mirror of
https://github.com/MariaDB/server.git
synced 2025-01-16 03:52:35 +01:00
2af2808f57
In BIT -> TIME reference, BIT length is 1, and TIME length is 4. It's likely a quirk, that such relation is possible, since 0 -> 0 is not a valid reference. However, some parts of key_copy should be fixed: 1. Make sure that key_length is deduced according to to_key_info key_parts. 2. Mind the case when to_key_part is NOT NULL, but key_part is NULL. 3. Use correct length in field->get_key_image call. Also fix the double run of checks of self-referencing keys. Base task: MDEV-34309
925 lines
28 KiB
C++
925 lines
28 KiB
C++
/* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
Copyright (c) 2018, 2021, MariaDB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
|
|
|
|
|
|
/* Functions to handle keys and fields in forms */
|
|
|
|
#include "mariadb.h"
|
|
#include "sql_priv.h"
|
|
#include "key.h" // key_rec_cmp
|
|
#include "field.h" // Field
|
|
|
|
/*
|
|
Search after a key that starts with 'field'
|
|
|
|
SYNOPSIS
|
|
find_ref_key()
|
|
key First key to check
|
|
key_count How many keys to check
|
|
record Start of record
|
|
field Field to search after
|
|
key_length On partial match, contains length of fields before
|
|
field
|
|
keypart key part # of a field
|
|
|
|
NOTES
|
|
Used when calculating key for NEXT_NUMBER
|
|
|
|
IMPLEMENTATION
|
|
If no key starts with field test if field is part of some key. If we find
|
|
one, then return first key and set key_length to the number of bytes
|
|
preceding 'field'.
|
|
|
|
RETURN
|
|
-1 field is not part of the key
|
|
# Key part for key matching key.
|
|
key_length is set to length of key before (not including) field
|
|
*/
|
|
|
|
int find_ref_key(KEY *key, uint key_count, uchar *record, Field *field,
|
|
uint *key_length, uint *keypart)
|
|
{
|
|
int i;
|
|
KEY *key_info;
|
|
uint fieldpos;
|
|
|
|
fieldpos= field->offset(record);
|
|
|
|
/* Test if some key starts as fieldpos */
|
|
for (i= 0, key_info= key ;
|
|
i < (int) key_count ;
|
|
i++, key_info++)
|
|
{
|
|
if (key_info->key_part[0].offset == fieldpos &&
|
|
key_info->key_part[0].field->type() != MYSQL_TYPE_BIT)
|
|
{ /* Found key. Calc keylength */
|
|
*key_length= *keypart= 0;
|
|
return i; /* Use this key */
|
|
}
|
|
}
|
|
|
|
/* Test if some key contains fieldpos */
|
|
for (i= 0, key_info= key;
|
|
i < (int) key_count ;
|
|
i++, key_info++)
|
|
{
|
|
uint j;
|
|
KEY_PART_INFO *key_part;
|
|
*key_length=0;
|
|
for (j=0, key_part=key_info->key_part ;
|
|
j < key_info->user_defined_key_parts ;
|
|
j++, key_part++)
|
|
{
|
|
if (key_part->offset == fieldpos &&
|
|
key_part->field->type() != MYSQL_TYPE_BIT)
|
|
{
|
|
*keypart= j;
|
|
return i; /* Use this key */
|
|
}
|
|
*key_length+= key_part->store_length;
|
|
}
|
|
}
|
|
return(-1); /* No key is ok */
|
|
}
|
|
|
|
|
|
/**
|
|
Copy part of a record that forms a key or key prefix to a buffer.
|
|
|
|
The function takes a complete table record (as e.g. retrieved by
|
|
handler::index_read()), and a description of an index on the same table,
|
|
and extracts the first key_length bytes of the record which are part of a
|
|
key into to_key. If length == 0 then copy all bytes from the record that
|
|
form a key.
|
|
|
|
@param to_key buffer that will be used as a key
|
|
@param from_record full record to be copied from
|
|
@param from_key_info a descriptor of the index that corresponds a data to be
|
|
copied from the record
|
|
@param to_key_info a descriptor of the index that describes a key structre
|
|
to copy to. It may differ in case of foreign key
|
|
lookups: basically the key part structures may be
|
|
different in whether it store the null part or not.
|
|
@param key_length specifies length of all keyparts that will be copied
|
|
@param with_zerofill skipped bytes in the key buffer to be filled with 0
|
|
*/
|
|
|
|
void key_copy(uchar *to_key, const uchar *from_record, const KEY *from_key_info,
|
|
const KEY *to_key_info, uint key_length, bool with_zerofill)
|
|
{
|
|
uint length;
|
|
KEY_PART_INFO *key_part, *to_key_part;
|
|
|
|
if (key_length == 0)
|
|
key_length= to_key_info->key_length;
|
|
for (key_part= from_key_info->key_part, to_key_part= to_key_info->key_part;
|
|
(int) key_length > 0;
|
|
key_part++, to_key_part++, to_key+= length, key_length-= length)
|
|
{
|
|
if (to_key_part->null_bit)
|
|
{
|
|
*to_key++= MY_TEST(!to_key_part->null_bit
|
|
|| (from_record[to_key_part->null_offset]
|
|
& to_key_part->null_bit));
|
|
key_length--;
|
|
if (to_key[-1])
|
|
{
|
|
/*
|
|
Don't copy data for null values
|
|
The -1 below is to subtract the null byte which is already handled
|
|
*/
|
|
length= MY_MIN(key_length, uint(to_key_part->store_length)-1);
|
|
if (with_zerofill)
|
|
bzero((char*) to_key, length);
|
|
continue;
|
|
}
|
|
}
|
|
auto *from_ptr= key_part->field->ptr_in_record(from_record);
|
|
if (key_part->key_part_flag & HA_BLOB_PART ||
|
|
key_part->key_part_flag & HA_VAR_LENGTH_PART)
|
|
{
|
|
DBUG_ASSERT(to_key_part->length == key_part->length);
|
|
key_length-= HA_KEY_BLOB_LENGTH;
|
|
length= MY_MIN(key_length, key_part->length);
|
|
uint bytes= key_part->field->get_key_image(to_key, length, from_ptr,
|
|
Field::image_type(from_key_info->algorithm));
|
|
if (with_zerofill && bytes < length)
|
|
bzero((char*) to_key + bytes, length - bytes);
|
|
to_key+= HA_KEY_BLOB_LENGTH;
|
|
}
|
|
else
|
|
{
|
|
DBUG_ASSERT(to_key_part->length >= key_part->length);
|
|
length= MY_MIN(key_length, to_key_part->length);
|
|
uint from_length= MY_MIN(key_length, key_part->length);
|
|
Field *field= key_part->field;
|
|
CHARSET_INFO *cs= field->charset();
|
|
uint bytes= field->get_key_image(to_key, from_length, from_ptr,
|
|
Field::itRAW);
|
|
if (bytes < length)
|
|
cs->fill((char*) to_key + bytes, length - bytes, ' ');
|
|
}
|
|
}
|
|
}
|
|
|
|
void key_copy(uchar *to_key, const uchar *from_record, const KEY *key_info,
|
|
uint key_length, bool with_zerofill)
|
|
{
|
|
key_copy(to_key, from_record, key_info, key_info, key_length, with_zerofill);
|
|
}
|
|
|
|
/**
|
|
Restore a key from some buffer to record.
|
|
|
|
This function converts a key into record format. It can be used in cases
|
|
when we want to return a key as a result row.
|
|
|
|
@param to_record record buffer where the key will be restored to
|
|
@param from_key buffer that contains a key
|
|
@param key_info descriptor of the index
|
|
@param key_length specifies length of all keyparts that will be restored
|
|
*/
|
|
|
|
void key_restore(uchar *to_record, const uchar *from_key, KEY *key_info,
|
|
uint key_length)
|
|
{
|
|
uint length;
|
|
KEY_PART_INFO *key_part;
|
|
|
|
if (key_length == 0)
|
|
{
|
|
key_length= key_info->key_length;
|
|
}
|
|
for (key_part= key_info->key_part ;
|
|
(int) key_length > 0 ;
|
|
key_part++, from_key+= length, key_length-= length)
|
|
{
|
|
uchar used_uneven_bits= 0;
|
|
if (key_part->null_bit)
|
|
{
|
|
bool null_value;
|
|
if ((null_value= *from_key++))
|
|
to_record[key_part->null_offset]|= key_part->null_bit;
|
|
else
|
|
to_record[key_part->null_offset]&= ~key_part->null_bit;
|
|
key_length--;
|
|
if (null_value)
|
|
{
|
|
/*
|
|
Don't copy data for null bytes
|
|
The -1 below is to subtract the null byte which is already handled
|
|
*/
|
|
length= MY_MIN(key_length, uint(key_part->store_length)-1);
|
|
continue;
|
|
}
|
|
}
|
|
if (key_part->type == HA_KEYTYPE_BIT)
|
|
{
|
|
Field_bit *field= (Field_bit *) (key_part->field);
|
|
if (field->bit_len)
|
|
{
|
|
uchar bits= *(from_key + key_part->length -
|
|
field->pack_length_in_rec() - 1);
|
|
set_rec_bits(bits, to_record + key_part->null_offset +
|
|
(key_part->null_bit == 128),
|
|
field->bit_ofs, field->bit_len);
|
|
/* we have now used the byte with 'uneven' bits */
|
|
used_uneven_bits= 1;
|
|
}
|
|
}
|
|
if (key_part->key_part_flag & HA_BLOB_PART)
|
|
{
|
|
/*
|
|
This in fact never happens, as we have only partial BLOB
|
|
keys yet anyway, so it's difficult to find any sense to
|
|
restore the part of a record.
|
|
Maybe this branch is to be removed, but now we
|
|
have to ignore GCov compaining.
|
|
*/
|
|
uint blob_length= uint2korr(from_key);
|
|
Field_blob *field= (Field_blob*) key_part->field;
|
|
from_key+= HA_KEY_BLOB_LENGTH;
|
|
key_length-= HA_KEY_BLOB_LENGTH;
|
|
field->set_ptr_offset(to_record - field->table->record[0],
|
|
(ulong) blob_length, from_key);
|
|
length= key_part->length;
|
|
}
|
|
else if (key_part->key_part_flag & HA_VAR_LENGTH_PART)
|
|
{
|
|
Field *field= key_part->field;
|
|
my_ptrdiff_t ptrdiff= to_record - field->table->record[0];
|
|
field->move_field_offset(ptrdiff);
|
|
key_length-= HA_KEY_BLOB_LENGTH;
|
|
length= MY_MIN(key_length, key_part->length);
|
|
MY_BITMAP *old_map= dbug_tmp_use_all_columns(field->table, &field->table->write_set);
|
|
field->set_key_image(from_key, length);
|
|
dbug_tmp_restore_column_map(&field->table->write_set, old_map);
|
|
from_key+= HA_KEY_BLOB_LENGTH;
|
|
field->move_field_offset(-ptrdiff);
|
|
}
|
|
else
|
|
{
|
|
length= MY_MIN(key_length, key_part->length);
|
|
/* skip the byte with 'uneven' bits, if used */
|
|
memcpy(to_record + key_part->offset, from_key + used_uneven_bits
|
|
, (size_t) length - used_uneven_bits);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Compare if a key has changed.
|
|
|
|
@param table TABLE
|
|
@param key key to compare to row
|
|
@param idx Index used
|
|
@param key_length Length of key
|
|
|
|
@note
|
|
In theory we could just call field->cmp() for all field types,
|
|
but as we are only interested if a key has changed (not if the key is
|
|
larger or smaller than the previous value) we can do things a bit
|
|
faster by using memcmp() instead.
|
|
|
|
@retval
|
|
0 If key is equal
|
|
@retval
|
|
1 Key has changed
|
|
*/
|
|
|
|
bool key_cmp_if_same(TABLE *table,const uchar *key,uint idx,uint key_length)
|
|
{
|
|
uint store_length;
|
|
KEY_PART_INFO *key_part;
|
|
const uchar *key_end= key + key_length;;
|
|
|
|
for (key_part=table->key_info[idx].key_part;
|
|
key < key_end ;
|
|
key_part++, key+= store_length)
|
|
{
|
|
uint length;
|
|
store_length= key_part->store_length;
|
|
|
|
if (key_part->null_bit)
|
|
{
|
|
if (*key != MY_TEST(table->record[0][key_part->null_offset] &
|
|
key_part->null_bit))
|
|
return 1;
|
|
if (*key)
|
|
continue;
|
|
key++;
|
|
store_length--;
|
|
}
|
|
if (!(key_part->key_part_flag & HA_CAN_MEMCMP))
|
|
{
|
|
if (key_part->field->key_cmp(key, key_part->length))
|
|
return 1;
|
|
continue;
|
|
}
|
|
length= MY_MIN((uint) (key_end-key), store_length);
|
|
if (!(key_part->key_type & (FIELDFLAG_NUMBER+FIELDFLAG_BINARY+
|
|
FIELDFLAG_PACK)))
|
|
{
|
|
CHARSET_INFO *cs= key_part->field->charset();
|
|
size_t char_length= key_part->length / cs->mbmaxlen;
|
|
const uchar *pos= table->record[0] + key_part->offset;
|
|
if (length > char_length)
|
|
{
|
|
char_length= cs->charpos(pos, pos + length, char_length);
|
|
set_if_smaller(char_length, length);
|
|
}
|
|
if (cs->strnncollsp(key, length, pos, char_length))
|
|
return 1;
|
|
continue;
|
|
}
|
|
if (memcmp(key,table->record[0]+key_part->offset,length))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
Unpack a field and append it.
|
|
|
|
@param[inout] to String to append the field contents to.
|
|
@param field Field to unpack.
|
|
@param rec Record which contains the field data.
|
|
@param max_length Maximum length of field to unpack
|
|
or 0 for unlimited.
|
|
@param prefix_key The field is used as a prefix key.
|
|
*/
|
|
|
|
void field_unpack(String *to, Field *field, const uchar *rec, uint max_length,
|
|
bool prefix_key)
|
|
{
|
|
String tmp;
|
|
DBUG_ENTER("field_unpack");
|
|
if (!max_length)
|
|
max_length= field->pack_length();
|
|
if (field)
|
|
{
|
|
if (field->is_null())
|
|
{
|
|
to->append(NULL_clex_str);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
CHARSET_INFO *cs= field->charset();
|
|
field->val_str(&tmp);
|
|
/*
|
|
For BINARY(N) strip trailing zeroes to make
|
|
the error message nice-looking
|
|
*/
|
|
if (field->binary() && field->type() == MYSQL_TYPE_STRING && tmp.length())
|
|
{
|
|
const char *tmp_end= tmp.ptr() + tmp.length();
|
|
while (tmp_end > tmp.ptr() && !*--tmp_end) ;
|
|
tmp.length((uint32)(tmp_end - tmp.ptr() + 1));
|
|
}
|
|
if (cs->mbmaxlen > 1 && prefix_key)
|
|
{
|
|
/*
|
|
Prefix key, multi-byte charset.
|
|
For the columns of type CHAR(N), the above val_str()
|
|
call will return exactly "key_part->length" bytes,
|
|
which can break a multi-byte characters in the middle.
|
|
Align, returning not more than "char_length" characters.
|
|
*/
|
|
size_t charpos, char_length= max_length / cs->mbmaxlen;
|
|
if ((charpos= cs->charpos(tmp.ptr(),
|
|
tmp.ptr() + tmp.length(),
|
|
char_length)) < tmp.length())
|
|
tmp.length(charpos);
|
|
}
|
|
if (max_length < field->pack_length())
|
|
tmp.length(MY_MIN(tmp.length(),max_length));
|
|
ErrConvString err(&tmp);
|
|
to->append(err.lex_cstring());
|
|
}
|
|
else
|
|
to->append(STRING_WITH_LEN("???"));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
unpack key-fields from record to some buffer.
|
|
|
|
This is used mainly to get a good error message. We temporary
|
|
change the column bitmap so that all columns are readable.
|
|
|
|
@param
|
|
to Store value here in an easy to read form
|
|
@param
|
|
table Table to use
|
|
@param
|
|
key Key
|
|
*/
|
|
|
|
void key_unpack(String *to, const TABLE *table, const KEY *key,
|
|
size_t prefix_size)
|
|
{
|
|
DBUG_ENTER("key_unpack");
|
|
|
|
to->length(0);
|
|
KEY_PART_INFO *key_part_end= key->key_part + prefix_size;
|
|
for (KEY_PART_INFO *key_part= key->key_part;
|
|
key_part < key_part_end;
|
|
key_part++)
|
|
{
|
|
if (key_part->field->invisible > INVISIBLE_USER)
|
|
continue;
|
|
if (to->length())
|
|
to->append('-');
|
|
if (key_part->null_bit)
|
|
{
|
|
if (table->record[0][key_part->null_offset] & key_part->null_bit)
|
|
{
|
|
to->append(NULL_clex_str);
|
|
continue;
|
|
}
|
|
}
|
|
field_unpack(to, key_part->field, table->record[0], key_part->length,
|
|
MY_TEST(key_part->key_part_flag & HA_PART_KEY_SEG));
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
void key_unpack(String *to, TABLE *table, KEY *key)
|
|
{
|
|
MY_BITMAP *old_map= dbug_tmp_use_all_columns(table, &table->read_set);
|
|
key_unpack(to, table, key, key->user_defined_key_parts);
|
|
dbug_tmp_restore_column_map(&table->read_set, old_map);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
Check if key uses field that is marked in passed field bitmap.
|
|
|
|
SYNOPSIS
|
|
is_key_used()
|
|
table TABLE object with which keys and fields are associated.
|
|
idx Key to be checked.
|
|
fields Bitmap of fields to be checked.
|
|
|
|
NOTE
|
|
This function uses TABLE::tmp_set bitmap so the caller should care
|
|
about saving/restoring its state if it also uses this bitmap.
|
|
|
|
RETURN VALUE
|
|
TRUE Key uses field from bitmap
|
|
FALSE Otherwise
|
|
*/
|
|
|
|
bool is_key_used(TABLE *table, uint idx, const MY_BITMAP *fields)
|
|
{
|
|
table->mark_index_columns(idx, &table->tmp_set);
|
|
return bitmap_is_overlapping(&table->tmp_set, fields);
|
|
}
|
|
|
|
|
|
/**
|
|
Compare key in row to a given key.
|
|
|
|
@param key_part Key part handler
|
|
@param key Key to compare to value in table->record[0]
|
|
@param key_length length of 'key'
|
|
|
|
@return
|
|
The return value is SIGN(key_in_row - range_key):
|
|
- 0 Key is equal to range or 'range' == 0 (no range)
|
|
- -1 Key is less than range
|
|
- 1 Key is larger than range
|
|
*/
|
|
|
|
int key_cmp(KEY_PART_INFO *key_part, const uchar *key, uint key_length)
|
|
{
|
|
uint store_length;
|
|
|
|
for (const uchar *end=key + key_length;
|
|
key < end;
|
|
key+= store_length, key_part++)
|
|
{
|
|
int cmp;
|
|
store_length= key_part->store_length;
|
|
int sort_order = (key_part->key_part_flag & HA_REVERSE_SORT) ? -1 : 1;
|
|
if (key_part->null_bit)
|
|
{
|
|
/* This key part allows null values; NULL is lower than everything */
|
|
bool field_is_null= key_part->field->is_null();
|
|
if (*key) // If range key is null
|
|
{
|
|
/* the range is expecting a null value */
|
|
if (!field_is_null)
|
|
return sort_order; // Found key is > range
|
|
/* null -- exact match, go to next key part */
|
|
continue;
|
|
}
|
|
else if (field_is_null)
|
|
return -sort_order; // NULL is less than any value
|
|
key++; // Skip null byte
|
|
store_length--;
|
|
}
|
|
if ((cmp=key_part->field->key_cmp(key, key_part->length)) < 0)
|
|
return -sort_order;
|
|
if (cmp > 0)
|
|
return sort_order;
|
|
}
|
|
return 0; // Keys are equal
|
|
}
|
|
|
|
|
|
/**
|
|
Compare two records in index order.
|
|
|
|
This method is set-up such that it can be called directly from the
|
|
priority queue and it is attempted to be optimised as much as possible
|
|
since this will be called O(N * log N) times while performing a merge
|
|
sort in various places in the code.
|
|
|
|
We retrieve the pointer to table->record[0] using the fact that key_parts
|
|
have an offset making it possible to calculate the start of the record.
|
|
We need to get the diff to the compared record since none of the records
|
|
being compared are stored in table->record[0].
|
|
|
|
We first check for NULL values, if there are no NULL values we use
|
|
a compare method that gets two field pointers and a max length
|
|
and return the result of the comparison.
|
|
|
|
key is a null terminated array, since in some cases (clustered
|
|
primary key) it must compare more than one index.
|
|
|
|
@param key Null terminated array of index information
|
|
@param first_rec Pointer to record compare with
|
|
@param second_rec Pointer to record compare against first_rec
|
|
|
|
@return Return value is SIGN(first_rec - second_rec)
|
|
@retval 0 Keys are equal
|
|
@retval -1 second_rec is greater than first_rec
|
|
@retval +1 first_rec is greater than second_rec
|
|
*/
|
|
|
|
int key_rec_cmp(const KEY *const *key, const uchar *first_rec,
|
|
const uchar *second_rec)
|
|
{
|
|
const KEY *key_info= *(key++); // Start with first key
|
|
uint key_parts, key_part_num;
|
|
KEY_PART_INFO *key_part= key_info->key_part;
|
|
uchar *rec0= key_part->field->ptr - key_part->offset;
|
|
my_ptrdiff_t first_diff= first_rec - rec0, sec_diff= second_rec - rec0;
|
|
int result= 0;
|
|
Field *field;
|
|
DBUG_ENTER("key_rec_cmp");
|
|
|
|
/* loop over all given keys */
|
|
do
|
|
{
|
|
key_parts= key_info->user_defined_key_parts;
|
|
key_part= key_info->key_part;
|
|
key_part_num= 0;
|
|
|
|
/* loop over every key part */
|
|
do
|
|
{
|
|
const int GREATER= key_part->key_part_flag & HA_REVERSE_SORT ? -1 : +1;
|
|
const int LESS= -GREATER;
|
|
|
|
field= key_part->field;
|
|
|
|
if (key_part->null_bit)
|
|
{
|
|
/* The key_part can contain NULL values */
|
|
bool first_is_null= field->is_real_null(first_diff);
|
|
bool sec_is_null= field->is_real_null(sec_diff);
|
|
/*
|
|
NULL is smaller then everything so if first is NULL and the other
|
|
not then we know that we should return -1 and for the opposite
|
|
we should return +1. If both are NULL then we call it equality
|
|
although it is a strange form of equality, we have equally little
|
|
information of the real value.
|
|
*/
|
|
if (!first_is_null)
|
|
{
|
|
if (!sec_is_null)
|
|
; /* Fall through, no NULL fields */
|
|
else
|
|
{
|
|
DBUG_RETURN(GREATER);
|
|
}
|
|
}
|
|
else if (!sec_is_null)
|
|
{
|
|
DBUG_RETURN(LESS);
|
|
}
|
|
else
|
|
goto next_loop; /* Both were NULL */
|
|
}
|
|
/*
|
|
No null values in the fields
|
|
We use the virtual method cmp_prefix with a max length parameter.
|
|
For most field types this translates into a cmp without
|
|
max length. The exceptions are the BLOB and VARCHAR field types
|
|
that take the max length into account.
|
|
*/
|
|
if ((result= field->cmp_prefix(field->ptr+first_diff, field->ptr+sec_diff,
|
|
key_part->length /
|
|
field->charset()->mbmaxlen)))
|
|
DBUG_RETURN(result * GREATER);
|
|
next_loop:
|
|
key_part++;
|
|
key_part_num++;
|
|
} while (key_part_num < key_parts); /* this key is done */
|
|
|
|
key_info= *(key++);
|
|
} while (key_info); /* no more keys to test */
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
Compare two key tuples.
|
|
|
|
@brief
|
|
Compare two key tuples, i.e. two key values in KeyTupleFormat.
|
|
|
|
@param part KEY_PART_INFO with key description
|
|
@param key1 First key to compare
|
|
@param key2 Second key to compare
|
|
@param tuple_length Length of key1 (and key2, they are the same) in bytes.
|
|
|
|
@return
|
|
@retval 0 key1 == key2
|
|
@retval -1 key1 < key2
|
|
@retval +1 key1 > key2
|
|
*/
|
|
|
|
int key_tuple_cmp(KEY_PART_INFO *part, const uchar *key1, const uchar *key2,
|
|
uint tuple_length)
|
|
{
|
|
const uchar *key1_end= key1 + tuple_length;
|
|
int UNINIT_VAR(len);
|
|
int res;
|
|
for (;key1 < key1_end; key1 += len, key2 += len, part++)
|
|
{
|
|
len= part->store_length;
|
|
if (part->null_bit)
|
|
{
|
|
if (*key1) // key1 == NULL
|
|
{
|
|
if (!*key2) // key1(NULL) < key2(notNULL)
|
|
return -1;
|
|
continue;
|
|
}
|
|
else if (*key2) // key1(notNULL) > key2 (NULL)
|
|
return 1;
|
|
/* Step over the NULL bytes for key_cmp() call */
|
|
key1++;
|
|
key2++;
|
|
len--;
|
|
}
|
|
if ((res= part->field->key_cmp(key1, key2)))
|
|
return res;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
Get hash value for the key from a key buffer
|
|
|
|
@param key_info the key descriptor
|
|
@param used_key_part number of key parts used for the key
|
|
@param key pointer to the buffer with the key value
|
|
|
|
@datails
|
|
When hashing we should take special care only of:
|
|
1. NULLs (and keyparts which can be null so one byte reserved for it);
|
|
2. Strings for which we have to take into account their collations
|
|
and the values of their lengths in the prefixes.
|
|
|
|
@return hash value calculated for the key
|
|
*/
|
|
|
|
ulong key_hashnr(KEY *key_info, uint used_key_parts, const uchar *key)
|
|
{
|
|
ulong nr=1, nr2=4;
|
|
KEY_PART_INFO *key_part= key_info->key_part;
|
|
KEY_PART_INFO *end_key_part= key_part + used_key_parts;
|
|
|
|
for (; key_part < end_key_part; key_part++)
|
|
{
|
|
uchar *pos= (uchar*)key;
|
|
CHARSET_INFO *UNINIT_VAR(cs);
|
|
size_t UNINIT_VAR(length), UNINIT_VAR(pack_length);
|
|
bool is_string= TRUE;
|
|
|
|
key+= key_part->length;
|
|
if (key_part->null_bit)
|
|
{
|
|
key++; /* Skip null byte */
|
|
if (*pos) /* Found null */
|
|
{
|
|
nr^= (nr << 1) | 1;
|
|
/* Add key pack length to key for VARCHAR segments */
|
|
switch (key_part->type) {
|
|
case HA_KEYTYPE_VARTEXT1:
|
|
case HA_KEYTYPE_VARBINARY1:
|
|
case HA_KEYTYPE_VARTEXT2:
|
|
case HA_KEYTYPE_VARBINARY2:
|
|
key+= 2;
|
|
break;
|
|
default:
|
|
;
|
|
}
|
|
continue;
|
|
}
|
|
pos++; /* Skip null byte */
|
|
}
|
|
/* If it is string set parameters of the string */
|
|
switch (key_part->type) {
|
|
case HA_KEYTYPE_TEXT:
|
|
cs= key_part->field->charset();
|
|
length= key_part->length;
|
|
pack_length= 0;
|
|
break;
|
|
case HA_KEYTYPE_BINARY :
|
|
cs= &my_charset_bin;
|
|
length= key_part->length;
|
|
pack_length= 0;
|
|
break;
|
|
case HA_KEYTYPE_VARTEXT1:
|
|
case HA_KEYTYPE_VARTEXT2:
|
|
cs= key_part->field->charset();
|
|
length= uint2korr(pos);
|
|
pack_length= 2;
|
|
break;
|
|
case HA_KEYTYPE_VARBINARY1:
|
|
case HA_KEYTYPE_VARBINARY2:
|
|
cs= &my_charset_bin;
|
|
length= uint2korr(pos);
|
|
pack_length= 2;
|
|
break;
|
|
default:
|
|
is_string= FALSE;
|
|
}
|
|
|
|
if (is_string)
|
|
{
|
|
/*
|
|
Surprisingly, BNL-H joins may use prefix keys. This may happen
|
|
when there is a real index on the column used in equi-join.
|
|
|
|
In this case, the passed key tuple is already a prefix, no
|
|
special handling is required.
|
|
*/
|
|
cs->hash_sort(pos+pack_length, length, &nr, &nr2);
|
|
key+= pack_length;
|
|
}
|
|
else
|
|
{
|
|
for (; pos < (uchar*)key ; pos++)
|
|
{
|
|
nr^=(ulong) ((((uint) nr & 63)+nr2)*((uint) *pos)) + (nr << 8);
|
|
nr2+=3;
|
|
}
|
|
}
|
|
}
|
|
DBUG_PRINT("exit", ("hash: %lx", nr));
|
|
return(nr);
|
|
}
|
|
|
|
|
|
/**
|
|
Check whether two keys in the key buffers are equal
|
|
|
|
@param key_info the key descriptor
|
|
@param used_key_part number of key parts used for the keys
|
|
@param key1 pointer to the buffer with the first key
|
|
@param key2 pointer to the buffer with the second key
|
|
|
|
@detail See details of key_hashnr().
|
|
|
|
@retval TRUE keys in the buffers are NOT equal
|
|
@retval FALSE keys in the buffers are equal
|
|
*/
|
|
|
|
bool key_buf_cmp(KEY *key_info, uint used_key_parts,
|
|
const uchar *key1, const uchar *key2)
|
|
{
|
|
KEY_PART_INFO *key_part= key_info->key_part;
|
|
KEY_PART_INFO *end_key_part= key_part + used_key_parts;
|
|
|
|
for (; key_part < end_key_part; key_part++)
|
|
{
|
|
uchar *pos1= (uchar*)key1;
|
|
uchar *pos2= (uchar*)key2;
|
|
CHARSET_INFO *UNINIT_VAR(cs);
|
|
size_t UNINIT_VAR(length1), UNINIT_VAR(length2), UNINIT_VAR(pack_length);
|
|
bool is_string= TRUE;
|
|
|
|
key1+= key_part->length;
|
|
key2+= key_part->length;
|
|
if (key_part->null_bit)
|
|
{
|
|
key1++; key2++; /* Skip null byte */
|
|
if (*pos1 && *pos2) /* Both are null */
|
|
{
|
|
/* Add key pack length to key for VARCHAR segments */
|
|
switch (key_part->type) {
|
|
case HA_KEYTYPE_VARTEXT1:
|
|
case HA_KEYTYPE_VARBINARY1:
|
|
case HA_KEYTYPE_VARTEXT2:
|
|
case HA_KEYTYPE_VARBINARY2:
|
|
key1+= 2; key2+= 2;
|
|
break;
|
|
default:
|
|
;
|
|
}
|
|
continue;
|
|
}
|
|
if (*pos1 != *pos2)
|
|
return TRUE;
|
|
pos1++; pos2++;
|
|
}
|
|
|
|
/* If it is string set parameters of the string */
|
|
switch (key_part->type) {
|
|
case HA_KEYTYPE_TEXT:
|
|
cs= key_part->field->charset();
|
|
length1= length2= key_part->length;
|
|
pack_length= 0;
|
|
break;
|
|
case HA_KEYTYPE_BINARY :
|
|
cs= &my_charset_bin;
|
|
length1= length2= key_part->length;
|
|
pack_length= 0;
|
|
break;
|
|
case HA_KEYTYPE_VARTEXT1:
|
|
case HA_KEYTYPE_VARTEXT2:
|
|
cs= key_part->field->charset();
|
|
length1= uint2korr(pos1);
|
|
length2= uint2korr(pos2);
|
|
pack_length= 2;
|
|
break;
|
|
case HA_KEYTYPE_VARBINARY1:
|
|
case HA_KEYTYPE_VARBINARY2:
|
|
cs= &my_charset_bin;
|
|
length1= uint2korr(pos1);
|
|
length2= uint2korr(pos2);
|
|
pack_length= 2;
|
|
break;
|
|
default:
|
|
is_string= FALSE;
|
|
}
|
|
|
|
if (is_string)
|
|
{
|
|
/*
|
|
Surprisingly, BNL-H joins may use prefix keys. This may happen
|
|
when there is a real index on the column used in equi-join.
|
|
In this case, we get properly truncated prefixes here.
|
|
*/
|
|
if (cs->strnncollsp(pos1 + pack_length, length1,
|
|
pos2 + pack_length, length2))
|
|
return true;
|
|
key1+= pack_length; key2+= pack_length;
|
|
}
|
|
else
|
|
{
|
|
/* it is OK to compare non-string byte per byte */
|
|
for (; pos1 < (uchar*)key1 ; pos1++, pos2++)
|
|
{
|
|
if (pos1[0] != pos2[0])
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/**
|
|
Get total length of a buffer that is needed to store a key prefix.
|
|
@param key designated key
|
|
@param parts size of a key prefix (in key parts)
|
|
*/
|
|
uint key_get_prefix_store_length(const KEY *key, size_t parts)
|
|
{
|
|
uint key_len= 0;
|
|
for (size_t kp= 0; kp < parts; kp++)
|
|
key_len+= key->key_part[kp].store_length;
|
|
return key_len;
|
|
}
|