mirror of
				https://github.com/MariaDB/server.git
				synced 2025-11-03 20:36:16 +01:00 
			
		
		
		
	For the adaptive hash index, dtuple_fold() and rec_fold() were employing
a slow rolling hash algorithm, computing hash values ("fold") for one
field and one byte at a time, while depending on calls to
rec_get_offsets().
We already have optimized implementations of CRC-32C and have been
successfully using that function in some other InnoDB tables, but not
yet in the adaptive hash index.
Any linear function such as any CRC will fail the avalanche test that
any cryptographically secure hash function is expected to pass:
any single-bit change in the input key should affect on average half
the bits in the output.
But we always were happy with less than cryptographically secure:
in fact, ut_fold_ulint_pair() or ut_fold_binary() are just about as
linear as any CRC, using a combination of multiplication and addition,
partly carry-less. It is worth noting that exclusive-or corresponds to
carry-less subtraction or addition in a binary Galois field, or GF(2).
We only need some way of reducing key prefixes into hash values.
The CRC-32C should be better than a Rabin–Karp rolling hash algorithm.
Compared to the old hash algorithm, it has the drawback that there will
be only 32 bits of entropy before we choose the hash table cell by a
modulus operation. The size of each adaptive hash index array is
(innodb_buffer_pool_size / 512) / innodb_adaptive_hash_index_parts.
With the maximum number of partitions (512), we would not exceed 1<<32
elements per array until the buffer pool size exceeds 1<<50 bytes (1 PiB).
We would hit other limits before that: the virtual address space on many
contemporary 64-bit processor implementations is only 48 bits (256 TiB).
So, we can simply go for the SIMD accelerated CRC-32C.
rec_fold(): Take a combined parameter n_bytes_fields. Determine the
length of each field on the fly, and compute CRC-32C over a single
contiguous range of bytes, from the start of the record payload area
to the end of the last full or partial field. For secondary index records
in ROW_FORMAT=REDUNDANT, also the data area that is reserved for NULL
values (to facilitate in-place updates between NULL and NOT NULL values)
will be included in the count. Luckily, InnoDB always zero-initialized
such unused area; refer to data_write_sql_null() in
rec_convert_dtuple_to_rec_old(). For other than ROW_FORMAT=REDUNDANT,
no space is allocated for NULL values, and therefore the CRC-32C will
only cover the actual payload of the key prefix.
dtuple_fold(): For ROW_FORMAT=REDUNDANT, include the dummy NULL values
in the CRC-32C, so that the values will be comparable with rec_fold().
innodb_ahi-t: A unit test for rec_fold() and dtuple_fold().
btr_search_build_page_hash_index(), btr_search_drop_page_hash_index():
Use a fixed-size stack buffer for computing the fold values, to avoid
dynamic memory allocation.
btr_search_drop_page_hash_index(): Do not release part.latch if we
need to invoke multiple batches of rec_fold().
dtuple_t: Allocate fewer bits for the fields. The maximum number of
data fields is about 1023, so uint16_t will be fine for them. The
info_bits is stored in less than 1 byte.
ut_pair_min(), ut_pair_cmp(): Remove. We can actually combine and compare
int(n_fields << 16 | n_bytes).
PAGE_CUR_LE_OR_EXTENDS, PAGE_CUR_DBG: Remove. These were never defined,
because they would only work with latin1_swedish_ci if at all.
btr_cur_t::check_mismatch(): Replaces !btr_search_check_guess().
cmp_dtuple_rec_bytes(): Replaces cmp_dtuple_rec_with_match_bytes().
Determine the offsets of fields on the fly.
page_cur_try_search_shortcut_bytes(): This caller of
cmp_dtuple_rec_bytes() will not be invoked on the change buffer tree.
cmp_dtuple_rec_leaf(): Replaces cmp_dtuple_rec_with_match()
for comparing leaf-page records.
buf_block_t::ahi_left_bytes_fields: Consolidated Atomic_relaxed<uint32_t>
of curr_left_side << 31 | curr_n_bytes << 16 | curr_n_fields.
The other set of parameters (n_fields, n_bytes, left_side) was removed
as redundant.
btr_search_update_hash_node_on_insert(): Merged to
btr_search_update_hash_on_insert().
btr_search_build_page_hash_index(): Take combined left_bytes_fields
instead of n_fields, n_bytes, left_side.
btr_search_update_block_hash_info(), btr_search_update_hash_ref():
Merged to btr_search_info_update_hash().
btr_cur_t::n_bytes_fields: Replaces n_bytes << 16 | n_fields.
We also remove many redundant checks of btr_search.enabled.
If we are holding any btr_sea::partition::latch, then a nonnull pointer
in buf_block_t::index must imply that the adaptive hash index is enabled.
Reviewed by: Vladislav Lesin
		
	
			
		
			
				
	
	
		
			1687 lines
		
	
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1687 lines
		
	
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*****************************************************************************
 | 
						|
 | 
						|
Copyright (c) 1996, 2018, Oracle and/or its affiliates. All Rights Reserved.
 | 
						|
Copyright (c) 2018, 2023, MariaDB Corporation.
 | 
						|
 | 
						|
This program is free software; you can redistribute it and/or modify it under
 | 
						|
the terms of the GNU General Public License as published by the Free Software
 | 
						|
Foundation; version 2 of the License.
 | 
						|
 | 
						|
This program is distributed in the hope that it will be useful, but WITHOUT
 | 
						|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 | 
						|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public License along with
 | 
						|
this program; if not, write to the Free Software Foundation, Inc.,
 | 
						|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
 | 
						|
 | 
						|
*****************************************************************************/
 | 
						|
 | 
						|
/**************************************************//**
 | 
						|
@file row/row0row.cc
 | 
						|
General row routines
 | 
						|
 | 
						|
Created 4/20/1996 Heikki Tuuri
 | 
						|
*******************************************************/
 | 
						|
 | 
						|
#include "row0row.h"
 | 
						|
#include "data0type.h"
 | 
						|
#include "dict0dict.h"
 | 
						|
#include "dict0boot.h"
 | 
						|
#include "btr0btr.h"
 | 
						|
#include "mach0data.h"
 | 
						|
#include "trx0rseg.h"
 | 
						|
#include "trx0trx.h"
 | 
						|
#include "trx0roll.h"
 | 
						|
#include "trx0undo.h"
 | 
						|
#include "trx0purge.h"
 | 
						|
#include "trx0rec.h"
 | 
						|
#include "que0que.h"
 | 
						|
#include "row0ext.h"
 | 
						|
#include "row0upd.h"
 | 
						|
#include "rem0cmp.h"
 | 
						|
#include "ut0mem.h"
 | 
						|
#include "gis0geo.h"
 | 
						|
#include "row0mysql.h"
 | 
						|
 | 
						|
/** Build a spatial index key.
 | 
						|
@param[in]	index	spatial index
 | 
						|
@param[in]	ext	externally stored column prefixes, or NULL
 | 
						|
@param[in,out]	dfield	field of the tuple to be copied
 | 
						|
@param[in]	dfield2	field of the tuple to copy
 | 
						|
@param[in]	flag	ROW_BUILD_NORMAL, ROW_BUILD_FOR_PURGE or
 | 
						|
			ROW_BUILD_FOR_UNDO
 | 
						|
@param[in,out]	heap	memory heap from which the memory
 | 
						|
			of the field entry is allocated.
 | 
						|
@retval false if undo log is logged before spatial index creation. */
 | 
						|
static bool row_build_spatial_index_key(
 | 
						|
	const dict_index_t*	index,
 | 
						|
	const row_ext_t*	ext,
 | 
						|
	dfield_t*		dfield,
 | 
						|
	const dfield_t*		dfield2,
 | 
						|
	ulint			flag,
 | 
						|
	mem_heap_t*		heap)
 | 
						|
{
 | 
						|
	if (dfield2->type.mtype == DATA_MISSING) {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	double*			mbr;
 | 
						|
 | 
						|
	dfield_copy(dfield, dfield2);
 | 
						|
	dfield->type.prtype |= DATA_GIS_MBR;
 | 
						|
 | 
						|
	/* Allocate memory for mbr field */
 | 
						|
	mbr = static_cast<double*>(mem_heap_alloc(heap, DATA_MBR_LEN));
 | 
						|
 | 
						|
	/* Set mbr field data. */
 | 
						|
	dfield_set_data(dfield, mbr, DATA_MBR_LEN);
 | 
						|
 | 
						|
	const fil_space_t* space = index->table->space;
 | 
						|
 | 
						|
	if (UNIV_UNLIKELY(!dfield2->data || !space)) {
 | 
						|
		/* FIXME: dfield contains uninitialized data,
 | 
						|
		but row_build_index_entry_low() will not return NULL.
 | 
						|
		This bug is inherited from MySQL 5.7.5
 | 
						|
		commit b66ad511b61fffe75c58d0a607cdb837c6e6c821. */
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	const byte* dptr = NULL;
 | 
						|
	ulint	dlen = 0;
 | 
						|
	ulint	flen = 0;
 | 
						|
	double	tmp_mbr[SPDIMS * 2];
 | 
						|
	mem_heap_t*	temp_heap = NULL;
 | 
						|
 | 
						|
	if (!dfield_is_ext(dfield2)) {
 | 
						|
		dptr = static_cast<const byte*>(dfield_get_data(dfield2));
 | 
						|
		dlen = dfield_get_len(dfield2);
 | 
						|
		ut_ad(dptr != &data_error);
 | 
						|
		goto write_mbr;
 | 
						|
	}
 | 
						|
 | 
						|
	if (flag == ROW_BUILD_FOR_PURGE) {
 | 
						|
		const byte* ptr = static_cast<const byte*>(
 | 
						|
			dfield_get_data(dfield2));
 | 
						|
 | 
						|
		switch (dfield_get_spatial_status(dfield2)) {
 | 
						|
		case SPATIAL_ONLY:
 | 
						|
			ut_ad(dfield_get_len(dfield2) == DATA_MBR_LEN);
 | 
						|
			break;
 | 
						|
 | 
						|
		case SPATIAL_MIXED:
 | 
						|
			ptr += dfield_get_len(dfield2);
 | 
						|
			break;
 | 
						|
 | 
						|
		case SPATIAL_UNKNOWN:
 | 
						|
			ut_ad(0);
 | 
						|
			/* fall through */
 | 
						|
		case SPATIAL_NONE:
 | 
						|
			/* Undo record is logged before
 | 
						|
			spatial index is created.*/
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
 | 
						|
		memcpy(mbr, ptr, DATA_MBR_LEN);
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (flag == ROW_BUILD_FOR_UNDO
 | 
						|
	    && dict_table_has_atomic_blobs(index->table)) {
 | 
						|
		/* For ROW_FORMAT=DYNAMIC or COMPRESSED, a prefix of
 | 
						|
		off-page records is stored in the undo log record (for
 | 
						|
		any column prefix indexes). For SPATIAL INDEX, we
 | 
						|
		must ignore this prefix. The full column value is
 | 
						|
		stored in the BLOB.  For non-spatial index, we would
 | 
						|
		have already fetched a necessary prefix of the BLOB,
 | 
						|
		available in the "ext" parameter.
 | 
						|
 | 
						|
		Here, for SPATIAL INDEX, we are fetching the full
 | 
						|
		column, which is potentially wasting a lot of I/O,
 | 
						|
		memory, and possibly involving a concurrency problem,
 | 
						|
		similar to ones that existed before the introduction
 | 
						|
		of row_ext_t.
 | 
						|
 | 
						|
		MDEV-11657 FIXME: write the MBR directly to the undo
 | 
						|
		log record, and avoid recomputing it here! */
 | 
						|
		flen = BTR_EXTERN_FIELD_REF_SIZE;
 | 
						|
		ut_ad(dfield_get_len(dfield2) >= BTR_EXTERN_FIELD_REF_SIZE);
 | 
						|
		dptr = static_cast<const byte*>(dfield_get_data(dfield2))
 | 
						|
			+ dfield_get_len(dfield2)
 | 
						|
			- BTR_EXTERN_FIELD_REF_SIZE;
 | 
						|
	} else {
 | 
						|
		flen = dfield_get_len(dfield2);
 | 
						|
		dptr = static_cast<const byte*>(dfield_get_data(dfield2));
 | 
						|
	}
 | 
						|
 | 
						|
	temp_heap = mem_heap_create(1000);
 | 
						|
 | 
						|
	dptr = btr_copy_externally_stored_field(
 | 
						|
		&dlen, dptr, ext ? ext->zip_size : space->zip_size(),
 | 
						|
		flen, temp_heap);
 | 
						|
 | 
						|
write_mbr:
 | 
						|
	if (dlen <= GEO_DATA_HEADER_SIZE) {
 | 
						|
		for (uint i = 0; i < 2 * SPDIMS; i += 2) {
 | 
						|
			tmp_mbr[i] = DBL_MAX;
 | 
						|
			tmp_mbr[i + 1] = -DBL_MAX;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE,
 | 
						|
				   uint(dlen - GEO_DATA_HEADER_SIZE),
 | 
						|
				   SPDIMS, tmp_mbr);
 | 
						|
	}
 | 
						|
 | 
						|
	dfield_write_mbr(dfield, tmp_mbr);
 | 
						|
	if (temp_heap) {
 | 
						|
		mem_heap_free(temp_heap);
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*****************************************************************//**
 | 
						|
When an insert or purge to a table is performed, this function builds
 | 
						|
the entry to be inserted into or purged from an index on the table.
 | 
						|
@return index entry which should be inserted or purged
 | 
						|
@retval NULL if the externally stored columns in the clustered index record
 | 
						|
are unavailable and ext != NULL, or row is missing some needed columns. */
 | 
						|
dtuple_t*
 | 
						|
row_build_index_entry_low(
 | 
						|
/*======================*/
 | 
						|
	const dtuple_t*		row,	/*!< in: row which should be
 | 
						|
					inserted or purged */
 | 
						|
	const row_ext_t*	ext,	/*!< in: externally stored column
 | 
						|
					prefixes, or NULL */
 | 
						|
	const dict_index_t*	index,	/*!< in: index on the table */
 | 
						|
	mem_heap_t*		heap,	/*!< in,out: memory heap from which
 | 
						|
					the memory for the index entry
 | 
						|
					is allocated */
 | 
						|
	ulint			flag)	/*!< in: ROW_BUILD_NORMAL,
 | 
						|
					ROW_BUILD_FOR_PURGE
 | 
						|
                                        or ROW_BUILD_FOR_UNDO */
 | 
						|
{
 | 
						|
	dtuple_t*	entry;
 | 
						|
	ulint		entry_len;
 | 
						|
	ulint		i = 0;
 | 
						|
	ulint		num_v = 0;
 | 
						|
 | 
						|
	entry_len = dict_index_get_n_fields(index);
 | 
						|
 | 
						|
	if (flag == ROW_BUILD_FOR_INSERT && dict_index_is_clust(index)) {
 | 
						|
		num_v = dict_table_get_n_v_cols(index->table);
 | 
						|
		entry = dtuple_create_with_vcol(heap, entry_len, num_v);
 | 
						|
	} else {
 | 
						|
		entry = dtuple_create(heap, entry_len);
 | 
						|
	}
 | 
						|
 | 
						|
	dtuple_set_n_fields_cmp(entry, dict_index_get_n_unique_in_tree(index));
 | 
						|
	if (index->is_spatial()) {
 | 
						|
		/* Set the MBR field */
 | 
						|
		if (!row_build_spatial_index_key(
 | 
						|
			    index, ext,
 | 
						|
			    dtuple_get_nth_field(entry, 0),
 | 
						|
			    dtuple_get_nth_field(
 | 
						|
				    row,
 | 
						|
				    dict_index_get_nth_field(index, i)
 | 
						|
				    ->col->ind), flag, heap)) {
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		i = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	for (; i < entry_len; i++) {
 | 
						|
		const dict_field_t& f = index->fields[i];
 | 
						|
		dfield_t* dfield = dtuple_get_nth_field(entry, i);
 | 
						|
 | 
						|
		if (f.col->is_dropped()) {
 | 
						|
			ut_ad(index->is_primary());
 | 
						|
			ut_ad(index->is_instant());
 | 
						|
			ut_ad(!f.col->is_virtual());
 | 
						|
			dict_col_copy_type(f.col, &dfield->type);
 | 
						|
			if (f.col->is_nullable()) {
 | 
						|
				dfield_set_null(dfield);
 | 
						|
				if (f.col->mtype == DATA_BINARY
 | 
						|
				    && !dict_table_is_comp(index->table)) {
 | 
						|
					/* In case of redundant row format,
 | 
						|
					if the non-fixed dropped column
 | 
						|
					is null then set the length of the
 | 
						|
					field data type as 0 */
 | 
						|
					dfield->type.len= 0;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				dfield_set_data(dfield, field_ref_zero,
 | 
						|
						f.fixed_len);
 | 
						|
			}
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		const dfield_t* dfield2;
 | 
						|
 | 
						|
		if (f.col->is_virtual()) {
 | 
						|
			const dict_v_col_t* v_col
 | 
						|
				= reinterpret_cast<const dict_v_col_t*>(f.col);
 | 
						|
 | 
						|
			ut_ad(v_col->v_pos < dtuple_get_n_v_fields(row));
 | 
						|
			dfield2 = dtuple_get_nth_v_field(row, v_col->v_pos);
 | 
						|
 | 
						|
			ut_ad(dfield_is_null(dfield2) ||
 | 
						|
			      dfield_get_len(dfield2) == 0 || dfield2->data);
 | 
						|
			ut_ad(!dfield_is_ext(dfield2));
 | 
						|
			if (UNIV_UNLIKELY(dfield2->type.mtype
 | 
						|
					  == DATA_MISSING)) {
 | 
						|
				ut_ad(flag == ROW_BUILD_FOR_PURGE);
 | 
						|
				return(NULL);
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			dfield2 = dtuple_get_nth_field(row, f.col->ind);
 | 
						|
			if (UNIV_UNLIKELY(dfield2->type.mtype
 | 
						|
					  == DATA_MISSING)) {
 | 
						|
				/* The field has not been initialized in
 | 
						|
				the row. This should be from
 | 
						|
				trx_undo_rec_get_partial_row(). */
 | 
						|
				return(NULL);
 | 
						|
			}
 | 
						|
 | 
						|
			ut_ad(!(dfield2->type.prtype & DATA_VIRTUAL));
 | 
						|
		}
 | 
						|
 | 
						|
		compile_time_assert(DATA_MISSING == 0);
 | 
						|
 | 
						|
		*dfield = *dfield2;
 | 
						|
 | 
						|
		if (dfield_is_null(dfield)) {
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		ut_ad(!(index->type & DICT_FTS));
 | 
						|
 | 
						|
		ulint len = dfield_get_len(dfield);
 | 
						|
 | 
						|
		if (f.prefix_len == 0
 | 
						|
		    && (!dfield_is_ext(dfield)
 | 
						|
			|| dict_index_is_clust(index))) {
 | 
						|
			/* The *dfield = *dfield2 above suffices for
 | 
						|
			columns that are stored in-page, or for
 | 
						|
			clustered index record columns that are not
 | 
						|
			part of a column prefix in the PRIMARY KEY. */
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* If the column is stored externally (off-page) in
 | 
						|
		the clustered index, it must be an ordering field in
 | 
						|
		the secondary index. If !atomic_blobs, the only way
 | 
						|
		we may have a secondary index pointing to a clustered
 | 
						|
		index record with an off-page column is when it is a
 | 
						|
		column prefix index. If atomic_blobs, also fully
 | 
						|
		indexed long columns may be stored off-page. */
 | 
						|
		ut_ad(f.col->ord_part);
 | 
						|
 | 
						|
		if (ext && !f.col->is_virtual()) {
 | 
						|
			/* See if the column is stored externally. */
 | 
						|
			const byte*	buf = row_ext_lookup(ext, f.col->ind,
 | 
						|
							     &len);
 | 
						|
			if (UNIV_LIKELY_NULL(buf)) {
 | 
						|
				if (UNIV_UNLIKELY(buf == field_ref_zero)) {
 | 
						|
					return(NULL);
 | 
						|
				}
 | 
						|
				dfield_set_data(dfield, buf, len);
 | 
						|
			}
 | 
						|
 | 
						|
			if (f.prefix_len == 0) {
 | 
						|
				/* If ROW_FORMAT=DYNAMIC or
 | 
						|
				ROW_FORMAT=COMPRESSED, we can have a
 | 
						|
				secondary index on an entire column
 | 
						|
				that is stored off-page in the
 | 
						|
				clustered index. As this is not a
 | 
						|
				prefix index (prefix_len == 0),
 | 
						|
				include the entire off-page column in
 | 
						|
				the secondary index record. */
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		} else if (dfield_is_ext(dfield)) {
 | 
						|
			/* This table is either in
 | 
						|
			(ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT)
 | 
						|
			or a purge record where the ordered part of
 | 
						|
			the field is not external.
 | 
						|
			In ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT,
 | 
						|
			the maximum column prefix
 | 
						|
			index length is 767 bytes, and the clustered
 | 
						|
			index record contains a 768-byte prefix of
 | 
						|
			each off-page column. */
 | 
						|
			ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE);
 | 
						|
			len -= BTR_EXTERN_FIELD_REF_SIZE;
 | 
						|
			dfield_set_len(dfield, len);
 | 
						|
		}
 | 
						|
 | 
						|
		/* If a column prefix index, take only the prefix. */
 | 
						|
		if (f.prefix_len) {
 | 
						|
			len = dtype_get_at_most_n_mbchars(
 | 
						|
				f.col->prtype,
 | 
						|
				f.col->mbminlen, f.col->mbmaxlen,
 | 
						|
				f.prefix_len, len,
 | 
						|
				static_cast<char*>(dfield_get_data(dfield)));
 | 
						|
			dfield_set_len(dfield, len);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = num_v; i--; ) {
 | 
						|
		ut_ad(index->is_primary());
 | 
						|
		ut_ad(flag == ROW_BUILD_FOR_INSERT);
 | 
						|
		dfield_t* dfield = dtuple_get_nth_v_field(entry, i);
 | 
						|
		const dict_v_col_t* v_col = dict_table_get_nth_v_col(
 | 
						|
			index->table, i);
 | 
						|
		ut_ad(!v_col->m_col.is_dropped());
 | 
						|
		ut_ad(v_col->v_pos < dtuple_get_n_v_fields(row));
 | 
						|
		const dfield_t* dfield2 = dtuple_get_nth_v_field(
 | 
						|
			row, v_col->v_pos);
 | 
						|
		ut_ad(dfield_is_null(dfield2) ||
 | 
						|
		      dfield_get_len(dfield2) == 0 || dfield2->data);
 | 
						|
		ut_ad(dfield2->type.mtype != DATA_MISSING);
 | 
						|
		*dfield = *dfield2;
 | 
						|
	}
 | 
						|
 | 
						|
	return entry;
 | 
						|
}
 | 
						|
 | 
						|
/** An inverse function to row_build_index_entry. Builds a row from a
 | 
						|
record in a clustered index, with possible indexing on ongoing
 | 
						|
addition of new virtual columns.
 | 
						|
@param[in]	type		ROW_COPY_POINTERS or ROW_COPY_DATA;
 | 
						|
@param[in]	index		clustered index
 | 
						|
@param[in]	rec		record in the clustered index
 | 
						|
@param[in]	offsets		rec_get_offsets(rec,index) or NULL
 | 
						|
@param[in]	col_table	table, to check which
 | 
						|
				externally stored columns
 | 
						|
				occur in the ordering columns
 | 
						|
				of an index, or NULL if
 | 
						|
				index->table should be
 | 
						|
				consulted instead
 | 
						|
@param[in]	defaults	default values of added/changed columns, or NULL
 | 
						|
@param[in]	add_v		new virtual columns added
 | 
						|
				along with new indexes
 | 
						|
@param[in]	col_map		mapping of old column
 | 
						|
				numbers to new ones, or NULL
 | 
						|
@param[in]	ext		cache of externally stored column
 | 
						|
				prefixes, or NULL
 | 
						|
@param[in]	heap		memory heap from which
 | 
						|
				the memory needed is allocated
 | 
						|
@return own: row built; */
 | 
						|
static inline
 | 
						|
dtuple_t*
 | 
						|
row_build_low(
 | 
						|
	ulint			type,
 | 
						|
	const dict_index_t*	index,
 | 
						|
	const rec_t*		rec,
 | 
						|
	const rec_offs*		offsets,
 | 
						|
	const dict_table_t*	col_table,
 | 
						|
	const dtuple_t*		defaults,
 | 
						|
	const dict_add_v_col_t*	add_v,
 | 
						|
	const ulint*		col_map,
 | 
						|
	row_ext_t**		ext,
 | 
						|
	mem_heap_t*		heap)
 | 
						|
{
 | 
						|
	const byte*		copy;
 | 
						|
	dtuple_t*		row;
 | 
						|
	ulint			n_ext_cols;
 | 
						|
	ulint*			ext_cols	= NULL; /* remove warning */
 | 
						|
	ulint			len;
 | 
						|
	byte*			buf;
 | 
						|
	ulint			j;
 | 
						|
	mem_heap_t*		tmp_heap	= NULL;
 | 
						|
	rec_offs		offsets_[REC_OFFS_NORMAL_SIZE];
 | 
						|
	rec_offs_init(offsets_);
 | 
						|
 | 
						|
	ut_ad(index != NULL);
 | 
						|
	ut_ad(rec != NULL);
 | 
						|
	ut_ad(heap != NULL);
 | 
						|
	ut_ad(dict_index_is_clust(index));
 | 
						|
	ut_ad(!col_map || col_table);
 | 
						|
 | 
						|
	if (!offsets) {
 | 
						|
		offsets = rec_get_offsets(rec, index, offsets_,
 | 
						|
					  index->n_core_fields,
 | 
						|
					  ULINT_UNDEFINED, &tmp_heap);
 | 
						|
	} else {
 | 
						|
		ut_ad(rec_offs_validate(rec, index, offsets));
 | 
						|
	}
 | 
						|
 | 
						|
#if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG
 | 
						|
	/* Some blob refs can be NULL during crash recovery before
 | 
						|
	trx_rollback_active() has completed execution, or when a concurrently
 | 
						|
	executing insert or update has committed the B-tree mini-transaction
 | 
						|
	but has not yet managed to restore the cursor position for writing
 | 
						|
	the big_rec. Note that the mini-transaction can be committed multiple
 | 
						|
	times, and the cursor restore can happen multiple times for single
 | 
						|
	insert or update statement.  */
 | 
						|
	ut_a(!rec_offs_any_null_extern(rec, offsets)
 | 
						|
	     || trx_sys.is_registered(current_trx(),
 | 
						|
				      row_get_rec_trx_id(rec, index,
 | 
						|
							 offsets)));
 | 
						|
#endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */
 | 
						|
 | 
						|
	if (type != ROW_COPY_POINTERS) {
 | 
						|
		/* Take a copy of rec to heap */
 | 
						|
		buf = static_cast<byte*>(
 | 
						|
			mem_heap_alloc(heap, rec_offs_size(offsets)));
 | 
						|
 | 
						|
		copy = rec_copy(buf, rec, offsets);
 | 
						|
	} else {
 | 
						|
		copy = rec;
 | 
						|
	}
 | 
						|
 | 
						|
	n_ext_cols = rec_offs_n_extern(offsets);
 | 
						|
	if (n_ext_cols) {
 | 
						|
		ext_cols = static_cast<ulint*>(
 | 
						|
			mem_heap_alloc(heap, n_ext_cols * sizeof *ext_cols));
 | 
						|
	}
 | 
						|
 | 
						|
	/* Avoid a debug assertion in rec_offs_validate(). */
 | 
						|
	rec_offs_make_valid(copy, index, true, const_cast<rec_offs*>(offsets));
 | 
						|
 | 
						|
	if (!col_table) {
 | 
						|
		ut_ad(!col_map);
 | 
						|
		ut_ad(!defaults);
 | 
						|
		col_table = index->table;
 | 
						|
	}
 | 
						|
 | 
						|
	if (defaults) {
 | 
						|
		ut_ad(col_map);
 | 
						|
		row = dtuple_copy(defaults, heap);
 | 
						|
		/* dict_table_copy_types() would set the fields to NULL */
 | 
						|
		for (ulint i = 0; i < dict_table_get_n_cols(col_table); i++) {
 | 
						|
			dict_col_copy_type(
 | 
						|
				dict_table_get_nth_col(col_table, i),
 | 
						|
				dfield_get_type(dtuple_get_nth_field(row, i)));
 | 
						|
		}
 | 
						|
	} else if (add_v != NULL) {
 | 
						|
		row = dtuple_create_with_vcol(
 | 
						|
			heap, dict_table_get_n_cols(col_table),
 | 
						|
			dict_table_get_n_v_cols(col_table) + add_v->n_v_col);
 | 
						|
		dict_table_copy_types(row, col_table);
 | 
						|
 | 
						|
		for (ulint i = 0; i < add_v->n_v_col; i++) {
 | 
						|
			dict_col_copy_type(
 | 
						|
				&add_v->v_col[i].m_col,
 | 
						|
				dfield_get_type(dtuple_get_nth_v_field(
 | 
						|
					row, i + col_table->n_v_def)));
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		row = dtuple_create_with_vcol(
 | 
						|
			heap, dict_table_get_n_cols(col_table),
 | 
						|
			dict_table_get_n_v_cols(col_table));
 | 
						|
		dict_table_copy_types(row, col_table);
 | 
						|
	}
 | 
						|
 | 
						|
	dtuple_set_info_bits(row, rec_get_info_bits(
 | 
						|
				     copy, rec_offs_comp(offsets)));
 | 
						|
 | 
						|
	j = 0;
 | 
						|
 | 
						|
	const dict_field_t* ind_field = index->fields;
 | 
						|
 | 
						|
	for (ulint i = 0; i < rec_offs_n_fields(offsets); i++) {
 | 
						|
		if (i == index->first_user_field()
 | 
						|
		    && rec_is_alter_metadata(rec, *index)) {
 | 
						|
			ut_ad(rec_offs_nth_extern(offsets, i));
 | 
						|
			ut_d(ulint len);
 | 
						|
			ut_d(rec_get_nth_field_offs(offsets, i, &len));
 | 
						|
			ut_ad(len == FIELD_REF_SIZE);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (UNIV_UNLIKELY(ind_field
 | 
						|
				  >= &index->fields[index->n_fields])) {
 | 
						|
			ut_ad(rec_is_metadata(rec, *index));
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		const dict_col_t* col = dict_field_get_col(ind_field);
 | 
						|
 | 
						|
		if ((ind_field++)->prefix_len) {
 | 
						|
			/* Column prefixes can only occur in key
 | 
						|
			fields, which cannot be stored externally. For
 | 
						|
			a column prefix, there should also be the full
 | 
						|
			field in the clustered index tuple. The row
 | 
						|
			tuple comprises full fields, not prefixes. */
 | 
						|
			ut_ad(!rec_offs_nth_extern(offsets, i));
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (col->is_dropped()) {
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		ulint	col_no = dict_col_get_no(col);
 | 
						|
 | 
						|
		if (col_map) {
 | 
						|
			col_no = col_map[col_no];
 | 
						|
 | 
						|
			if (col_no == ULINT_UNDEFINED) {
 | 
						|
				/* dropped column */
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		dfield_t*	dfield = dtuple_get_nth_field(row, col_no);
 | 
						|
 | 
						|
		const void*	field = rec_get_nth_field(
 | 
						|
			copy, offsets, i, &len);
 | 
						|
		if (len == UNIV_SQL_DEFAULT) {
 | 
						|
			field = index->instant_field_value(i, &len);
 | 
						|
			if (field && type != ROW_COPY_POINTERS) {
 | 
						|
				field = mem_heap_dup(heap, field, len);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		dfield_set_data(dfield, field, len);
 | 
						|
 | 
						|
		if (rec_offs_nth_extern(offsets, i)) {
 | 
						|
			dfield_set_ext(dfield);
 | 
						|
 | 
						|
			col = dict_table_get_nth_col(col_table, col_no);
 | 
						|
 | 
						|
			if (col->ord_part) {
 | 
						|
				/* We will have to fetch prefixes of
 | 
						|
				externally stored columns that are
 | 
						|
				referenced by column prefixes. */
 | 
						|
				ext_cols[j++] = col_no;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	rec_offs_make_valid(rec, index, true, const_cast<rec_offs*>(offsets));
 | 
						|
 | 
						|
	ut_ad(dtuple_check_typed(row));
 | 
						|
 | 
						|
	if (!ext) {
 | 
						|
		/* REDUNDANT and COMPACT formats store a local
 | 
						|
		768-byte prefix of each externally stored
 | 
						|
		column. No cache is needed.
 | 
						|
 | 
						|
		During online table rebuild,
 | 
						|
		row_log_table_apply_delete_low()
 | 
						|
		may use a cache that was set up by
 | 
						|
		row_log_table_delete(). */
 | 
						|
 | 
						|
	} else if (j) {
 | 
						|
		*ext = row_ext_create(j, ext_cols, *index->table, row,
 | 
						|
				      heap);
 | 
						|
	} else {
 | 
						|
		*ext = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (tmp_heap) {
 | 
						|
		mem_heap_free(tmp_heap);
 | 
						|
	}
 | 
						|
 | 
						|
	return(row);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*******************************************************************//**
 | 
						|
An inverse function to row_build_index_entry. Builds a row from a
 | 
						|
record in a clustered index.
 | 
						|
@return own: row built; see the NOTE below! */
 | 
						|
dtuple_t*
 | 
						|
row_build(
 | 
						|
/*======*/
 | 
						|
	ulint			type,	/*!< in: ROW_COPY_POINTERS or
 | 
						|
					ROW_COPY_DATA; the latter
 | 
						|
					copies also the data fields to
 | 
						|
					heap while the first only
 | 
						|
					places pointers to data fields
 | 
						|
					on the index page, and thus is
 | 
						|
					more efficient */
 | 
						|
	const dict_index_t*	index,	/*!< in: clustered index */
 | 
						|
	const rec_t*		rec,	/*!< in: record in the clustered
 | 
						|
					index; NOTE: in the case
 | 
						|
					ROW_COPY_POINTERS the data
 | 
						|
					fields in the row will point
 | 
						|
					directly into this record,
 | 
						|
					therefore, the buffer page of
 | 
						|
					this record must be at least
 | 
						|
					s-latched and the latch held
 | 
						|
					as long as the row dtuple is used! */
 | 
						|
	const rec_offs*		offsets,/*!< in: rec_get_offsets(rec,index)
 | 
						|
					or NULL, in which case this function
 | 
						|
					will invoke rec_get_offsets() */
 | 
						|
	const dict_table_t*	col_table,
 | 
						|
					/*!< in: table, to check which
 | 
						|
					externally stored columns
 | 
						|
					occur in the ordering columns
 | 
						|
					of an index, or NULL if
 | 
						|
					index->table should be
 | 
						|
					consulted instead */
 | 
						|
	const dtuple_t*		defaults,
 | 
						|
					/*!< in: default values of
 | 
						|
					added and changed columns, or NULL */
 | 
						|
	const ulint*		col_map,/*!< in: mapping of old column
 | 
						|
					numbers to new ones, or NULL */
 | 
						|
	row_ext_t**		ext,	/*!< out, own: cache of
 | 
						|
					externally stored column
 | 
						|
					prefixes, or NULL */
 | 
						|
	mem_heap_t*		heap)	/*!< in: memory heap from which
 | 
						|
					 the memory needed is allocated */
 | 
						|
{
 | 
						|
	return(row_build_low(type, index, rec, offsets, col_table,
 | 
						|
			     defaults, NULL, col_map, ext, heap));
 | 
						|
}
 | 
						|
 | 
						|
/** An inverse function to row_build_index_entry. Builds a row from a
 | 
						|
record in a clustered index, with possible indexing on ongoing
 | 
						|
addition of new virtual columns.
 | 
						|
@param[in]	type		ROW_COPY_POINTERS or ROW_COPY_DATA;
 | 
						|
@param[in]	index		clustered index
 | 
						|
@param[in]	rec		record in the clustered index
 | 
						|
@param[in]	offsets		rec_get_offsets(rec,index) or NULL
 | 
						|
@param[in]	col_table	table, to check which
 | 
						|
				externally stored columns
 | 
						|
				occur in the ordering columns
 | 
						|
				of an index, or NULL if
 | 
						|
				index->table should be
 | 
						|
				consulted instead
 | 
						|
@param[in]	defaults	default values of added, changed columns, or NULL
 | 
						|
@param[in]	add_v		new virtual columns added
 | 
						|
				along with new indexes
 | 
						|
@param[in]	col_map		mapping of old column
 | 
						|
				numbers to new ones, or NULL
 | 
						|
@param[in]	ext		cache of externally stored column
 | 
						|
				prefixes, or NULL
 | 
						|
@param[in]	heap		memory heap from which
 | 
						|
				the memory needed is allocated
 | 
						|
@return own: row built; */
 | 
						|
dtuple_t*
 | 
						|
row_build_w_add_vcol(
 | 
						|
	ulint			type,
 | 
						|
	const dict_index_t*	index,
 | 
						|
	const rec_t*		rec,
 | 
						|
	const rec_offs*		offsets,
 | 
						|
	const dict_table_t*	col_table,
 | 
						|
	const dtuple_t*		defaults,
 | 
						|
	const dict_add_v_col_t*	add_v,
 | 
						|
	const ulint*		col_map,
 | 
						|
	row_ext_t**		ext,
 | 
						|
	mem_heap_t*		heap)
 | 
						|
{
 | 
						|
	return(row_build_low(type, index, rec, offsets, col_table,
 | 
						|
			     defaults, add_v, col_map, ext, heap));
 | 
						|
}
 | 
						|
 | 
						|
/** Convert an index record to a data tuple.
 | 
						|
@tparam metadata whether the index->instant_field_value() needs to be accessed
 | 
						|
@tparam mblob 1 if rec_is_alter_metadata();
 | 
						|
2 if we want converted metadata corresponding to info_bits
 | 
						|
@param[in]	rec		index record
 | 
						|
@param[in]	index		index
 | 
						|
@param[in]	offsets		rec_get_offsets(rec, index)
 | 
						|
@param[out]	n_ext		number of externally stored columns
 | 
						|
@param[in,out]	heap		memory heap for allocations
 | 
						|
@param[in]	info_bits	(only used if mblob=2)
 | 
						|
@param[in]	pad		(only used if mblob=2)
 | 
						|
@return index entry built; does not set info_bits, and the data fields
 | 
						|
in the entry will point directly to rec */
 | 
						|
template<bool metadata, int mblob = 0>
 | 
						|
static inline
 | 
						|
dtuple_t*
 | 
						|
row_rec_to_index_entry_impl(
 | 
						|
	const rec_t*		rec,
 | 
						|
	const dict_index_t*	index,
 | 
						|
	const rec_offs*		offsets,
 | 
						|
	mem_heap_t*		heap,
 | 
						|
	ulint			info_bits = 0,
 | 
						|
	bool			pad = false)
 | 
						|
{
 | 
						|
	ut_ad(rec != NULL);
 | 
						|
	ut_ad(heap != NULL);
 | 
						|
	ut_ad(index != NULL);
 | 
						|
	ut_ad(!mblob || index->is_primary());
 | 
						|
	ut_ad(!mblob || !index->table->is_temporary());
 | 
						|
	ut_ad(!mblob || !dict_index_is_spatial(index));
 | 
						|
	compile_time_assert(!mblob || metadata);
 | 
						|
	compile_time_assert(mblob <= 2);
 | 
						|
	/* Because this function may be invoked by row0merge.cc
 | 
						|
	on a record whose header is in different format, the check
 | 
						|
	rec_offs_validate(rec, index, offsets) must be avoided here. */
 | 
						|
 | 
						|
	const bool got = mblob == 2 && rec_is_alter_metadata(rec, *index);
 | 
						|
	ulint rec_len = rec_offs_n_fields(offsets);
 | 
						|
	if (mblob == 2) {
 | 
						|
		ut_ad(info_bits == REC_INFO_METADATA_ALTER
 | 
						|
		      || info_bits == REC_INFO_METADATA_ADD);
 | 
						|
		if (pad) {
 | 
						|
			ut_ad(rec_len <= ulint(index->n_fields + got));
 | 
						|
			rec_len = ulint(index->n_fields)
 | 
						|
				+ (info_bits == REC_INFO_METADATA_ALTER);
 | 
						|
		} else if (got) {
 | 
						|
			rec_len = std::min(rec_len,
 | 
						|
					   ulint(index->n_fields + got));
 | 
						|
		} else if (info_bits == REC_INFO_METADATA_ALTER) {
 | 
						|
			ut_ad(rec_len <= index->n_fields);
 | 
						|
			rec_len++;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		ut_ad(info_bits == 0);
 | 
						|
		ut_ad(!pad);
 | 
						|
	}
 | 
						|
	dtuple_t* entry = dtuple_create(heap, uint16_t(rec_len));
 | 
						|
	dfield_t* dfield = entry->fields;
 | 
						|
 | 
						|
	dtuple_set_n_fields_cmp(entry,
 | 
						|
				dict_index_get_n_unique_in_tree(index));
 | 
						|
	ut_ad(mblob == 2
 | 
						|
	      || rec_len == dict_index_get_n_fields(index) + uint(mblob == 1)
 | 
						|
	      /* a record for older SYS_INDEXES table
 | 
						|
	      (missing merge_threshold column) is acceptable. */
 | 
						|
	      || (!index->table->is_temporary()
 | 
						|
		  && index->table->id == DICT_INDEXES_ID
 | 
						|
		  && rec_len + 1 == dict_index_get_n_fields(index)));
 | 
						|
 | 
						|
	ulint i;
 | 
						|
	for (i = 0; i < (mblob ? index->first_user_field() : rec_len);
 | 
						|
	     i++, dfield++) {
 | 
						|
		dict_col_copy_type(dict_index_get_nth_col(index, i),
 | 
						|
				   &dfield->type);
 | 
						|
		if (!mblob
 | 
						|
		    && dict_index_is_spatial(index)
 | 
						|
		    && DATA_GEOMETRY_MTYPE(dfield->type.mtype)) {
 | 
						|
			dfield->type.prtype |= DATA_GIS_MBR;
 | 
						|
		}
 | 
						|
 | 
						|
		ulint len;
 | 
						|
		const byte* field = metadata
 | 
						|
			? rec_get_nth_cfield(rec, index, offsets, i, &len)
 | 
						|
			: rec_get_nth_field(rec, offsets, i, &len);
 | 
						|
 | 
						|
		dfield_set_data(dfield, field, len);
 | 
						|
 | 
						|
		if (rec_offs_nth_extern(offsets, i)) {
 | 
						|
			dfield_set_ext(dfield);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (mblob) {
 | 
						|
		ulint len;
 | 
						|
		const byte* field;
 | 
						|
		ulint j = i;
 | 
						|
 | 
						|
		if (mblob == 2) {
 | 
						|
			const bool want = info_bits == REC_INFO_METADATA_ALTER;
 | 
						|
			if (got == want) {
 | 
						|
				if (got) {
 | 
						|
					goto copy_metadata;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				if (want) {
 | 
						|
					/* Allocate a placeholder for
 | 
						|
					adding metadata in an update. */
 | 
						|
					len = FIELD_REF_SIZE;
 | 
						|
					field = static_cast<byte*>(
 | 
						|
						mem_heap_zalloc(heap, len));
 | 
						|
					/* In reality there is one fewer
 | 
						|
					field present in the record. */
 | 
						|
					rec_len--;
 | 
						|
					goto init_metadata;
 | 
						|
				}
 | 
						|
 | 
						|
				/* Skip the undesired metadata blob
 | 
						|
				(for example, when rolling back an
 | 
						|
				instant ALTER TABLE). */
 | 
						|
				i++;
 | 
						|
			}
 | 
						|
			goto copy_user_fields;
 | 
						|
		}
 | 
						|
copy_metadata:
 | 
						|
		ut_ad(rec_offs_nth_extern(offsets, i));
 | 
						|
		field = rec_get_nth_field(rec, offsets, i++, &len);
 | 
						|
init_metadata:
 | 
						|
		dfield->type.metadata_blob_init();
 | 
						|
		ut_ad(len == FIELD_REF_SIZE);
 | 
						|
		dfield_set_data(dfield, field, len);
 | 
						|
		dfield_set_ext(dfield++);
 | 
						|
copy_user_fields:
 | 
						|
		for (; i < rec_len; i++, dfield++) {
 | 
						|
			dict_col_copy_type(dict_index_get_nth_col(index, j++),
 | 
						|
					   &dfield->type);
 | 
						|
			if (mblob == 2 && pad
 | 
						|
			    && i >= rec_offs_n_fields(offsets)) {
 | 
						|
				field = index->instant_field_value(j - 1,
 | 
						|
								   &len);
 | 
						|
				dfield_set_data(dfield, field, len);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			field = rec_get_nth_field(rec, offsets, i, &len);
 | 
						|
			dfield_set_data(dfield, field, len);
 | 
						|
 | 
						|
			if (rec_offs_nth_extern(offsets, i)) {
 | 
						|
				dfield_set_ext(dfield);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (mblob == 2) {
 | 
						|
		uint16_t n_fields = uint16_t(dfield - entry->fields);
 | 
						|
		ut_ad(entry->n_fields >= n_fields);
 | 
						|
		entry->n_fields = n_fields;
 | 
						|
	}
 | 
						|
	ut_ad(dfield == entry->fields + entry->n_fields);
 | 
						|
	ut_ad(dtuple_check_typed(entry));
 | 
						|
	return entry;
 | 
						|
}
 | 
						|
 | 
						|
/** Convert an index record to a data tuple.
 | 
						|
@param[in]	rec	index record
 | 
						|
@param[in]	index	index
 | 
						|
@param[in]	offsets	rec_get_offsets(rec, index)
 | 
						|
@param[in,out]	heap	memory heap for allocations */
 | 
						|
dtuple_t*
 | 
						|
row_rec_to_index_entry_low(
 | 
						|
	const rec_t*		rec,
 | 
						|
	const dict_index_t*	index,
 | 
						|
	const rec_offs*		offsets,
 | 
						|
	mem_heap_t*		heap)
 | 
						|
{
 | 
						|
	return row_rec_to_index_entry_impl<false>(rec, index, offsets, heap);
 | 
						|
}
 | 
						|
 | 
						|
/*******************************************************************//**
 | 
						|
Converts an index record to a typed data tuple. NOTE that externally
 | 
						|
stored (often big) fields are NOT copied to heap.
 | 
						|
@return own: index entry built */
 | 
						|
dtuple_t*
 | 
						|
row_rec_to_index_entry(
 | 
						|
/*===================*/
 | 
						|
	const rec_t*		rec,	/*!< in: record in the index */
 | 
						|
	const dict_index_t*	index,	/*!< in: index */
 | 
						|
	const rec_offs*		offsets,/*!< in: rec_get_offsets(rec) */
 | 
						|
	mem_heap_t*		heap)	/*!< in: memory heap from which
 | 
						|
					the memory needed is allocated */
 | 
						|
{
 | 
						|
	ut_ad(rec != NULL);
 | 
						|
	ut_ad(heap != NULL);
 | 
						|
	ut_ad(index != NULL);
 | 
						|
	ut_ad(rec_offs_validate(rec, index, offsets));
 | 
						|
 | 
						|
	/* Take a copy of rec to heap */
 | 
						|
	const rec_t* copy_rec = rec_copy(
 | 
						|
		static_cast<byte*>(mem_heap_alloc(heap,
 | 
						|
						  rec_offs_size(offsets))),
 | 
						|
		rec, offsets);
 | 
						|
 | 
						|
	rec_offs_make_valid(copy_rec, index, true,
 | 
						|
			    const_cast<rec_offs*>(offsets));
 | 
						|
 | 
						|
	dtuple_t* entry = rec_is_alter_metadata(copy_rec, *index)
 | 
						|
		? row_rec_to_index_entry_impl<true,1>(
 | 
						|
			copy_rec, index, offsets, heap)
 | 
						|
		: row_rec_to_index_entry_impl<true>(
 | 
						|
			copy_rec, index, offsets, heap);
 | 
						|
 | 
						|
	rec_offs_make_valid(rec, index, true,
 | 
						|
			    const_cast<rec_offs*>(offsets));
 | 
						|
 | 
						|
	dtuple_set_info_bits(entry,
 | 
						|
			     rec_get_info_bits(rec, rec_offs_comp(offsets)));
 | 
						|
 | 
						|
	return(entry);
 | 
						|
}
 | 
						|
 | 
						|
/** Convert a metadata record to a data tuple.
 | 
						|
@param[in]	rec		metadata record
 | 
						|
@param[in]	index		clustered index after instant ALTER TABLE
 | 
						|
@param[in]	offsets		rec_get_offsets(rec)
 | 
						|
@param[in,out]	heap		memory heap for allocations
 | 
						|
@param[in]	info_bits	the info_bits after an update
 | 
						|
@param[in]	pad		whether to pad to index->n_fields */
 | 
						|
dtuple_t*
 | 
						|
row_metadata_to_tuple(
 | 
						|
	const rec_t*		rec,
 | 
						|
	const dict_index_t*	index,
 | 
						|
	const rec_offs*		offsets,
 | 
						|
	mem_heap_t*		heap,
 | 
						|
	ulint			info_bits,
 | 
						|
	bool			pad)
 | 
						|
{
 | 
						|
	ut_ad(info_bits == REC_INFO_METADATA_ALTER
 | 
						|
	      || info_bits == REC_INFO_METADATA_ADD);
 | 
						|
	ut_ad(rec_is_metadata(rec, *index));
 | 
						|
	ut_ad(rec_offs_validate(rec, index, offsets));
 | 
						|
 | 
						|
	const rec_t* copy_rec = rec_copy(
 | 
						|
		static_cast<byte*>(mem_heap_alloc(heap,
 | 
						|
						  rec_offs_size(offsets))),
 | 
						|
		rec, offsets);
 | 
						|
 | 
						|
	rec_offs_make_valid(copy_rec, index, true,
 | 
						|
			    const_cast<rec_offs*>(offsets));
 | 
						|
 | 
						|
	dtuple_t* entry = info_bits == REC_INFO_METADATA_ALTER
 | 
						|
		|| rec_is_alter_metadata(copy_rec, *index)
 | 
						|
		? row_rec_to_index_entry_impl<true,2>(
 | 
						|
			copy_rec, index, offsets, heap, info_bits, pad)
 | 
						|
		: row_rec_to_index_entry_impl<true>(
 | 
						|
			copy_rec, index, offsets, heap);
 | 
						|
 | 
						|
	rec_offs_make_valid(rec, index, true,
 | 
						|
			    const_cast<rec_offs*>(offsets));
 | 
						|
 | 
						|
	dtuple_set_info_bits(entry, info_bits);
 | 
						|
	return entry;
 | 
						|
}
 | 
						|
 | 
						|
/*******************************************************************//**
 | 
						|
Builds from a secondary index record a row reference with which we can
 | 
						|
search the clustered index record.
 | 
						|
@return own: row reference built; see the NOTE below! */
 | 
						|
dtuple_t*
 | 
						|
row_build_row_ref(
 | 
						|
/*==============*/
 | 
						|
	ulint		type,	/*!< in: ROW_COPY_DATA, or ROW_COPY_POINTERS:
 | 
						|
				the former copies also the data fields to
 | 
						|
				heap, whereas the latter only places pointers
 | 
						|
				to data fields on the index page */
 | 
						|
	dict_index_t*	index,	/*!< in: secondary index */
 | 
						|
	const rec_t*	rec,	/*!< in: record in the index;
 | 
						|
				NOTE: in the case ROW_COPY_POINTERS
 | 
						|
				the data fields in the row will point
 | 
						|
				directly into this record, therefore,
 | 
						|
				the buffer page of this record must be
 | 
						|
				at least s-latched and the latch held
 | 
						|
				as long as the row reference is used! */
 | 
						|
	mem_heap_t*	heap)	/*!< in: memory heap from which the memory
 | 
						|
				needed is allocated */
 | 
						|
{
 | 
						|
	dict_table_t*	table;
 | 
						|
	dict_index_t*	clust_index;
 | 
						|
	dfield_t*	dfield;
 | 
						|
	dtuple_t*	ref;
 | 
						|
	const byte*	field;
 | 
						|
	ulint		len;
 | 
						|
	ulint		ref_len;
 | 
						|
	ulint		pos;
 | 
						|
	byte*		buf;
 | 
						|
	ulint		clust_col_prefix_len;
 | 
						|
	ulint		i;
 | 
						|
	mem_heap_t*	tmp_heap	= NULL;
 | 
						|
	rec_offs	offsets_[REC_OFFS_NORMAL_SIZE];
 | 
						|
	rec_offs*	offsets		= offsets_;
 | 
						|
	rec_offs_init(offsets_);
 | 
						|
 | 
						|
	ut_ad(index != NULL);
 | 
						|
	ut_ad(rec != NULL);
 | 
						|
	ut_ad(heap != NULL);
 | 
						|
	ut_ad(!dict_index_is_clust(index));
 | 
						|
 | 
						|
	offsets = rec_get_offsets(rec, index, offsets, index->n_core_fields,
 | 
						|
				  ULINT_UNDEFINED, &tmp_heap);
 | 
						|
	/* Secondary indexes must not contain externally stored columns. */
 | 
						|
	ut_ad(!rec_offs_any_extern(offsets));
 | 
						|
 | 
						|
	if (type == ROW_COPY_DATA) {
 | 
						|
		/* Take a copy of rec to heap */
 | 
						|
 | 
						|
		buf = static_cast<byte*>(
 | 
						|
			mem_heap_alloc(heap, rec_offs_size(offsets)));
 | 
						|
 | 
						|
		rec = rec_copy(buf, rec, offsets);
 | 
						|
		rec_offs_make_valid(rec, index, true, offsets);
 | 
						|
	}
 | 
						|
 | 
						|
	table = index->table;
 | 
						|
 | 
						|
	clust_index = dict_table_get_first_index(table);
 | 
						|
 | 
						|
	ref_len = dict_index_get_n_unique(clust_index);
 | 
						|
 | 
						|
	ref = dtuple_create(heap, ref_len);
 | 
						|
 | 
						|
	dict_index_copy_types(ref, clust_index, ref_len);
 | 
						|
 | 
						|
	for (i = 0; i < ref_len; i++) {
 | 
						|
		dfield = dtuple_get_nth_field(ref, i);
 | 
						|
 | 
						|
		pos = dict_index_get_nth_field_pos(index, clust_index, i);
 | 
						|
 | 
						|
		ut_a(pos != ULINT_UNDEFINED);
 | 
						|
 | 
						|
		ut_ad(!rec_offs_nth_default(offsets, pos));
 | 
						|
		field = rec_get_nth_field(rec, offsets, pos, &len);
 | 
						|
 | 
						|
		dfield_set_data(dfield, field, len);
 | 
						|
 | 
						|
		/* If the primary key contains a column prefix, then the
 | 
						|
		secondary index may contain a longer prefix of the same
 | 
						|
		column, or the full column, and we must adjust the length
 | 
						|
		accordingly. */
 | 
						|
 | 
						|
		clust_col_prefix_len = dict_index_get_nth_field(
 | 
						|
			clust_index, i)->prefix_len;
 | 
						|
 | 
						|
		if (clust_col_prefix_len > 0) {
 | 
						|
			if (len != UNIV_SQL_NULL) {
 | 
						|
 | 
						|
				const dtype_t*	dtype
 | 
						|
					= dfield_get_type(dfield);
 | 
						|
 | 
						|
				dfield_set_len(dfield,
 | 
						|
					       dtype_get_at_most_n_mbchars(
 | 
						|
						       dtype->prtype,
 | 
						|
						       dtype->mbminlen,
 | 
						|
						       dtype->mbmaxlen,
 | 
						|
						       clust_col_prefix_len,
 | 
						|
						       len, (char*) field));
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ut_ad(dtuple_check_typed(ref));
 | 
						|
	if (tmp_heap) {
 | 
						|
		mem_heap_free(tmp_heap);
 | 
						|
	}
 | 
						|
 | 
						|
	return(ref);
 | 
						|
}
 | 
						|
 | 
						|
/*******************************************************************//**
 | 
						|
Builds from a secondary index record a row reference with which we can
 | 
						|
search the clustered index record. */
 | 
						|
void
 | 
						|
row_build_row_ref_in_tuple(
 | 
						|
/*=======================*/
 | 
						|
	dtuple_t*		ref,	/*!< in/out: row reference built;
 | 
						|
					see the NOTE below! */
 | 
						|
	const rec_t*		rec,	/*!< in: record in the index;
 | 
						|
					NOTE: the data fields in ref
 | 
						|
					will point directly into this
 | 
						|
					record, therefore, the buffer
 | 
						|
					page of this record must be at
 | 
						|
					least s-latched and the latch
 | 
						|
					held as long as the row
 | 
						|
					reference is used! */
 | 
						|
	const dict_index_t*	index,	/*!< in: secondary index */
 | 
						|
	rec_offs*		offsets)/*!< in: rec_get_offsets(rec, index)
 | 
						|
					or NULL */
 | 
						|
{
 | 
						|
	const dict_index_t*	clust_index;
 | 
						|
	dfield_t*		dfield;
 | 
						|
	const byte*		field;
 | 
						|
	ulint			len;
 | 
						|
	ulint			ref_len;
 | 
						|
	ulint			pos;
 | 
						|
	ulint			clust_col_prefix_len;
 | 
						|
	ulint			i;
 | 
						|
	mem_heap_t*		heap		= NULL;
 | 
						|
	rec_offs		offsets_[REC_OFFS_NORMAL_SIZE];
 | 
						|
	rec_offs_init(offsets_);
 | 
						|
 | 
						|
	ut_ad(!dict_index_is_clust(index));
 | 
						|
	ut_a(index->table);
 | 
						|
 | 
						|
	clust_index = dict_table_get_first_index(index->table);
 | 
						|
	ut_ad(clust_index);
 | 
						|
 | 
						|
	if (!offsets) {
 | 
						|
		offsets = rec_get_offsets(rec, index, offsets_,
 | 
						|
					  index->n_core_fields,
 | 
						|
					  ULINT_UNDEFINED, &heap);
 | 
						|
	} else {
 | 
						|
		ut_ad(rec_offs_validate(rec, index, offsets));
 | 
						|
	}
 | 
						|
 | 
						|
	/* Secondary indexes must not contain externally stored columns. */
 | 
						|
	ut_ad(!rec_offs_any_extern(offsets));
 | 
						|
	ref_len = dict_index_get_n_unique(clust_index);
 | 
						|
 | 
						|
	ut_ad(ref_len == dtuple_get_n_fields(ref));
 | 
						|
 | 
						|
	dict_index_copy_types(ref, clust_index, ref_len);
 | 
						|
 | 
						|
	for (i = 0; i < ref_len; i++) {
 | 
						|
		dfield = dtuple_get_nth_field(ref, i);
 | 
						|
 | 
						|
		pos = dict_index_get_nth_field_pos(index, clust_index, i);
 | 
						|
 | 
						|
		ut_a(pos != ULINT_UNDEFINED);
 | 
						|
 | 
						|
		ut_ad(!rec_offs_nth_default(offsets, pos));
 | 
						|
		field = rec_get_nth_field(rec, offsets, pos, &len);
 | 
						|
 | 
						|
		dfield_set_data(dfield, field, len);
 | 
						|
 | 
						|
		/* If the primary key contains a column prefix, then the
 | 
						|
		secondary index may contain a longer prefix of the same
 | 
						|
		column, or the full column, and we must adjust the length
 | 
						|
		accordingly. */
 | 
						|
 | 
						|
		clust_col_prefix_len = dict_index_get_nth_field(
 | 
						|
			clust_index, i)->prefix_len;
 | 
						|
 | 
						|
		if (clust_col_prefix_len > 0) {
 | 
						|
			if (len != UNIV_SQL_NULL) {
 | 
						|
 | 
						|
				const dtype_t*	dtype
 | 
						|
					= dfield_get_type(dfield);
 | 
						|
 | 
						|
				dfield_set_len(dfield,
 | 
						|
					       dtype_get_at_most_n_mbchars(
 | 
						|
						       dtype->prtype,
 | 
						|
						       dtype->mbminlen,
 | 
						|
						       dtype->mbmaxlen,
 | 
						|
						       clust_col_prefix_len,
 | 
						|
						       len, (char*) field));
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ut_ad(dtuple_check_typed(ref));
 | 
						|
	if (UNIV_LIKELY_NULL(heap)) {
 | 
						|
		mem_heap_free(heap);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/***************************************************************//**
 | 
						|
Searches the clustered index record for a row, if we have the row reference.
 | 
						|
@return TRUE if found */
 | 
						|
bool
 | 
						|
row_search_on_row_ref(
 | 
						|
/*==================*/
 | 
						|
	btr_pcur_t*		pcur,	/*!< out: persistent cursor, which must
 | 
						|
					be closed by the caller */
 | 
						|
	btr_latch_mode		mode,	/*!< in: BTR_MODIFY_LEAF, ... */
 | 
						|
	const dict_table_t*	table,	/*!< in: table */
 | 
						|
	const dtuple_t*		ref,	/*!< in: row reference */
 | 
						|
	mtr_t*			mtr)	/*!< in/out: mtr */
 | 
						|
{
 | 
						|
	ut_ad(dtuple_check_typed(ref));
 | 
						|
 | 
						|
	dict_index_t *index = dict_table_get_first_index(table);
 | 
						|
	btr_pcur_init(pcur);
 | 
						|
	pcur->btr_cur.page_cur.index = index;
 | 
						|
 | 
						|
	if (UNIV_UNLIKELY(ref->info_bits != 0)) {
 | 
						|
		ut_ad(ref->is_metadata());
 | 
						|
		ut_ad(ref->n_fields <= index->n_uniq);
 | 
						|
		if (pcur->open_leaf(true, index, mode, mtr) != DB_SUCCESS
 | 
						|
		    || !btr_pcur_move_to_next_user_rec(pcur, mtr)) {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
		/* We do not necessarily have index->is_instant() here,
 | 
						|
		because we could be executing a rollback of an
 | 
						|
		instant ADD COLUMN operation. The function
 | 
						|
		rec_is_metadata() asserts index->is_instant();
 | 
						|
		we do not want to call it here. */
 | 
						|
		return rec_get_info_bits(btr_pcur_get_rec(pcur),
 | 
						|
					 dict_table_is_comp(index->table))
 | 
						|
			& REC_INFO_MIN_REC_FLAG;
 | 
						|
	} else {
 | 
						|
		ut_a(ref->n_fields == index->n_uniq);
 | 
						|
		if (btr_pcur_open(ref, PAGE_CUR_LE, mode, pcur, mtr)
 | 
						|
		    != DB_SUCCESS) {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return !page_rec_is_infimum(btr_pcur_get_rec(pcur))
 | 
						|
		&& btr_pcur_get_low_match(pcur) == dtuple_get_n_fields(ref);
 | 
						|
}
 | 
						|
 | 
						|
/*********************************************************************//**
 | 
						|
Fetches the clustered index record for a secondary index record. The latches
 | 
						|
on the secondary index record are preserved.
 | 
						|
@return record or NULL, if no record found */
 | 
						|
rec_t*
 | 
						|
row_get_clust_rec(
 | 
						|
/*==============*/
 | 
						|
	btr_latch_mode	mode,	/*!< in: BTR_MODIFY_LEAF, ... */
 | 
						|
	const rec_t*	rec,	/*!< in: record in a secondary index */
 | 
						|
	dict_index_t*	index,	/*!< in: secondary index */
 | 
						|
	dict_index_t**	clust_index,/*!< out: clustered index */
 | 
						|
	mtr_t*		mtr)	/*!< in: mtr */
 | 
						|
{
 | 
						|
	mem_heap_t*	heap;
 | 
						|
	dtuple_t*	ref;
 | 
						|
	dict_table_t*	table;
 | 
						|
	btr_pcur_t	pcur;
 | 
						|
 | 
						|
	ut_ad(!dict_index_is_clust(index));
 | 
						|
 | 
						|
	table = index->table;
 | 
						|
 | 
						|
	heap = mem_heap_create(256);
 | 
						|
 | 
						|
	ref = row_build_row_ref(ROW_COPY_POINTERS, index, rec, heap);
 | 
						|
 | 
						|
	auto found = row_search_on_row_ref(&pcur, mode, table, ref, mtr);
 | 
						|
 | 
						|
	mem_heap_free(heap);
 | 
						|
 | 
						|
	*clust_index = dict_table_get_first_index(table);
 | 
						|
	return found ? btr_pcur_get_rec(&pcur) : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/***************************************************************//**
 | 
						|
Searches an index record.
 | 
						|
@return whether the record was found */
 | 
						|
bool
 | 
						|
row_search_index_entry(
 | 
						|
/*===================*/
 | 
						|
	const dtuple_t*	entry,	/*!< in: index entry */
 | 
						|
	btr_latch_mode	mode,	/*!< in: BTR_MODIFY_LEAF, ... */
 | 
						|
	btr_pcur_t*	pcur,	/*!< in/out: persistent cursor, which must
 | 
						|
				be closed by the caller */
 | 
						|
	mtr_t*		mtr)	/*!< in: mtr */
 | 
						|
{
 | 
						|
	ut_ad(dtuple_check_typed(entry));
 | 
						|
 | 
						|
	if (btr_pcur_open(entry, PAGE_CUR_LE, mode, pcur, mtr) != DB_SUCCESS) {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	return !btr_pcur_is_before_first_on_page(pcur)
 | 
						|
		&& btr_pcur_get_low_match(pcur) == dtuple_get_n_fields(entry);
 | 
						|
}
 | 
						|
 | 
						|
/*******************************************************************//**
 | 
						|
Formats the raw data in "data" (in InnoDB on-disk format) that is of
 | 
						|
type DATA_INT using "prtype" and writes the result to "buf".
 | 
						|
If the data is in unknown format, then nothing is written to "buf",
 | 
						|
0 is returned and "format_in_hex" is set to TRUE, otherwise
 | 
						|
"format_in_hex" is left untouched.
 | 
						|
Not more than "buf_size" bytes are written to "buf".
 | 
						|
The result is always '\0'-terminated (provided buf_size > 0) and the
 | 
						|
number of bytes that were written to "buf" is returned (including the
 | 
						|
terminating '\0').
 | 
						|
@return number of bytes that were written */
 | 
						|
static
 | 
						|
ulint
 | 
						|
row_raw_format_int(
 | 
						|
/*===============*/
 | 
						|
	const char*	data,		/*!< in: raw data */
 | 
						|
	ulint		data_len,	/*!< in: raw data length
 | 
						|
					in bytes */
 | 
						|
	ulint		prtype,		/*!< in: precise type */
 | 
						|
	char*		buf,		/*!< out: output buffer */
 | 
						|
	ulint		buf_size,	/*!< in: output buffer size
 | 
						|
					in bytes */
 | 
						|
	ibool*		format_in_hex)	/*!< out: should the data be
 | 
						|
					formatted in hex */
 | 
						|
{
 | 
						|
	ulint	ret;
 | 
						|
 | 
						|
	if (data_len <= sizeof(ib_uint64_t)) {
 | 
						|
 | 
						|
		ib_uint64_t	value;
 | 
						|
		ibool		unsigned_type = prtype & DATA_UNSIGNED;
 | 
						|
 | 
						|
		value = mach_read_int_type(
 | 
						|
			(const byte*) data, data_len, unsigned_type);
 | 
						|
 | 
						|
		ret = (ulint) snprintf(
 | 
						|
			buf, buf_size,
 | 
						|
			unsigned_type ? "%llu" : "%lld", (longlong) value)+1;
 | 
						|
	} else {
 | 
						|
 | 
						|
		*format_in_hex = TRUE;
 | 
						|
		ret = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return(ut_min(ret, buf_size));
 | 
						|
}
 | 
						|
 | 
						|
/*******************************************************************//**
 | 
						|
Formats the raw data in "data" (in InnoDB on-disk format) that is of
 | 
						|
type DATA_(CHAR|VARCHAR|MYSQL|VARMYSQL) using "prtype" and writes the
 | 
						|
result to "buf".
 | 
						|
If the data is in binary format, then nothing is written to "buf",
 | 
						|
0 is returned and "format_in_hex" is set to TRUE, otherwise
 | 
						|
"format_in_hex" is left untouched.
 | 
						|
Not more than "buf_size" bytes are written to "buf".
 | 
						|
The result is always '\0'-terminated (provided buf_size > 0) and the
 | 
						|
number of bytes that were written to "buf" is returned (including the
 | 
						|
terminating '\0').
 | 
						|
@return number of bytes that were written */
 | 
						|
static
 | 
						|
ulint
 | 
						|
row_raw_format_str(
 | 
						|
/*===============*/
 | 
						|
	const char*	data,		/*!< in: raw data */
 | 
						|
	ulint		data_len,	/*!< in: raw data length
 | 
						|
					in bytes */
 | 
						|
	ulint		prtype,		/*!< in: precise type */
 | 
						|
	char*		buf,		/*!< out: output buffer */
 | 
						|
	ulint		buf_size,	/*!< in: output buffer size
 | 
						|
					in bytes */
 | 
						|
	ibool*		format_in_hex)	/*!< out: should the data be
 | 
						|
					formatted in hex */
 | 
						|
{
 | 
						|
	ulint	charset_coll;
 | 
						|
 | 
						|
	if (buf_size == 0) {
 | 
						|
 | 
						|
		return(0);
 | 
						|
	}
 | 
						|
 | 
						|
	/* we assume system_charset_info is UTF-8 */
 | 
						|
 | 
						|
	charset_coll = dtype_get_charset_coll(prtype);
 | 
						|
 | 
						|
	if (UNIV_LIKELY(dtype_is_utf8(prtype))) {
 | 
						|
 | 
						|
		return(ut_str_sql_format(data, data_len, buf, buf_size));
 | 
						|
	}
 | 
						|
	/* else */
 | 
						|
 | 
						|
	if (charset_coll == DATA_MYSQL_BINARY_CHARSET_COLL) {
 | 
						|
 | 
						|
		*format_in_hex = TRUE;
 | 
						|
		return(0);
 | 
						|
	}
 | 
						|
	/* else */
 | 
						|
 | 
						|
	return(innobase_raw_format(data, data_len, charset_coll,
 | 
						|
					  buf, buf_size));
 | 
						|
}
 | 
						|
 | 
						|
/*******************************************************************//**
 | 
						|
Formats the raw data in "data" (in InnoDB on-disk format) using
 | 
						|
"dict_field" and writes the result to "buf".
 | 
						|
Not more than "buf_size" bytes are written to "buf".
 | 
						|
The result is always NUL-terminated (provided buf_size is positive) and the
 | 
						|
number of bytes that were written to "buf" is returned (including the
 | 
						|
terminating NUL).
 | 
						|
@return number of bytes that were written */
 | 
						|
ulint
 | 
						|
row_raw_format(
 | 
						|
/*===========*/
 | 
						|
	const char*		data,		/*!< in: raw data */
 | 
						|
	ulint			data_len,	/*!< in: raw data length
 | 
						|
						in bytes */
 | 
						|
	const dict_field_t*	dict_field,	/*!< in: index field */
 | 
						|
	char*			buf,		/*!< out: output buffer */
 | 
						|
	ulint			buf_size)	/*!< in: output buffer size
 | 
						|
						in bytes */
 | 
						|
{
 | 
						|
	ulint	mtype;
 | 
						|
	ulint	prtype;
 | 
						|
	ulint	ret;
 | 
						|
	ibool	format_in_hex;
 | 
						|
 | 
						|
	ut_ad(data_len != UNIV_SQL_DEFAULT);
 | 
						|
 | 
						|
	if (buf_size == 0) {
 | 
						|
 | 
						|
		return(0);
 | 
						|
	}
 | 
						|
 | 
						|
	if (data_len == UNIV_SQL_NULL) {
 | 
						|
 | 
						|
		ret = snprintf((char*) buf, buf_size, "NULL") + 1;
 | 
						|
 | 
						|
		return(ut_min(ret, buf_size));
 | 
						|
	}
 | 
						|
 | 
						|
	mtype = dict_field->col->mtype;
 | 
						|
	prtype = dict_field->col->prtype;
 | 
						|
 | 
						|
	format_in_hex = FALSE;
 | 
						|
 | 
						|
	switch (mtype) {
 | 
						|
	case DATA_INT:
 | 
						|
 | 
						|
		ret = row_raw_format_int(data, data_len, prtype,
 | 
						|
					 buf, buf_size, &format_in_hex);
 | 
						|
		if (format_in_hex) {
 | 
						|
 | 
						|
			goto format_in_hex;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case DATA_CHAR:
 | 
						|
	case DATA_VARCHAR:
 | 
						|
	case DATA_MYSQL:
 | 
						|
	case DATA_VARMYSQL:
 | 
						|
 | 
						|
		ret = row_raw_format_str(data, data_len, prtype,
 | 
						|
					 buf, buf_size, &format_in_hex);
 | 
						|
		if (format_in_hex) {
 | 
						|
 | 
						|
			goto format_in_hex;
 | 
						|
		}
 | 
						|
 | 
						|
		break;
 | 
						|
	/* XXX support more data types */
 | 
						|
	default:
 | 
						|
	format_in_hex:
 | 
						|
 | 
						|
		if (UNIV_LIKELY(buf_size > 2)) {
 | 
						|
 | 
						|
			memcpy(buf, "0x", 2);
 | 
						|
			buf += 2;
 | 
						|
			buf_size -= 2;
 | 
						|
			ret = 2 + ut_raw_to_hex(data, data_len,
 | 
						|
						buf, buf_size);
 | 
						|
		} else {
 | 
						|
 | 
						|
			buf[0] = '\0';
 | 
						|
			ret = 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return(ret);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT
 | 
						|
 | 
						|
#ifdef HAVE_UT_CHRONO_T
 | 
						|
 | 
						|
void
 | 
						|
test_row_raw_format_int()
 | 
						|
{
 | 
						|
	ulint	ret;
 | 
						|
	char	buf[128];
 | 
						|
	ibool	format_in_hex;
 | 
						|
	ulint	i;
 | 
						|
 | 
						|
#define CALL_AND_TEST(data, data_len, prtype, buf, buf_size,\
 | 
						|
		      ret_expected, buf_expected, format_in_hex_expected)\
 | 
						|
	do {\
 | 
						|
		ibool	ok = TRUE;\
 | 
						|
		ulint	i;\
 | 
						|
		memset(buf, 'x', 10);\
 | 
						|
		buf[10] = '\0';\
 | 
						|
		format_in_hex = FALSE;\
 | 
						|
		fprintf(stderr, "TESTING \"\\x");\
 | 
						|
		for (i = 0; i < data_len; i++) {\
 | 
						|
			fprintf(stderr, "%02hhX", data[i]);\
 | 
						|
		}\
 | 
						|
		fprintf(stderr, "\", %lu, %lu, %lu\n",\
 | 
						|
                        (ulint) data_len, (ulint) prtype,\
 | 
						|
			(ulint) buf_size);\
 | 
						|
		ret = row_raw_format_int(data, data_len, prtype,\
 | 
						|
					 buf, buf_size, &format_in_hex);\
 | 
						|
		if (ret != ret_expected) {\
 | 
						|
			fprintf(stderr, "expected ret %lu, got %lu\n",\
 | 
						|
				(ulint) ret_expected, ret);\
 | 
						|
			ok = FALSE;\
 | 
						|
                }\
 | 
						|
                if (strcmp((char*) buf, buf_expected) != 0) {\
 | 
						|
                        fprintf(stderr, "expected buf \"%s\", got \"%s\"\n",\
 | 
						|
                                buf_expected, buf);\
 | 
						|
                        ok = FALSE;\
 | 
						|
                }\
 | 
						|
                if (format_in_hex != format_in_hex_expected) {\
 | 
						|
                        fprintf(stderr, "expected format_in_hex %d, got %d\n",\
 | 
						|
                                (int) format_in_hex_expected,\
 | 
						|
				(int) format_in_hex);\
 | 
						|
                        ok = FALSE;\
 | 
						|
                }\
 | 
						|
                if (ok) {\
 | 
						|
                        fprintf(stderr, "OK: %lu, \"%s\" %d\n\n",\
 | 
						|
                                (ulint) ret, buf, (int) format_in_hex);\
 | 
						|
                } else {\
 | 
						|
                        return;\
 | 
						|
                }\
 | 
						|
        } while (0)
 | 
						|
 | 
						|
#if 1
 | 
						|
	/* min values for signed 1-8 byte integers */
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00", 1, 0,
 | 
						|
		      buf, sizeof(buf), 5, "-128", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\x00", 2, 0,
 | 
						|
		      buf, sizeof(buf), 7, "-32768", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\x00\x00", 3, 0,
 | 
						|
		      buf, sizeof(buf), 9, "-8388608", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\x00\x00\x00", 4, 0,
 | 
						|
		      buf, sizeof(buf), 12, "-2147483648", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, 0,
 | 
						|
		      buf, sizeof(buf), 14, "-549755813888", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, 0,
 | 
						|
		      buf, sizeof(buf), 17, "-140737488355328", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, 0,
 | 
						|
		      buf, sizeof(buf), 19, "-36028797018963968", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, 0,
 | 
						|
		      buf, sizeof(buf), 21, "-9223372036854775808", 0);
 | 
						|
 | 
						|
	/* min values for unsigned 1-8 byte integers */
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00", 1, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 2, "0", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\x00", 2, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 2, "0", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\x00\x00", 3, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 2, "0", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\x00\x00\x00", 4, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 2, "0", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 2, "0", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 2, "0", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 2, "0", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 2, "0", 0);
 | 
						|
 | 
						|
	/* max values for signed 1-8 byte integers */
 | 
						|
 | 
						|
	CALL_AND_TEST("\xFF", 1, 0,
 | 
						|
		      buf, sizeof(buf), 4, "127", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\xFF\xFF", 2, 0,
 | 
						|
		      buf, sizeof(buf), 6, "32767", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\xFF\xFF\xFF", 3, 0,
 | 
						|
		      buf, sizeof(buf), 8, "8388607", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, 0,
 | 
						|
		      buf, sizeof(buf), 11, "2147483647", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, 0,
 | 
						|
		      buf, sizeof(buf), 13, "549755813887", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, 0,
 | 
						|
		      buf, sizeof(buf), 16, "140737488355327", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, 0,
 | 
						|
		      buf, sizeof(buf), 18, "36028797018963967", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, 0,
 | 
						|
		      buf, sizeof(buf), 20, "9223372036854775807", 0);
 | 
						|
 | 
						|
	/* max values for unsigned 1-8 byte integers */
 | 
						|
 | 
						|
	CALL_AND_TEST("\xFF", 1, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 4, "255", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\xFF\xFF", 2, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 6, "65535", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\xFF\xFF\xFF", 3, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 9, "16777215", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 11, "4294967295", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 14, "1099511627775", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 16, "281474976710655", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 18, "72057594037927935", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 21, "18446744073709551615", 0);
 | 
						|
 | 
						|
	/* some random values */
 | 
						|
 | 
						|
	CALL_AND_TEST("\x52", 1, 0,
 | 
						|
		      buf, sizeof(buf), 4, "-46", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x0E", 1, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 3, "14", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x62\xCE", 2, 0,
 | 
						|
		      buf, sizeof(buf), 6, "-7474", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x29\xD6", 2, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 6, "10710", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x7F\xFF\x90", 3, 0,
 | 
						|
		      buf, sizeof(buf), 5, "-112", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\xA1\x16", 3, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 6, "41238", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x7F\xFF\xFF\xF7", 4, 0,
 | 
						|
		      buf, sizeof(buf), 3, "-9", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\x00\x00\x5C", 4, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 3, "92", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x7F\xFF\xFF\xFF\xFF\xFF\xDC\x63", 8, 0,
 | 
						|
		      buf, sizeof(buf), 6, "-9117", 0);
 | 
						|
 | 
						|
	CALL_AND_TEST("\x00\x00\x00\x00\x00\x01\x64\x62", 8, DATA_UNSIGNED,
 | 
						|
		      buf, sizeof(buf), 6, "91234", 0);
 | 
						|
#endif
 | 
						|
 | 
						|
	/* speed test */
 | 
						|
 | 
						|
	ut_chrono_t	ch(__func__);
 | 
						|
 | 
						|
	for (i = 0; i < 1000000; i++) {
 | 
						|
		row_raw_format_int("\x23", 1,
 | 
						|
				   0, buf, sizeof(buf),
 | 
						|
				   &format_in_hex);
 | 
						|
		row_raw_format_int("\x23", 1,
 | 
						|
				   DATA_UNSIGNED, buf, sizeof(buf),
 | 
						|
				   &format_in_hex);
 | 
						|
 | 
						|
		row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8,
 | 
						|
				   0, buf, sizeof(buf),
 | 
						|
				   &format_in_hex);
 | 
						|
		row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8,
 | 
						|
				   DATA_UNSIGNED, buf, sizeof(buf),
 | 
						|
				   &format_in_hex);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#endif /* HAVE_UT_CHRONO_T */
 | 
						|
 | 
						|
#endif /* UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT */
 |