slen=sizeof(s);
 | |
|   res=decimal2string(&a, s, &slen, 0, 0, 0);
 | |
|   dump_decimal(&a); printf("  -->  res=%d str='%s' len=%d\n", res, s, slen);
 | |
| 
 | |
|   a.buf[1]=987000000; a.frac=3;
 | |
|   slen=sizeof(s);
 | |
|   res=decimal2string(&a, s, &slen, 0, 0, 0);
 | |
|   dump_decimal(&a); printf("  -->  res=%d str='%s' len=%d\n", res, s, slen);
 | |
| 
 | |
|   a.sign=1;
 | |
|   slen=sizeof(s);
 | |
|   res=decimal2string(&a, s, &slen, 0, 0, 0);
 | |
|   dump_decimal(&a); printf("  -->  res=%d str='%s' len=%d\n", res, s, slen);
 | |
| 
 | |
|   slen=8;
 | |
|   res=decimal2string(&a, s, &slen, 0, 0, 0);
 | |
|   dump_decimal(&a); printf("  -->  res=%d str='%s' len=%d\n", res, s, slen);
 | |
| 
 | |
|   slen=5;
 | |
|   res=decimal2string(&a, s, &slen, 0, 0, 0);
 | |
|   dump_decimal(&a); printf("  -->  res=%d str='%s' len=%d\n", res, s, slen);
 | |
| 
 | |
|   a.buf[0]=987000000; a.frac=3; a.intg=0;
 | |
|   slen=sizeof(s);
 | |
|   res=decimal2string(&a, s, &slen, 0, 0, 0);
 | |
|   dump_decimal(&a); printf("  -->  res=%d str='%s' len=%d\n", res, s, slen);
 | |
| }
 | |
| 
 | |
| void test_s2d(const char *s, const char *orig, int ex)
 | |
| {
 | |
|   char s1[100], *end;
 | |
|   int res;
 | |
|   sprintf(s1, "'%s'", s);
 | |
|   end= strend(s);
 | |
|   printf("len=%2d %-30s => res=%d    ", a.len, s1,
 | |
|          (res= string2decimal(s, &a, &end)));
 | |
|   print_decimal(&a, orig, res, ex);
 | |
|   printf("\n");
 | |
| }
 | |
| 
 | |
| void test_d2f(const char *s, int ex)
 | |
| {
 | |
|   char s1[100], *end;
 | |
|   double x;
 | |
|   int res;
 | |
| 
 | |
|   sprintf(s1, "'%s'", s);
 | |
|   end= strend(s);
 | |
|   string2decimal(s, &a, &end);
 | |
|   res=decimal2double(&a, &x);
 | |
|   if (full) dump_decimal(&a);
 | |
|   printf("%-40s => res=%d    %.*g\n", s1, res, a.intg+a.frac, x);
 | |
|   check_result_code(res, ex);
 | |
| }
 | |
| 
 | |
| void test_d2b2d(const char *str, int p, int s, const char *orig, int ex)
 | |
| {
 | |
|   char s1[100], *end;
 | |
|   uchar buf[100];
 | |
|   int res, i, size=decimal_bin_size(p, s);
 | |
| 
 | |
|   sprintf(s1, "'%s'", str);
 | |
|   end= strend(str);
 | |
|   string2decimal(str, &a, &end);
 | |
|   res=decimal2bin(&a, buf, p, s);
 | |
|   printf("%-31s {%2d, %2d} => res=%d size=%-2d ", s1, p, s, res, size);
 | |
|   if (full)
 | |
|   {
 | |
|     printf("0x");
 | |
|     for (i=0; i < size; i++)
 | |
|       printf("%02x", ((uchar *)buf)[i]);
 | |
|   }
 | |
|   res=bin2decimal(buf, &a, p, s);
 | |
|   printf(" => res=%d ", res);
 | |
|   print_decimal(&a, orig, res, ex);
 | |
|   printf("\n");
 | |
| }
 | |
| 
 | |
| void test_f2d(double from, int ex)
 | |
| {
 | |
|   int res;
 | |
| 
 | |
|   res=double2decimal(from, &a);
 | |
|   printf("%-40.*f => res=%d    ", DBL_DIG-2, from, res);
 | |
|   print_decimal(&a, 0, res, ex);
 | |
|   printf("\n");
 | |
| }
 | |
| 
 | |
| void test_ull2d(ulonglong from, const char *orig, int ex)
 | |
| {
 | |
|   char s[100];
 | |
|   int res;
 | |
| 
 | |
|   res=ulonglong2decimal(from, &a);
 | |
|   longlong10_to_str(from,s,10);
 | |
|   printf("%-40s => res=%d    ", s, res);
 | |
|   print_decimal(&a, orig, res, ex);
 | |
|   printf("\n");
 | |
| }
 | |
| 
 | |
| void test_ll2d(longlong from, const char *orig, int ex)
 | |
| {
 | |
|   char s[100];
 | |
|   int res;
 | |
| 
 | |
|   res=longlong2decimal(from, &a);
 | |
|   longlong10_to_str(from,s,-10);
 | |
|   printf("%-40s => res=%d    ", s, res);
 | |
|   print_decimal(&a, orig, res, ex);
 | |
|   printf("\n");
 | |
| }
 | |
| 
 | |
| void test_d2ull(const char *s, const char *orig, int ex)
 | |
| {
 | |
|   char s1[100], *end;
 | |
|   ulonglong x;
 | |
|   int res;
 | |
| 
 | |
|   end= strend(s);
 | |
|   string2decimal(s, &a, &end);
 | |
|   res=decimal2ulonglong(&a, &x);
 | |
|   if (full) dump_decimal(&a);
 | |
|   longlong10_to_str(x,s1,10);
 | |
|   printf("%-40s => res=%d    %s\n", s, res, s1);
 | |
|   check_result_code(res, ex);
 | |
|   if (orig && strcmp(orig, s1))
 | |
|   {
 | |
|     printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig);
 | |
|     exit(1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void test_d2ll(const char *s, const char *orig, int ex)
 | |
| {
 | |
|   char s1[100], *end;
 | |
|   longlong x;
 | |
|   int res;
 | |
| 
 | |
|   end= strend(s);
 | |
|   string2decimal(s, &a, &end);
 | |
|   res=decimal2longlong(&a, &x);
 | |
|   if (full) dump_decimal(&a);
 | |
|   longlong10_to_str(x,s1,-10);
 | |
|   printf("%-40s => res=%d    %s\n", s, res, s1);
 | |
|   check_result_code(res, ex);
 | |
|   if (orig && strcmp(orig, s1))
 | |
|   {
 | |
|     printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig);
 | |
|     exit(1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void test_da(const char *s1, const char *s2, const char *orig, int ex)
 | |
| {
 | |
|   char s[100], *end;
 | |
|   int res;
 | |
|   sprintf(s, "'%s' + '%s'", s1, s2);
 | |
|   end= strend(s1);
 | |
|   string2decimal(s1, &a, &end);
 | |
|   end= strend(s2);
 | |
|   string2decimal(s2, &b, &end);
 | |
|   res=decimal_add(&a, &b, &c);
 | |
|   printf("%-40s => res=%d    ", s, res);
 | |
|   print_decimal(&c, orig, res, ex);
 | |
|   printf("\n");
 | |
| }
 | |
| 
 | |
| void test_ds(const char *s1, const char *s2, const char *orig, int ex)
 | |
| {
 | |
|   char s[100], *end;
 | |
|   int res;
 | |
|   sprintf(s, "'%s' - '%s'", s1, s2);
 | |
|   end= strend(s1);
 | |
|   string2decimal(s1, &a, &end);
 | |
|   end= strend(s2);
 | |
|   string2decimal(s2, &b, &end);
 | |
|   res=decimal_sub(&a, &b, &c);
 | |
|   printf("%-40s => res=%d    ", s, res);
 | |
|   print_decimal(&c, orig, res, ex);
 | |
|   printf("\n");
 | |
| }
 | |
| 
 | |
| void test_dc(const char *s1, const char *s2, int orig)
 | |
| {
 | |
|   char s[100], *end;
 | |
|   int res;
 | |
|   sprintf(s, "'%s' <=> '%s'", s1, s2);
 | |
|   end= strend(s1);
 | |
|   string2decimal(s1, &a, &end);
 | |
|   end= strend(s2);
 | |
|   string2decimal(s2, &b, &end);
 | |
|   res=decimal_cmp(&a, &b);
 | |
|   printf("%-40s => res=%d\n", s, res);
 | |
|   if (orig != res)
 | |
|   {
 | |
|     printf("\n^^^^^^^^^^^^^ must've been %d\n", orig);
 | |
|     exit(1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void test_dm(const char *s1, const char *s2, const char *orig, int ex)
 | |
| {
 | |
|   char s[100], *end;
 | |
|   int res;
 | |
|   sprintf(s, "'%s' * '%s'", s1, s2);
 | |
|   end= strend(s1);
 | |
|   string2decimal(s1, &a, &end);
 | |
|   end= strend(s2);
 | |
|   string2decimal(s2, &b, &end);
 | |
|   res=decimal_mul(&a, &b, &c);
 | |
|   printf("%-40s => res=%d    ", s, res);
 | |
|   print_decimal(&c, orig, res, ex);
 | |
|   printf("\n");
 | |
| }
 | |
| 
 | |
| void test_dv(const char *s1, const char *s2, const char *orig, int ex)
 | |
| {
 | |
|   char s[100], *end;
 | |
|   int res;
 | |
|   sprintf(s, "'%s' / '%s'", s1, s2);
 | |
|   end= strend(s1);
 | |
|   string2decimal(s1, &a, &end);
 | |
|   end= strend(s2);
 | |
|   string2decimal(s2, &b, &end);
 | |
|   res=decimal_div(&a, &b, &c, 5);
 | |
|   printf("%-40s => res=%d    ", s, res);
 | |
|   check_result_code(res, ex);
 | |
|   if (res == E_DEC_DIV_ZERO)
 | |
|     printf("E_DEC_DIV_ZERO");
 | |
|   else
 | |
|     print_decimal(&c, orig, res, ex);
 | |
|   printf("\n");
 | |
| }
 | |
| 
 | |
| void test_md(const char *s1, const char *s2, const char *orig, int ex)
 | |
| {
 | |
|   char s[100], *end;
 | |
|   int res;
 | |
|   sprintf(s, "'%s' %% '%s'", s1, s2);
 | |
|   end= strend(s1);
 | |
|   string2decimal(s1, &a, &end);
 | |
|   end= strend(s2);
 | |
|   string2decimal(s2, &b, &end);
 | |
|   res=decimal_mod(&a, &b, &c);
 | |
|   printf("%-40s => res=%d    ", s, res);
 | |
|   check_result_code(res, ex);
 | |
|   if (res == E_DEC_DIV_ZERO)
 | |
|     printf("E_DEC_DIV_ZERO");
 | |
|   else
 | |
|     print_decimal(&c, orig, res, ex);
 | |
|   printf("\n");
 | |
| }
 | |
| 
 | |
| const char *round_mode[]=
 | |
| {"TRUNCATE", "HALF_EVEN", "HALF_UP", "CEILING", "FLOOR"};
 | |
| 
 | |
| void test_ro(const char *s1, int n, decimal_round_mode mode, const char *orig,
 | |
|              int ex)
 | |
| {
 | |
|   char s[100], *end;
 | |
|   int res;
 | |
|   sprintf(s, "'%s', %d, %s", s1, n, round_mode[mode]);
 | |
|   end= strend(s1);
 | |
|   string2decimal(s1, &a, &end);
 | |
|   res=decimal_round(&a, &b, n, mode);
 | |
|   printf("%-40s => res=%d    ", s, res);
 | |
|   print_decimal(&b, orig, res, ex);
 | |
|   printf("\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| void test_mx(int precision, int frac, const char *orig)
 | |
| {
 | |
|   char s[100];
 | |
|   sprintf(s, "%d, %d", precision, frac);
 | |
|   max_decimal(precision, frac, &a);
 | |
|   printf("%-40s =>          ", s);
 | |
|   print_decimal(&a, orig, 0, 0);
 | |
|   printf("\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| void test_pr(const char *s1, int prec, int dec, char filler, const char *orig,
 | |
|              int ex)
 | |
| {
 | |
|   char s[100], *end;
 | |
|   char s2[100];
 | |
|   int slen= sizeof(s2);
 | |
|   int res;
 | |
| 
 | |
|   sprintf(s, filler ? "'%s', %d, %d, '%c'" : "'%s', %d, %d, '\\0'",
 | |
|           s1, prec, dec, filler);
 | |
|   end= strend(s1);
 | |
|   string2decimal(s1, &a, &end);
 | |
|   res= decimal2string(&a, s2, &slen, prec, dec, filler);
 | |
|   printf("%-40s => res=%d    '%s'", s, res, s2);
 | |
|   check_result_code(res, ex);
 | |
|   if (orig && strcmp(orig, s2))
 | |
|   {
 | |
|     printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig);
 | |
|     exit(1);
 | |
|   }
 | |
|   printf("\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| void test_sh(const char *s1, int shift, const char *orig, int ex)
 | |
| {
 | |
|   char s[100], *end;
 | |
|   int res;
 | |
|   sprintf(s, "'%s' %s %d", s1, ((shift < 0) ? ">>" : "<<"), abs(shift));
 | |
|   end= strend(s1);
 | |
|   string2decimal(s1, &a, &end);
 | |
|   res= decimal_shift(&a, shift);
 | |
|   printf("%-40s => res=%d    ", s, res);
 | |
|   print_decimal(&a, orig, res, ex);
 | |
|   printf("\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| void test_fr(const char *s1, const char *orig)
 | |
| {
 | |
|   char s[100], *end;
 | |
|   sprintf(s, "'%s'", s1);
 | |
|   printf("%-40s =>          ", s);
 | |
|   end= strend(s1);
 | |
|   string2decimal(s1, &a, &end);
 | |
|   a.frac= decimal_actual_fraction(&a);
 | |
|   print_decimal(&a, orig, 0, 0);
 | |
|   printf("\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| int main()
 | |
| {
 | |
|   a.buf=(void*)buf1;
 | |
|   a.len=sizeof(buf1)/sizeof(dec1);
 | |
|   b.buf=(void*)buf2;
 | |
|   b.len=sizeof(buf2)/sizeof(dec1);
 | |
|   c.buf=(void*)buf3;
 | |
|   c.len=sizeof(buf3)/sizeof(dec1);
 | |
| 
 | |
|   if (full)
 | |
|     test_d2s();
 | |
| 
 | |
|   printf("==== string2decimal ====\n");
 | |
|   test_s2d("12345", "12345", 0);
 | |
|   test_s2d("12345.", "12345", 0);
 | |
|   test_s2d("123.45", "123.45", 0);
 | |
|   test_s2d("-123.45", "-123.45", 0);
 | |
|   test_s2d(".00012345000098765", "0.00012345000098765", 0);
 | |
|   test_s2d(".12345000098765", "0.12345000098765", 0);
 | |
|   test_s2d("-.000000012345000098765", "-0.000000012345000098765", 0);
 | |
|   test_s2d("1234500009876.5", "1234500009876.5", 0);
 | |
|   a.len=1;
 | |
|   test_s2d("123450000098765", "98765", 2);
 | |
|   test_s2d("123450.000098765", "123450", 1);
 | |
|   a.len=sizeof(buf1)/sizeof(dec1);
 | |
|   test_s2d("123E5", "12300000", 0);
 | |
|   test_s2d("123E-2", "1.23", 0);
 | |
| 
 | |
|   printf("==== decimal2double ====\n");
 | |
|   test_d2f("12345", 0);
 | |
|   test_d2f("123.45", 0);
 | |
|   test_d2f("-123.45", 0);
 | |
|   test_d2f("0.00012345000098765", 0);
 | |
|   test_d2f("1234500009876.5", 0);
 | |
| 
 | |
|   printf("==== double2decimal ====\n");
 | |
|   test_f2d(12345, 0);
 | |
|   test_f2d(1.0/3, 0);
 | |
|   test_f2d(-123.45, 0);
 | |
|   test_f2d(0.00012345000098765, 0);
 | |
|   test_f2d(1234500009876.5, 0);
 | |
| 
 | |
|   printf("==== ulonglong2decimal ====\n");
 | |
|   test_ull2d(12345ULL, "12345", 0);
 | |
|   test_ull2d(0ULL, "0", 0);
 | |
|   test_ull2d(18446744073709551615ULL, "18446744073709551615", 0);
 | |
| 
 | |
|   printf("==== decimal2ulonglong ====\n");
 | |
|   test_d2ull("12345", "12345", 0);
 | |
|   test_d2ull("0", "0", 0);
 | |
|   test_d2ull("18446744073709551615", "18446744073709551615", 0);
 | |
|   test_d2ull("18446744073709551616", "18446744073709551615", 2);
 | |
|   test_d2ull("-1", "0", 2);
 | |
|   test_d2ull("1.23", "1", 1);
 | |
|   test_d2ull("9999999999999999999999999.000", "18446744073709551615", 2);
 | |
| 
 | |
|   printf("==== longlong2decimal ====\n");
 | |
|   test_ll2d(-12345LL, "-12345", 0);
 | |
|   test_ll2d(-1LL, "-1", 0);
 | |
|   test_ll2d(-9223372036854775807LL, "-9223372036854775807", 0);
 | |
|   test_ll2d(9223372036854775808ULL, "-9223372036854775808", 0);
 | |
| 
 | |
|   printf("==== decimal2longlong ====\n");
 | |
|   test_d2ll("18446744073709551615", "9223372036854775807", 2);
 | |
|   test_d2ll("-1", "-1", 0);
 | |
|   test_d2ll("-1.23", "-1", 1);
 | |
|   test_d2ll("-9223372036854775807", "-9223372036854775807", 0);
 | |
|   test_d2ll("-9223372036854775808", "-9223372036854775808", 0);
 | |
|   test_d2ll("9223372036854775808", "9223372036854775807", 2);
 | |
| 
 | |
|   printf("==== do_add ====\n");
 | |
|   test_da(".00012345000098765" ,"123.45", "123.45012345000098765", 0);
 | |
|   test_da(".1" ,".45", "0.55", 0);
 | |
|   test_da("1234500009876.5" ,".00012345000098765", "1234500009876.50012345000098765", 0);
 | |
|   test_da("9999909999999.5" ,".555", "9999910000000.055", 0);
 | |
|   test_da("99999999" ,"1", "100000000", 0);
 | |
|   test_da("989999999" ,"1", "990000000", 0);
 | |
|   test_da("999999999" ,"1", "1000000000", 0);
 | |
|   test_da("12345" ,"123.45", "12468.45", 0);
 | |
|   test_da("-12345" ,"-123.45", "-12468.45", 0);
 | |
|   test_ds("-12345" ,"123.45", "-12468.45", 0);
 | |
|   test_ds("12345" ,"-123.45", "12468.45", 0);
 | |
| 
 | |
|   printf("==== do_sub ====\n");
 | |
|   test_ds(".00012345000098765", "123.45","-123.44987654999901235", 0);
 | |
|   test_ds("1234500009876.5", ".00012345000098765","1234500009876.49987654999901235", 0);
 | |
|   test_ds("9999900000000.5", ".555","9999899999999.945", 0);
 | |
|   test_ds("1111.5551", "1111.555","0.0001", 0);
 | |
|   test_ds(".555", ".555","0", 0);
 | |
|   test_ds("10000000", "1","9999999", 0);
 | |
|   test_ds("1000001000", ".1","1000000999.9", 0);
 | |
|   test_ds("1000000000", ".1","999999999.9", 0);
 | |
|   test_ds("12345", "123.45","12221.55", 0);
 | |
|   test_ds("-12345", "-123.45","-12221.55", 0);
 | |
|   test_da("-12345", "123.45","-12221.55", 0);
 | |
|   test_da("12345", "-123.45","12221.55", 0);
 | |
|   test_ds("123.45", "12345","-12221.55", 0);
 | |
|   test_ds("-123.45", "-12345","12221.55", 0);
 | |
|   test_da("123.45", "-12345","-12221.55", 0);
 | |
|   test_da("-123.45", "12345","12221.55", 0);
 | |
|   test_da("5", "-6.0","-1.0", 0);
 | |
| 
 | |
|   printf("==== decimal_mul ====\n");
 | |
|   test_dm("12", "10","120", 0);
 | |
|   test_dm("-123.456", "98765.4321","-12193185.1853376", 0);
 | |
|   test_dm("-123456000000", "98765432100000","-12193185185337600000000000", 0);
 | |
|   test_dm("123456", "987654321","121931851853376", 0);
 | |
|   test_dm("123456", "9876543210","1219318518533760", 0);
 | |
|   test_dm("123", "0.01","1.23", 0);
 | |
|   test_dm("123", "0","0", 0);
 | |
| 
 | |
|   printf("==== decimal_div ====\n");
 | |
|   test_dv("120", "10","12.000000000", 0);
 | |
|   test_dv("123", "0.01","12300.000000000", 0);
 | |
|   test_dv("120", "100000000000.00000","0.000000001200000000", 0);
 | |
|   test_dv("123", "0","", 4);
 | |
|   test_dv("0", "0", "", 4);
 | |
|   test_dv("-12193185.1853376", "98765.4321","-123.456000000000000000", 0);
 | |
|   test_dv("121931851853376", "987654321","123456.000000000", 0);
 | |
|   test_dv("0", "987","0", 0);
 | |
|   test_dv("1", "3","0.333333333", 0);
 | |
|   test_dv("1.000000000000", "3","0.333333333333333333", 0);
 | |
|   test_dv("1", "1","1.000000000", 0);
 | |
|   test_dv("0.0123456789012345678912345", "9999999999","0.000000000001234567890246913578148141", 0);
 | |
|   test_dv("10.333000000", "12.34500","0.837019036046982584042122316", 0);
 | |
|   test_dv("10.000000000060", "2","5.000000000030000000", 0);
 | |
| 
 | |
|   printf("==== decimal_mod ====\n");
 | |
|   test_md("234","10","4", 0);
 | |
|   test_md("234.567","10.555","2.357", 0);
 | |
|   test_md("-234.567","10.555","-2.357", 0);
 | |
|   test_md("234.567","-10.555","2.357", 0);
 | |
|   c.buf[1]=0x3ABECA;
 | |
|   test_md("99999999999999999999999999999999999999","3","0", 0);
 | |
|   if (c.buf[1] != 0x3ABECA)
 | |
|   {
 | |
|     printf("%X - overflow\n", c.buf[1]);
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   printf("==== decimal2bin/bin2decimal ====\n");
 | |
|   test_d2b2d("-10.55", 4, 2,"-10.55", 0);
 | |
|   test_d2b2d("0.0123456789012345678912345", 30, 25,"0.0123456789012345678912345", 0);
 | |
|   test_d2b2d("12345", 5, 0,"12345", 0);
 | |
|   test_d2b2d("12345", 10, 3,"12345.000", 0);
 | |
|   test_d2b2d("123.45", 10, 3,"123.450", 0);
 | |
|   test_d2b2d("-123.45", 20, 10,"-123.4500000000", 0);
 | |
|   test_d2b2d(".00012345000098765", 15, 14,"0.00012345000098", 0);
 | |
|   test_d2b2d(".00012345000098765", 22, 20,"0.00012345000098765000", 0);
 | |
|   test_d2b2d(".12345000098765", 30, 20,"0.12345000098765000000", 0);
 | |
|   test_d2b2d("-.000000012345000098765", 30, 20,"-0.00000001234500009876", 0);
 | |
|   test_d2b2d("1234500009876.5", 30, 5,"1234500009876.50000", 0);
 | |
|   test_d2b2d("111111111.11", 10, 2,"11111111.11", 0);
 | |
|   test_d2b2d("000000000.01", 7, 3,"0.010", 0);
 | |
|   test_d2b2d("123.4", 10, 2, "123.40", 0);
 | |
| 
 | |
| 
 | |
|   printf("==== decimal_cmp ====\n");
 | |
|   test_dc("12","13",-1);
 | |
|   test_dc("13","12",1);
 | |
|   test_dc("-10","10",-1);
 | |
|   test_dc("10","-10",1);
 | |
|   test_dc("-12","-13",1);
 | |
|   test_dc("0","12",-1);
 | |
|   test_dc("-10","0",-1);
 | |
|   test_dc("4","4",0);
 | |
| 
 | |
|   printf("==== decimal_round ====\n");
 | |
|   test_ro("5678.123451",-4,TRUNCATE,"0", 0);
 | |
|   test_ro("5678.123451",-3,TRUNCATE,"5000", 0);
 | |
|   test_ro("5678.123451",-2,TRUNCATE,"5600", 0);
 | |
|   test_ro("5678.123451",-1,TRUNCATE,"5670", 0);
 | |
|   test_ro("5678.123451",0,TRUNCATE,"5678", 0);
 | |
|   test_ro("5678.123451",1,TRUNCATE,"5678.1", 0);
 | |
|   test_ro("5678.123451",2,TRUNCATE,"5678.12", 0);
 | |
|   test_ro("5678.123451",3,TRUNCATE,"5678.123", 0);
 | |
|   test_ro("5678.123451",4,TRUNCATE,"5678.1234", 0);
 | |
|   test_ro("5678.123451",5,TRUNCATE,"5678.12345", 0);
 | |
|   test_ro("5678.123451",6,TRUNCATE,"5678.123451", 0);
 | |
|   test_ro("-5678.123451",-4,TRUNCATE,"0", 0);
 | |
|   memset(buf2, 33, sizeof(buf2));
 | |
|   test_ro("99999999999999999999999999999999999999",-31,TRUNCATE,"99999990000000000000000000000000000000", 0);
 | |
|   test_ro("15.1",0,HALF_UP,"15", 0);
 | |
|   test_ro("15.5",0,HALF_UP,"16", 0);
 | |
|   test_ro("15.9",0,HALF_UP,"16", 0);
 | |
|   test_ro("-15.1",0,HALF_UP,"-15", 0);
 | |
|   test_ro("-15.5",0,HALF_UP,"-16", 0);
 | |
|   test_ro("-15.9",0,HALF_UP,"-16", 0);
 | |
|   test_ro("15.1",1,HALF_UP,"15.1", 0);
 | |
|   test_ro("-15.1",1,HALF_UP,"-15.1", 0);
 | |
|   test_ro("15.17",1,HALF_UP,"15.2", 0);
 | |
|   test_ro("15.4",-1,HALF_UP,"20", 0);
 | |
|   test_ro("-15.4",-1,HALF_UP,"-20", 0);
 | |
|   test_ro("5.4",-1,HALF_UP,"10", 0);
 | |
|   test_ro(".999", 0, HALF_UP, "1", 0);
 | |
|   memset(buf2, 33, sizeof(buf2));
 | |
|   test_ro("999999999", -9, HALF_UP, "1000000000", 0);
 | |
|   test_ro("15.1",0,HALF_EVEN,"15", 0);
 | |
|   test_ro("15.5",0,HALF_EVEN,"16", 0);
 | |
|   test_ro("14.5",0,HALF_EVEN,"14", 0);
 | |
|   test_ro("15.9",0,HALF_EVEN,"16", 0);
 | |
|   test_ro("15.1",0,CEILING,"16", 0);
 | |
|   test_ro("-15.1",0,CEILING,"-15", 0);
 | |
|   test_ro("15.1",0,FLOOR,"15", 0);
 | |
|   test_ro("-15.1",0,FLOOR,"-16", 0);
 | |
|   test_ro("999999999999999999999.999", 0, CEILING,"1000000000000000000000", 0);
 | |
|   test_ro("-999999999999999999999.999", 0, FLOOR,"-1000000000000000000000", 0);
 | |
| 
 | |
|   b.buf[0]=DIG_BASE+1;
 | |
|   b.buf++;
 | |
|   test_ro(".3", 0, HALF_UP, "0", 0);
 | |
|   b.buf--;
 | |
|   if (b.buf[0] != DIG_BASE+1)
 | |
|   {
 | |
|     printf("%d - underflow\n", b.buf[0]);
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   printf("==== max_decimal ====\n");
 | |
|   test_mx(1,1,"0.9");
 | |
|   test_mx(1,0,"9");
 | |
|   test_mx(2,1,"9.9");
 | |
|   test_mx(4,2,"99.99");
 | |
|   test_mx(6,3,"999.999");
 | |
|   test_mx(8,4,"9999.9999");
 | |
|   test_mx(10,5,"99999.99999");
 | |
|   test_mx(12,6,"999999.999999");
 | |
|   test_mx(14,7,"9999999.9999999");
 | |
|   test_mx(16,8,"99999999.99999999");
 | |
|   test_mx(18,9,"999999999.999999999");
 | |
|   test_mx(20,10,"9999999999.9999999999");
 | |
|   test_mx(20,20,"0.99999999999999999999");
 | |
|   test_mx(20,0,"99999999999999999999");
 | |
|   test_mx(40,20,"99999999999999999999.99999999999999999999");
 | |
| 
 | |
|   printf("==== decimal2string ====\n");
 | |
|   test_pr("123.123", 0, 0, 0, "123.123", 0);
 | |
|   test_pr("123.123", 7, 3, '0', "0123.123", 0);
 | |
|   test_pr("123.123", 9, 3, '0', "000123.123", 0);
 | |
|   test_pr("123.123", 9, 4, '0', "00123.1230", 0);
 | |
|   test_pr("123.123", 9, 5, '0', "0123.12300", 0);
 | |
|   test_pr("123.123", 9, 2, '0', "0000123.12", 1);
 | |
|   test_pr("123.123", 8, 6, '0', "23.123000", 2);
 | |
| 
 | |
|   printf("==== decimal_shift ====\n");
 | |
|   test_sh("123.123", 1, "1231.23", 0);
 | |
|   test_sh("123457189.123123456789000", 1, "1234571891.23123456789", 0);
 | |
|   test_sh("123457189.123123456789000", 4, "1234571891231.23456789", 0);
 | |
|   test_sh("123457189.123123456789000", 8, "12345718912312345.6789", 0);
 | |
|   test_sh("123457189.123123456789000", 9, "123457189123123456.789", 0);
 | |
|   test_sh("123457189.123123456789000", 10, "1234571891231234567.89", 0);
 | |
|   test_sh("123457189.123123456789000", 17, "12345718912312345678900000", 0);
 | |
|   test_sh("123457189.123123456789000", 18, "123457189123123456789000000", 0);
 | |
|   test_sh("123457189.123123456789000", 19, "1234571891231234567890000000", 0);
 | |
|   test_sh("123457189.123123456789000", 26, "12345718912312345678900000000000000", 0);
 | |
|   test_sh("123457189.123123456789000", 27, "123457189123123456789000000000000000", 0);
 | |
|   test_sh("123457189.123123456789000", 28, "1234571891231234567890000000000000000", 0);
 | |
|   test_sh("000000000000000000000000123457189.123123456789000", 26, "12345718912312345678900000000000000", 0);
 | |
|   test_sh("00000000123457189.123123456789000", 27, "123457189123123456789000000000000000", 0);
 | |
|   test_sh("00000000000000000123457189.123123456789000", 28, "1234571891231234567890000000000000000", 0);
 | |
|   test_sh("123", 1, "1230", 0);
 | |
|   test_sh("123", 10, "1230000000000", 0);
 | |
|   test_sh(".123", 1, "1.23", 0);
 | |
|   test_sh(".123", 10, "1230000000", 0);
 | |
|   test_sh(".123", 14, "12300000000000", 0);
 | |
|   test_sh("000.000", 1000, "0", 0);
 | |
|   test_sh("000.", 1000, "0", 0);
 | |
|   test_sh(".000", 1000, "0", 0);
 | |
|   test_sh("1", 1000, "1", 2);
 | |
|   test_sh("123.123", -1, "12.3123", 0);
 | |
|   test_sh("123987654321.123456789000", -1, "12398765432.1123456789", 0);
 | |
|   test_sh("123987654321.123456789000", -2, "1239876543.21123456789", 0);
 | |
|   test_sh("123987654321.123456789000", -3, "123987654.321123456789", 0);
 | |
|   test_sh("123987654321.123456789000", -8, "1239.87654321123456789", 0);
 | |
|   test_sh("123987654321.123456789000", -9, "123.987654321123456789", 0);
 | |
|   test_sh("123987654321.123456789000", -10, "12.3987654321123456789", 0);
 | |
|   test_sh("123987654321.123456789000", -11, "1.23987654321123456789", 0);
 | |
|   test_sh("123987654321.123456789000", -12, "0.123987654321123456789", 0);
 | |
|   test_sh("123987654321.123456789000", -13, "0.0123987654321123456789", 0);
 | |
|   test_sh("123987654321.123456789000", -14, "0.00123987654321123456789", 0);
 | |
|   test_sh("00000087654321.123456789000", -14, "0.00000087654321123456789", 0);
 | |
|   a.len= 2;
 | |
|   test_sh("123.123", -2, "1.23123", 0);
 | |
|   test_sh("123.123", -3, "0.123123", 0);
 | |
|   test_sh("123.123", -6, "0.000123123", 0);
 | |
|   test_sh("123.123", -7, "0.0000123123", 0);
 | |
|   test_sh("123.123", -15, "0.000000000000123123", 0);
 | |
|   test_sh("123.123", -16, "0.000000000000012312", 1);
 | |
|   test_sh("123.123", -17, "0.000000000000001231", 1);
 | |
|   test_sh("123.123", -18, "0.000000000000000123", 1);
 | |
|   test_sh("123.123", -19, "0.000000000000000012", 1);
 | |
|   test_sh("123.123", -20, "0.000000000000000001", 1);
 | |
|   test_sh("123.123", -21, "0", 1);
 | |
|   test_sh(".000000000123", -1, "0.0000000000123", 0);
 | |
|   test_sh(".000000000123", -6, "0.000000000000000123", 0);
 | |
|   test_sh(".000000000123", -7, "0.000000000000000012", 1);
 | |
|   test_sh(".000000000123", -8, "0.000000000000000001", 1);
 | |
|   test_sh(".000000000123", -9, "0", 1);
 | |
|   test_sh(".000000000123", 1, "0.00000000123", 0);
 | |
|   test_sh(".000000000123", 8, "0.0123", 0);
 | |
|   test_sh(".000000000123", 9, "0.123", 0);
 | |
|   test_sh(".000000000123", 10, "1.23", 0);
 | |
|   test_sh(".000000000123", 17, "12300000", 0);
 | |
|   test_sh(".000000000123", 18, "123000000", 0);
 | |
|   test_sh(".000000000123", 19, "1230000000", 0);
 | |
|   test_sh(".000000000123", 20, "12300000000", 0);
 | |
|   test_sh(".000000000123", 21, "123000000000", 0);
 | |
|   test_sh(".000000000123", 22, "1230000000000", 0);
 | |
|   test_sh(".000000000123", 23, "12300000000000", 0);
 | |
|   test_sh(".000000000123", 24, "123000000000000", 0);
 | |
|   test_sh(".000000000123", 25, "1230000000000000", 0);
 | |
|   test_sh(".000000000123", 26, "12300000000000000", 0);
 | |
|   test_sh(".000000000123", 27, "123000000000000000", 0);
 | |
|   test_sh(".000000000123", 28, "0.000000000123", 2);
 | |
|   test_sh("123456789.987654321", -1, "12345678.998765432", 1);
 | |
|   test_sh("123456789.987654321", -2, "1234567.899876543", 1);
 | |
|   test_sh("123456789.987654321", -8, "1.234567900", 1);
 | |
|   test_sh("123456789.987654321", -9, "0.123456789987654321", 0);
 | |
|   test_sh("123456789.987654321", -10, "0.012345678998765432", 1);
 | |
|   test_sh("123456789.987654321", -17, "0.000000001234567900", 1);
 | |
|   test_sh("123456789.987654321", -18, "0.000000000123456790", 1);
 | |
|   test_sh("123456789.987654321", -19, "0.000000000012345679", 1);
 | |
|   test_sh("123456789.987654321", -26, "0.000000000000000001", 1);
 | |
|   test_sh("123456789.987654321", -27, "0", 1);
 | |
|   test_sh("123456789.987654321", 1, "1234567900", 1);
 | |
|   test_sh("123456789.987654321", 2, "12345678999", 1);
 | |
|   test_sh("123456789.987654321", 4, "1234567899877", 1);
 | |
|   test_sh("123456789.987654321", 8, "12345678998765432", 1);
 | |
|   test_sh("123456789.987654321", 9, "123456789987654321", 0);
 | |
|   test_sh("123456789.987654321", 10, "123456789.987654321", 2);
 | |
|   test_sh("123456789.987654321", 0, "123456789.987654321", 0);
 | |
|   a.len= sizeof(buf1)/sizeof(dec1);
 | |
| 
 | |
|   printf("==== decimal_actual_fraction ====\n");
 | |
|   test_fr("1.123456789000000000", "1.123456789");
 | |
|   test_fr("1.12345678000000000", "1.12345678");
 | |
|   test_fr("1.1234567000000000", "1.1234567");
 | |
|   test_fr("1.123456000000000", "1.123456");
 | |
|   test_fr("1.12345000000000", "1.12345");
 | |
|   test_fr("1.1234000000000", "1.1234");
 | |
|   test_fr("1.123000000000", "1.123");
 | |
|   test_fr("1.12000000000", "1.12");
 | |
|   test_fr("1.1000000000", "1.1");
 | |
|   test_fr("1.000000000", "1");
 | |
|   test_fr("1.0", "1");
 | |
|   test_fr("10000000000000000000.0", "10000000000000000000");
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| #endif
 | 
