mariadb/storage/rocksdb/rdb_datadic.h
2024-06-27 10:26:09 +03:00

1639 lines
59 KiB
C++

/*
Copyright (c) 2012,2013 Monty Program Ab
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1301 USA */
#pragma once
/* C++ standard header files */
#include <cstdlib>
#include <algorithm>
#include <atomic>
#include <map>
#include <mutex>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include <array>
/* C standard header files */
#ifndef _WIN32
#include <arpa/inet.h>
#endif
/* MyRocks header files */
#include "./ha_rocksdb.h"
#include "./properties_collector.h"
#include "./rdb_buff.h"
#include "./rdb_utils.h"
namespace myrocks {
class Rdb_dict_manager;
class Rdb_key_def;
class Rdb_field_packing;
class Rdb_cf_manager;
class Rdb_ddl_manager;
const uint32_t GTID_BUF_LEN = 60;
class Rdb_convert_to_record_key_decoder {
public:
Rdb_convert_to_record_key_decoder() = default;
Rdb_convert_to_record_key_decoder(
const Rdb_convert_to_record_key_decoder &decoder) = delete;
Rdb_convert_to_record_key_decoder &operator=(
const Rdb_convert_to_record_key_decoder &decoder) = delete;
static int decode(uchar *const buf, uint *offset, Rdb_field_packing *fpi,
TABLE *table, Field *field, bool has_unpack_info,
Rdb_string_reader *reader,
Rdb_string_reader *unpack_reader);
static int skip(const Rdb_field_packing *fpi, const Field *field,
Rdb_string_reader *reader, Rdb_string_reader *unpack_reader);
private:
static int decode_field(Rdb_field_packing *fpi, Field *field,
Rdb_string_reader *reader,
const uchar *const default_value,
Rdb_string_reader *unpack_reader);
};
/*
@brief
Field packing context.
The idea is to ensure that a call to rdb_index_field_pack_t function
is followed by a call to rdb_make_unpack_info_t.
@detail
For some datatypes, unpack_info is produced as a side effect of
rdb_index_field_pack_t function call.
For other datatypes, packing is just calling make_sort_key(), while
rdb_make_unpack_info_t is a custom function.
In order to accommodate both cases, we require both calls to be made and
unpack_info is passed as context data between the two.
*/
class Rdb_pack_field_context {
public:
Rdb_pack_field_context(const Rdb_pack_field_context &) = delete;
Rdb_pack_field_context &operator=(const Rdb_pack_field_context &) = delete;
explicit Rdb_pack_field_context(Rdb_string_writer *const writer_arg)
: writer(writer_arg) {}
// NULL means we're not producing unpack_info.
Rdb_string_writer *writer;
};
class Rdb_key_field_iterator {
private:
Rdb_field_packing *m_pack_info;
int m_iter_index;
int m_iter_end;
TABLE *m_table;
Rdb_string_reader *m_reader;
Rdb_string_reader *m_unp_reader;
uint m_curr_bitmap_pos;
const MY_BITMAP *m_covered_bitmap;
uchar *m_buf;
bool m_has_unpack_info;
const Rdb_key_def *m_key_def;
bool m_secondary_key;
bool m_hidden_pk_exists;
bool m_is_hidden_pk;
bool m_is_null;
Field *m_field;
uint m_offset;
Rdb_field_packing *m_fpi;
public:
Rdb_key_field_iterator(const Rdb_key_field_iterator &) = delete;
Rdb_key_field_iterator &operator=(const Rdb_key_field_iterator &) = delete;
Rdb_key_field_iterator(const Rdb_key_def *key_def,
Rdb_field_packing *pack_info,
Rdb_string_reader *reader,
Rdb_string_reader *unp_reader, TABLE *table,
bool has_unpack_info, const MY_BITMAP *covered_bitmap,
uchar *buf);
int next();
bool has_next();
bool get_is_null() const;
Field *get_field() const;
int get_field_index() const;
void *get_dst() const;
};
struct Rdb_collation_codec;
struct Rdb_index_info;
/*
C-style "virtual table" allowing different handling of packing logic based
on the field type. See Rdb_field_packing::setup() implementation.
*/
using rdb_make_unpack_info_t = void (*)(const Rdb_collation_codec *codec,
const Field *field,
Rdb_pack_field_context *pack_ctx);
using rdb_index_field_unpack_t = int (*)(Rdb_field_packing *fpi, Field *field,
uchar *field_ptr,
Rdb_string_reader *reader,
Rdb_string_reader *unpack_reader);
using rdb_index_field_skip_t = int (*)(const Rdb_field_packing *fpi,
const Field *field,
Rdb_string_reader *reader);
using rdb_index_field_pack_t = void (*)(Rdb_field_packing *fpi, Field *field,
uchar *buf, uchar **dst,
Rdb_pack_field_context *pack_ctx);
const uint RDB_INVALID_KEY_LEN = uint(-1);
/* How much one checksum occupies when stored in the record */
const size_t RDB_CHECKSUM_SIZE = sizeof(uint32_t);
/*
How much the checksum data occupies in record, in total.
It is storing two checksums plus 1 tag-byte.
*/
const size_t RDB_CHECKSUM_CHUNK_SIZE = 2 * RDB_CHECKSUM_SIZE + 1;
/*
Checksum data starts from CHECKSUM_DATA_TAG which is followed by two CRC32
checksums.
*/
const char RDB_CHECKSUM_DATA_TAG = 0x01;
/*
Unpack data is variable length. The header is 1 tag-byte plus a two byte
length field. The length field includes the header as well.
*/
const char RDB_UNPACK_DATA_TAG = 0x02;
const size_t RDB_UNPACK_DATA_LEN_SIZE = sizeof(uint16_t);
const size_t RDB_UNPACK_HEADER_SIZE =
sizeof(RDB_UNPACK_DATA_TAG) + RDB_UNPACK_DATA_LEN_SIZE;
/*
This header format is 1 tag-byte plus a two byte length field plus a two byte
covered bitmap. The length field includes the header size.
*/
const char RDB_UNPACK_COVERED_DATA_TAG = 0x03;
const size_t RDB_UNPACK_COVERED_DATA_LEN_SIZE = sizeof(uint16_t);
const size_t RDB_COVERED_BITMAP_SIZE = sizeof(uint16_t);
const size_t RDB_UNPACK_COVERED_HEADER_SIZE =
sizeof(RDB_UNPACK_COVERED_DATA_TAG) + RDB_UNPACK_COVERED_DATA_LEN_SIZE +
RDB_COVERED_BITMAP_SIZE;
/*
Data dictionary index info field sizes.
*/
const size_t RDB_SIZEOF_INDEX_INFO_VERSION = sizeof(uint16);
const size_t RDB_SIZEOF_INDEX_TYPE = sizeof(uchar);
const size_t RDB_SIZEOF_KV_VERSION = sizeof(uint16);
const size_t RDB_SIZEOF_INDEX_FLAGS = sizeof(uint32);
const size_t RDB_SIZEOF_AUTO_INCREMENT_VERSION = sizeof(uint16);
// Possible return values for rdb_index_field_unpack_t functions.
enum {
UNPACK_SUCCESS = 0,
UNPACK_FAILURE = 1,
};
/*
An object of this class represents information about an index in an SQL
table. It provides services to encode and decode index tuples.
Note: a table (as in, on-disk table) has a single Rdb_key_def object which
is shared across multiple TABLE* objects and may be used simultaneously from
different threads.
There are several data encodings:
=== SQL LAYER ===
SQL layer uses two encodings:
- "Table->record format". This is the format that is used for the data in
the record buffers, table->record[i]
- KeyTupleFormat (see opt_range.cc) - this is used in parameters to index
lookup functions, like handler::index_read_map().
=== Inside RocksDB ===
Primary Key is stored as a mapping:
index_tuple -> StoredRecord
StoredRecord is in Table->record format, except for blobs, which are stored
in-place. See ha_rocksdb::convert_record_to_storage_format for details.
Secondary indexes are stored as one of two variants:
index_tuple -> unpack_info
index_tuple -> empty_string
index_tuple here is the form of key that can be compared with memcmp(), aka
"mem-comparable form".
unpack_info is extra data that allows to restore the original value from its
mem-comparable form. It is present only if the index supports index-only
reads.
*/
class Rdb_key_def {
public:
/* Convert a key from KeyTupleFormat to mem-comparable form */
uint pack_index_tuple(TABLE *const tbl, uchar *const pack_buffer,
uchar *const packed_tuple, uchar *const record_buffer,
const uchar *const key_tuple,
const key_part_map &keypart_map) const;
uchar *pack_field(Field *const field, Rdb_field_packing *pack_info,
uchar *tuple, uchar *const packed_tuple,
uchar *const pack_buffer,
Rdb_string_writer *const unpack_info,
uint *const n_null_fields) const;
/* Convert a key from Table->record format to mem-comparable form */
uint pack_record(const TABLE *const tbl, uchar *const pack_buffer,
const uchar *const record, uchar *const packed_tuple,
Rdb_string_writer *const unpack_info,
const bool should_store_row_debug_checksums,
const longlong hidden_pk_id = 0, uint n_key_parts = 0,
uint *const n_null_fields = nullptr,
const char *const ttl_bytes = nullptr) const;
/* Pack the hidden primary key into mem-comparable form. */
uint pack_hidden_pk(const longlong hidden_pk_id,
uchar *const packed_tuple) const;
int unpack_record(TABLE *const table, uchar *const buf,
const rocksdb::Slice *const packed_key,
const rocksdb::Slice *const unpack_info,
const bool verify_row_debug_checksums) const;
static bool unpack_info_has_checksum(const rocksdb::Slice &unpack_info);
int compare_keys(const rocksdb::Slice *key1, const rocksdb::Slice *key2,
std::size_t *const column_index) const;
size_t key_length(const TABLE *const table, const rocksdb::Slice &key) const;
/* Get the key that is the "infimum" for this index */
inline void get_infimum_key(uchar *const key, uint *const size) const {
rdb_netbuf_store_index(key, m_index_number);
*size = INDEX_NUMBER_SIZE;
}
/* Get the key that is a "supremum" for this index */
inline void get_supremum_key(uchar *const key, uint *const size) const {
rdb_netbuf_store_index(key, m_index_number + 1);
*size = INDEX_NUMBER_SIZE;
}
/*
Get the first key that you need to position at to start iterating.
Stores into *key a "supremum" or "infimum" key value for the index.
@parameters key OUT Big Endian, value is m_index_number or
m_index_number + 1
@parameters size OUT key size, value is INDEX_NUMBER_SIZE
@return Number of bytes in the key that are usable for bloom filter use.
*/
inline int get_first_key(uchar *const key, uint *const size) const {
if (m_is_reverse_cf) {
get_supremum_key(key, size);
/* Find out how many bytes of infimum are the same as m_index_number */
uchar unmodified_key[INDEX_NUMBER_SIZE];
rdb_netbuf_store_index(unmodified_key, m_index_number);
int i;
for (i = 0; i < INDEX_NUMBER_SIZE; i++) {
if (key[i] != unmodified_key[i]) {
break;
}
}
return i;
} else {
get_infimum_key(key, size);
// For infimum key, its value will be m_index_number
// Thus return its own size instead.
return INDEX_NUMBER_SIZE;
}
}
/*
The same as get_first_key, but get the key for the last entry in the index
@parameters key OUT Big Endian, value is m_index_number or
m_index_number + 1
@parameters size OUT key size, value is INDEX_NUMBER_SIZE
@return Number of bytes in the key that are usable for bloom filter use.
*/
inline int get_last_key(uchar *const key, uint *const size) const {
if (m_is_reverse_cf) {
get_infimum_key(key, size);
// For infimum key, its value will be m_index_number
// Thus return its own size instead.
return INDEX_NUMBER_SIZE;
} else {
get_supremum_key(key, size);
/* Find out how many bytes are the same as m_index_number */
uchar unmodified_key[INDEX_NUMBER_SIZE];
rdb_netbuf_store_index(unmodified_key, m_index_number);
int i;
for (i = 0; i < INDEX_NUMBER_SIZE; i++) {
if (key[i] != unmodified_key[i]) {
break;
}
}
return i;
}
}
/* Make a key that is right after the given key. */
static int successor(uchar *const packed_tuple, const uint len);
/* Make a key that is right before the given key. */
static int predecessor(uchar *const packed_tuple, const uint len);
/*
This can be used to compare prefixes.
if X is a prefix of Y, then we consider that X = Y.
*/
// b describes the lookup key, which can be a prefix of a.
// b might be outside of the index_number range, if successor() is called.
int cmp_full_keys(const rocksdb::Slice &a, const rocksdb::Slice &b) const {
DBUG_ASSERT(covers_key(a));
return memcmp(a.data(), b.data(), std::min(a.size(), b.size()));
}
/* Check if given mem-comparable key belongs to this index */
bool covers_key(const rocksdb::Slice &slice) const {
if (slice.size() < INDEX_NUMBER_SIZE) return false;
if (memcmp(slice.data(), m_index_number_storage_form, INDEX_NUMBER_SIZE)) {
return false;
}
return true;
}
void get_lookup_bitmap(const TABLE *table, MY_BITMAP *map) const;
bool covers_lookup(const rocksdb::Slice *const unpack_info,
const MY_BITMAP *const map) const;
inline bool use_covered_bitmap_format() const {
return m_index_type == INDEX_TYPE_SECONDARY &&
m_kv_format_version >= SECONDARY_FORMAT_VERSION_UPDATE3;
}
/* Indicates that all key parts can be unpacked to cover a secondary lookup */
bool can_cover_lookup() const;
/*
Return true if the passed mem-comparable key
- is from this index, and
- it matches the passed key prefix (the prefix is also in mem-comparable
form)
*/
bool value_matches_prefix(const rocksdb::Slice &value,
const rocksdb::Slice &prefix) const {
return covers_key(value) && !cmp_full_keys(value, prefix);
}
uint32 get_keyno() const { return m_keyno; }
uint32 get_index_number() const { return m_index_number; }
GL_INDEX_ID get_gl_index_id() const {
const GL_INDEX_ID gl_index_id = {m_cf_handle->GetID(), m_index_number};
return gl_index_id;
}
int read_memcmp_key_part(const TABLE *table_arg, Rdb_string_reader *reader,
const uint part_num) const;
/* Must only be called for secondary keys: */
uint get_primary_key_tuple(const TABLE *const tbl,
const Rdb_key_def &pk_descr,
const rocksdb::Slice *const key,
uchar *const pk_buffer) const;
uint get_memcmp_sk_parts(const TABLE *table, const rocksdb::Slice &key,
uchar *sk_buffer, uint *n_null_fields) const;
/* Return max length of mem-comparable form */
uint max_storage_fmt_length() const { return m_maxlength; }
uint get_key_parts() const { return m_key_parts; }
uint get_ttl_field_index() const { return m_ttl_field_index; }
/*
Get a field object for key part #part_no
@detail
SQL layer thinks unique secondary indexes and indexes in partitioned
tables are not "Extended" with Primary Key columns.
Internally, we always extend all indexes with PK columns. This function
uses our definition of how the index is Extended.
*/
inline Field *get_table_field_for_part_no(TABLE *table, uint part_no) const;
const std::string &get_name() const { return m_name; }
const rocksdb::SliceTransform *get_extractor() const {
return m_prefix_extractor.get();
}
static size_t get_unpack_header_size(char tag);
Rdb_key_def &operator=(const Rdb_key_def &) = delete;
Rdb_key_def(const Rdb_key_def &k);
Rdb_key_def(uint indexnr_arg, uint keyno_arg,
rocksdb::ColumnFamilyHandle *cf_handle_arg,
uint16_t index_dict_version_arg, uchar index_type_arg,
uint16_t kv_format_version_arg, bool is_reverse_cf_arg,
bool is_per_partition_cf, const char *name,
Rdb_index_stats stats = Rdb_index_stats(), uint32 index_flags = 0,
uint32 ttl_rec_offset = UINT_MAX, uint64 ttl_duration = 0);
~Rdb_key_def();
enum {
INDEX_NUMBER_SIZE = 4,
VERSION_SIZE = 2,
CF_NUMBER_SIZE = 4,
CF_FLAG_SIZE = 4,
PACKED_SIZE = 4, // one int
};
// bit flags for combining bools when writing to disk
enum {
REVERSE_CF_FLAG = 1,
AUTO_CF_FLAG = 2, // Deprecated
PER_PARTITION_CF_FLAG = 4,
};
// bit flags which denote myrocks specific fields stored in the record
// currently only used for TTL.
enum INDEX_FLAG {
TTL_FLAG = 1 << 0,
// MAX_FLAG marks where the actual record starts
// This flag always needs to be set to the last index flag enum.
MAX_FLAG = TTL_FLAG << 1,
};
// Set of flags to ignore when comparing two CF-s and determining if
// they're same.
static const uint CF_FLAGS_TO_IGNORE = PER_PARTITION_CF_FLAG;
// Data dictionary types
enum DATA_DICT_TYPE {
DDL_ENTRY_INDEX_START_NUMBER = 1,
INDEX_INFO = 2,
CF_DEFINITION = 3,
BINLOG_INFO_INDEX_NUMBER = 4,
DDL_DROP_INDEX_ONGOING = 5,
INDEX_STATISTICS = 6,
MAX_INDEX_ID = 7,
DDL_CREATE_INDEX_ONGOING = 8,
AUTO_INC = 9,
// MariaDB: 10 through 12 are already taken in upstream
TABLE_VERSION = 20, // MariaDB: table version record
END_DICT_INDEX_ID = 255
};
// Data dictionary schema version. Introduce newer versions
// if changing schema layout
enum {
DDL_ENTRY_INDEX_VERSION = 1,
CF_DEFINITION_VERSION = 1,
BINLOG_INFO_INDEX_NUMBER_VERSION = 1,
DDL_DROP_INDEX_ONGOING_VERSION = 1,
MAX_INDEX_ID_VERSION = 1,
DDL_CREATE_INDEX_ONGOING_VERSION = 1,
AUTO_INCREMENT_VERSION = 1,
// Version for index stats is stored in IndexStats struct
};
// Index info version. Introduce newer versions when changing the
// INDEX_INFO layout. Update INDEX_INFO_VERSION_LATEST to point to the
// latest version number.
enum {
INDEX_INFO_VERSION_INITIAL = 1, // Obsolete
INDEX_INFO_VERSION_KV_FORMAT,
INDEX_INFO_VERSION_GLOBAL_ID,
// There is no change to data format in this version, but this version
// verifies KV format version, whereas previous versions do not. A version
// bump is needed to prevent older binaries from skipping the KV version
// check inadvertently.
INDEX_INFO_VERSION_VERIFY_KV_FORMAT,
// This changes the data format to include a 8 byte TTL duration for tables
INDEX_INFO_VERSION_TTL,
// This changes the data format to include a bitmap before the TTL duration
// which will indicate in the future whether TTL or other special fields
// are turned on or off.
INDEX_INFO_VERSION_FIELD_FLAGS,
// This normally point to the latest (currently it does).
INDEX_INFO_VERSION_LATEST = INDEX_INFO_VERSION_FIELD_FLAGS,
};
// MyRocks index types
enum {
INDEX_TYPE_PRIMARY = 1,
INDEX_TYPE_SECONDARY = 2,
INDEX_TYPE_HIDDEN_PRIMARY = 3,
};
// Key/Value format version for each index type
enum {
PRIMARY_FORMAT_VERSION_INITIAL = 10,
// This change includes:
// - For columns that can be unpacked with unpack_info, PK
// stores the unpack_info.
// - DECIMAL datatype is no longer stored in the row (because
// it can be decoded from its mem-comparable form)
// - VARCHAR-columns use endspace-padding.
PRIMARY_FORMAT_VERSION_UPDATE1 = 11,
// This change includes:
// - Binary encoded variable length fields have a new format that avoids
// an inefficient where data that was a multiple of 8 bytes in length
// had an extra 9 bytes of encoded data.
PRIMARY_FORMAT_VERSION_UPDATE2 = 12,
// This change includes support for TTL
// - This means that when TTL is specified for the table an 8-byte TTL
// field is prepended in front of each value.
PRIMARY_FORMAT_VERSION_TTL = 13,
PRIMARY_FORMAT_VERSION_LATEST = PRIMARY_FORMAT_VERSION_TTL,
SECONDARY_FORMAT_VERSION_INITIAL = 10,
// This change the SK format to include unpack_info.
SECONDARY_FORMAT_VERSION_UPDATE1 = 11,
// This change includes:
// - Binary encoded variable length fields have a new format that avoids
// an inefficient where data that was a multiple of 8 bytes in length
// had an extra 9 bytes of encoded data.
SECONDARY_FORMAT_VERSION_UPDATE2 = 12,
// This change includes support for TTL
// - This means that when TTL is specified for the table an 8-byte TTL
// field is prepended in front of each value.
SECONDARY_FORMAT_VERSION_TTL = 13,
SECONDARY_FORMAT_VERSION_LATEST = SECONDARY_FORMAT_VERSION_TTL,
// This change includes support for covering SK lookups for varchars. A
// 2-byte bitmap is added after the tag-byte to unpack_info only for
// records which have covered varchar columns. Currently waiting before
// enabling in prod.
SECONDARY_FORMAT_VERSION_UPDATE3 = 65535,
};
uint setup(const TABLE *const table, const Rdb_tbl_def *const tbl_def);
static uint extract_ttl_duration(const TABLE *const table_arg,
const Rdb_tbl_def *const tbl_def_arg,
uint64 *ttl_duration);
static uint extract_ttl_col(const TABLE *const table_arg,
const Rdb_tbl_def *const tbl_def_arg,
std::string *ttl_column, uint *ttl_field_index,
bool skip_checks = false);
inline bool has_ttl() const { return m_ttl_duration > 0; }
static bool has_index_flag(uint32 index_flags, enum INDEX_FLAG flag);
static uint32 calculate_index_flag_offset(uint32 index_flags,
enum INDEX_FLAG flag,
uint *const field_length = nullptr);
void write_index_flag_field(Rdb_string_writer *const buf,
const uchar *const val,
enum INDEX_FLAG flag) const;
static const std::string gen_qualifier_for_table(
const char *const qualifier, const std::string &partition_name = "");
static const std::string gen_cf_name_qualifier_for_partition(
const std::string &s);
static const std::string gen_ttl_duration_qualifier_for_partition(
const std::string &s);
static const std::string gen_ttl_col_qualifier_for_partition(
const std::string &s);
static const std::string parse_comment_for_qualifier(
const std::string &comment, const TABLE *const table_arg,
const Rdb_tbl_def *const tbl_def_arg, bool *per_part_match_found,
const char *const qualifier);
rocksdb::ColumnFamilyHandle *get_cf() const { return m_cf_handle; }
/* Check if keypart #kp can be unpacked from index tuple */
inline bool can_unpack(const uint kp) const;
/* Check if keypart #kp needs unpack info */
inline bool has_unpack_info(const uint kp) const;
/* Check if given table has a primary key */
static bool table_has_hidden_pk(const TABLE *const table);
void report_checksum_mismatch(const bool is_key, const char *const data,
const size_t data_size) const;
/* Check if index is at least pk_min if it is a PK,
or at least sk_min if SK.*/
bool index_format_min_check(const int pk_min, const int sk_min) const;
static void pack_with_make_sort_key(
Rdb_field_packing *const fpi, Field *const field,
uchar *buf MY_ATTRIBUTE((__unused__)), uchar **dst,
Rdb_pack_field_context *const pack_ctx MY_ATTRIBUTE((__unused__)));
static void pack_with_varchar_encoding(
Rdb_field_packing *const fpi, Field *const field, uchar *buf, uchar **dst,
Rdb_pack_field_context *const pack_ctx MY_ATTRIBUTE((__unused__)));
static void pack_with_varchar_space_pad(
Rdb_field_packing *const fpi, Field *const field, uchar *buf, uchar **dst,
Rdb_pack_field_context *const pack_ctx);
static int unpack_integer(Rdb_field_packing *const fpi, Field *const field,
uchar *const to, Rdb_string_reader *const reader,
Rdb_string_reader *const unp_reader
MY_ATTRIBUTE((__unused__)));
static int unpack_double(
Rdb_field_packing *const fpi MY_ATTRIBUTE((__unused__)),
Field *const field MY_ATTRIBUTE((__unused__)), uchar *const field_ptr,
Rdb_string_reader *const reader,
Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__)));
static int unpack_float(
Rdb_field_packing *const fpi,
Field *const field MY_ATTRIBUTE((__unused__)), uchar *const field_ptr,
Rdb_string_reader *const reader,
Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__)));
static int unpack_binary_str(Rdb_field_packing *const fpi, Field *const field,
uchar *const to, Rdb_string_reader *const reader,
Rdb_string_reader *const unp_reader
MY_ATTRIBUTE((__unused__)));
static int unpack_binary_or_utf8_varchar(
Rdb_field_packing *const fpi, Field *const field, uchar *dst,
Rdb_string_reader *const reader,
Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__)));
static int unpack_binary_or_utf8_varchar_space_pad(
Rdb_field_packing *const fpi, Field *const field, uchar *dst,
Rdb_string_reader *const reader, Rdb_string_reader *const unp_reader);
static int unpack_newdate(
Rdb_field_packing *const fpi,
Field *const field MY_ATTRIBUTE((__unused__)), uchar *const field_ptr,
Rdb_string_reader *const reader,
Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__)));
static int unpack_utf8_str(Rdb_field_packing *const fpi, Field *const field,
uchar *dst, Rdb_string_reader *const reader,
Rdb_string_reader *const unp_reader
MY_ATTRIBUTE((__unused__)));
static int unpack_unknown_varchar(Rdb_field_packing *const fpi,
Field *const field, uchar *dst,
Rdb_string_reader *const reader,
Rdb_string_reader *const unp_reader);
static int unpack_simple_varchar_space_pad(
Rdb_field_packing *const fpi, Field *const field, uchar *dst,
Rdb_string_reader *const reader, Rdb_string_reader *const unp_reader);
static int unpack_simple(Rdb_field_packing *const fpi,
Field *const field MY_ATTRIBUTE((__unused__)),
uchar *const dst, Rdb_string_reader *const reader,
Rdb_string_reader *const unp_reader);
static int unpack_unknown(Rdb_field_packing *const fpi, Field *const field,
uchar *const dst, Rdb_string_reader *const reader,
Rdb_string_reader *const unp_reader);
static int unpack_floating_point(uchar *const dst,
Rdb_string_reader *const reader,
const size_t size, const int exp_digit,
const uchar *const zero_pattern,
const uchar *const zero_val,
void (*swap_func)(uchar *, const uchar *));
static void make_unpack_simple_varchar(
const Rdb_collation_codec *const codec, const Field *const field,
Rdb_pack_field_context *const pack_ctx);
static void make_unpack_simple(const Rdb_collation_codec *const codec,
const Field *const field,
Rdb_pack_field_context *const pack_ctx);
static void make_unpack_unknown(
const Rdb_collation_codec *codec MY_ATTRIBUTE((__unused__)),
const Field *const field, Rdb_pack_field_context *const pack_ctx);
static void make_unpack_unknown_varchar(
const Rdb_collation_codec *const codec MY_ATTRIBUTE((__unused__)),
const Field *const field, Rdb_pack_field_context *const pack_ctx);
static void dummy_make_unpack_info(
const Rdb_collation_codec *codec MY_ATTRIBUTE((__unused__)),
const Field *field MY_ATTRIBUTE((__unused__)),
Rdb_pack_field_context *pack_ctx MY_ATTRIBUTE((__unused__)));
static int skip_max_length(const Rdb_field_packing *const fpi,
const Field *const field
MY_ATTRIBUTE((__unused__)),
Rdb_string_reader *const reader);
static int skip_variable_length(const Rdb_field_packing *const fpi,
const Field *const field,
Rdb_string_reader *const reader);
static int skip_variable_space_pad(const Rdb_field_packing *const fpi,
const Field *const field,
Rdb_string_reader *const reader);
inline bool use_legacy_varbinary_format() const {
return !index_format_min_check(PRIMARY_FORMAT_VERSION_UPDATE2,
SECONDARY_FORMAT_VERSION_UPDATE2);
}
static inline bool is_unpack_data_tag(char c) {
return c == RDB_UNPACK_DATA_TAG || c == RDB_UNPACK_COVERED_DATA_TAG;
}
private:
#ifndef DBUG_OFF
inline bool is_storage_available(const int offset, const int needed) const {
const int storage_length = static_cast<int>(max_storage_fmt_length());
return (storage_length - offset) >= needed;
}
#else
inline bool is_storage_available(const int &offset, const int &needed) const {
return 1;
}
#endif // DBUG_OFF
/* Global number of this index (used as prefix in StorageFormat) */
const uint32 m_index_number;
uchar m_index_number_storage_form[INDEX_NUMBER_SIZE];
rocksdb::ColumnFamilyHandle *m_cf_handle;
static void pack_legacy_variable_format(const uchar *src, size_t src_len,
uchar **dst);
static void pack_variable_format(const uchar *src, size_t src_len,
uchar **dst);
static uint calc_unpack_legacy_variable_format(uchar flag, bool *done);
static uint calc_unpack_variable_format(uchar flag, bool *done);
public:
uint16_t m_index_dict_version;
uchar m_index_type;
/* KV format version for the index id */
uint16_t m_kv_format_version;
/* If true, the column family stores data in the reverse order */
bool m_is_reverse_cf;
/* If true, then column family is created per partition. */
bool m_is_per_partition_cf;
std::string m_name;
mutable Rdb_index_stats m_stats;
/*
Bitmap containing information about whether TTL or other special fields
are enabled for the given index.
*/
uint32 m_index_flags_bitmap;
/*
How much space in bytes the index flag fields occupy.
*/
uint32 m_total_index_flags_length;
/*
Offset in the records where the 8-byte TTL is stored (UINT_MAX if no TTL)
*/
uint32 m_ttl_rec_offset;
/* Default TTL duration */
uint64 m_ttl_duration;
/* TTL column (if defined by user, otherwise implicit TTL is used) */
std::string m_ttl_column;
private:
/* Number of key parts in the primary key*/
uint m_pk_key_parts;
/*
pk_part_no[X]=Y means that keypart #X of this key is key part #Y of the
primary key. Y==-1 means this column is not present in the primary key.
*/
uint *m_pk_part_no;
/* Array of index-part descriptors. */
Rdb_field_packing *m_pack_info;
uint m_keyno; /* number of this index in the table */
/*
Number of key parts in the index (including "index extension"). This is how
many elements are in the m_pack_info array.
*/
uint m_key_parts;
/*
If TTL column is part of the PK, offset of the column within pk.
Default is UINT_MAX to denote that TTL col is not part of PK.
*/
uint m_ttl_pk_key_part_offset;
/*
Index of the TTL column in table->s->fields, if it exists.
Default is UINT_MAX to denote that it does not exist.
*/
uint m_ttl_field_index;
/* Prefix extractor for the column family of the key definiton */
std::shared_ptr<const rocksdb::SliceTransform> m_prefix_extractor;
/* Maximum length of the mem-comparable form. */
uint m_maxlength;
/* mutex to protect setup */
mysql_mutex_t m_mutex;
};
// "Simple" collations (those specified in strings/ctype-simple.c) are simple
// because their strnxfrm function maps one byte to one byte. However, the
// mapping is not injective, so the inverse function will take in an extra
// index parameter containing information to disambiguate what the original
// character was.
//
// The m_enc* members are for encoding. Generally, we want encoding to be:
// src -> (dst, idx)
//
// Since strnxfrm already gives us dst, we just need m_enc_idx[src] to give us
// idx.
//
// For the inverse, we have:
// (dst, idx) -> src
//
// We have m_dec_idx[idx][dst] = src to get our original character back.
//
struct Rdb_collation_codec {
const my_core::CHARSET_INFO *m_cs;
// The first element unpacks VARCHAR(n), the second one - CHAR(n).
std::array<rdb_make_unpack_info_t, 2> m_make_unpack_info_func;
std::array<rdb_index_field_unpack_t, 2> m_unpack_func;
std::array<uchar, 256> m_enc_idx;
std::array<uchar, 256> m_enc_size;
std::array<uchar, 256> m_dec_size;
std::vector<std::array<uchar, 256>> m_dec_idx;
};
extern mysql_mutex_t rdb_collation_data_mutex;
extern mysql_mutex_t rdb_mem_cmp_space_mutex;
extern std::array<const Rdb_collation_codec *, MY_ALL_CHARSETS_SIZE>
rdb_collation_data;
class Rdb_field_packing {
public:
Rdb_field_packing(const Rdb_field_packing &) = delete;
Rdb_field_packing &operator=(const Rdb_field_packing &) = delete;
Rdb_field_packing() = default;
/* Length of mem-comparable image of the field, in bytes */
int m_max_image_len;
/* Length of image in the unpack data */
int m_unpack_data_len;
int m_unpack_data_offset;
bool m_maybe_null; /* TRUE <=> NULL-byte is stored */
/*
Valid only for VARCHAR fields.
*/
const CHARSET_INFO *m_varchar_charset;
bool m_use_legacy_varbinary_format;
// (Valid when Variable Length Space Padded Encoding is used):
uint m_segment_size; // size of segment used
// number of bytes used to store number of trimmed (or added)
// spaces in the upack_info
bool m_unpack_info_uses_two_bytes;
/*
True implies that an index-only read is always possible for this field.
False means an index-only read may be possible depending on the record and
field type.
*/
bool m_covered;
const std::vector<uchar> *space_xfrm;
size_t space_xfrm_len;
size_t space_mb_len;
const Rdb_collation_codec *m_charset_codec;
/*
@return TRUE: this field makes use of unpack_info.
*/
bool uses_unpack_info() const { return (m_make_unpack_info_func != nullptr); }
/* TRUE means unpack_info stores the original field value */
bool m_unpack_info_stores_value;
rdb_index_field_pack_t m_pack_func;
rdb_make_unpack_info_t m_make_unpack_info_func;
/*
This function takes
- mem-comparable form
- unpack_info data
and restores the original value.
*/
rdb_index_field_unpack_t m_unpack_func;
/*
This function skips over mem-comparable form.
*/
rdb_index_field_skip_t m_skip_func;
private:
/*
Location of the field in the table (key number and key part number).
Note that this describes not the field, but rather a position of field in
the index. Consider an example:
col1 VARCHAR (100),
INDEX idx1 (col1)),
INDEX idx2 (col1(10)),
Here, idx2 has a special Field object that is set to describe a 10-char
prefix of col1.
We must also store the keynr. It is needed for implicit "extended keys".
Every key in MyRocks needs to include PK columns. Generally, SQL layer
includes PK columns as part of its "Extended Keys" feature, but sometimes
it does not (known examples are unique secondary indexes and partitioned
tables).
In that case, MyRocks's index descriptor has invisible suffix of PK
columns (and the point is that these columns are parts of PK, not parts
of the current index).
*/
uint m_keynr;
uint m_key_part;
public:
bool setup(const Rdb_key_def *const key_descr, const Field *const field,
const uint keynr_arg, const uint key_part_arg,
const uint16 key_length);
Field *get_field_in_table(const TABLE *const tbl) const;
void fill_hidden_pk_val(uchar **dst, const longlong hidden_pk_id) const;
};
/*
Descriptor telling how to decode/encode a field to on-disk record storage
format. Not all information is in the structure yet, but eventually we
want to have as much as possible there to avoid virtual calls.
For encoding/decoding of index tuples, see Rdb_key_def.
*/
class Rdb_field_encoder {
public:
Rdb_field_encoder(const Rdb_field_encoder &) = delete;
Rdb_field_encoder &operator=(const Rdb_field_encoder &) = delete;
/*
STORE_NONE is set when a column can be decoded solely from their
mem-comparable form.
STORE_SOME is set when a column can be decoded from their mem-comparable
form plus unpack_info.
STORE_ALL is set when a column cannot be decoded, so its original value
must be stored in the PK records.
*/
enum STORAGE_TYPE {
STORE_NONE,
STORE_SOME,
STORE_ALL,
};
STORAGE_TYPE m_storage_type;
uint m_null_offset;
uint16 m_field_index;
uchar m_null_mask; // 0 means the field cannot be null
my_core::enum_field_types m_field_type;
uint m_pack_length_in_rec;
bool maybe_null() const { return m_null_mask != 0; }
bool uses_variable_len_encoding() const {
return (m_field_type == MYSQL_TYPE_BLOB ||
m_field_type == MYSQL_TYPE_VARCHAR);
}
};
inline Field *Rdb_key_def::get_table_field_for_part_no(TABLE *table,
uint part_no) const {
DBUG_ASSERT(part_no < get_key_parts());
return m_pack_info[part_no].get_field_in_table(table);
}
inline bool Rdb_key_def::can_unpack(const uint kp) const {
DBUG_ASSERT(kp < m_key_parts);
return (m_pack_info[kp].m_unpack_func != nullptr);
}
inline bool Rdb_key_def::has_unpack_info(const uint kp) const {
DBUG_ASSERT(kp < m_key_parts);
return m_pack_info[kp].uses_unpack_info();
}
/*
A table definition. This is an entry in the mapping
dbname.tablename -> {index_nr, index_nr, ... }
There is only one Rdb_tbl_def object for a given table.
That's why we keep auto_increment value here, too.
*/
class Rdb_tbl_def {
private:
void check_if_is_mysql_system_table();
/* Stores 'dbname.tablename' */
std::string m_dbname_tablename;
/* Store the db name, table name, and partition name */
std::string m_dbname;
std::string m_tablename;
std::string m_partition;
void set_name(const std::string &name);
public:
Rdb_tbl_def(const Rdb_tbl_def &) = delete;
Rdb_tbl_def &operator=(const Rdb_tbl_def &) = delete;
explicit Rdb_tbl_def(const std::string &name)
: m_key_descr_arr(nullptr), m_hidden_pk_val(0), m_auto_incr_val(0),
m_update_time(0), m_create_time(CREATE_TIME_UNKNOWN) {
set_name(name);
}
Rdb_tbl_def(const char *const name, const size_t len)
: m_key_descr_arr(nullptr), m_hidden_pk_val(0), m_auto_incr_val(0),
m_update_time(0), m_create_time(CREATE_TIME_UNKNOWN) {
set_name(std::string(name, len));
}
explicit Rdb_tbl_def(const rocksdb::Slice &slice, const size_t pos = 0)
: m_key_descr_arr(nullptr), m_hidden_pk_val(0), m_auto_incr_val(0),
m_update_time(0), m_create_time(CREATE_TIME_UNKNOWN) {
set_name(std::string(slice.data() + pos, slice.size() - pos));
}
~Rdb_tbl_def();
void check_and_set_read_free_rpl_table();
/* Number of indexes */
uint m_key_count;
/* Array of index descriptors */
std::shared_ptr<Rdb_key_def> *m_key_descr_arr;
std::atomic<longlong> m_hidden_pk_val;
std::atomic<ulonglong> m_auto_incr_val;
/* Is this a system table */
bool m_is_mysql_system_table;
/* Is this table read free repl enabled */
std::atomic_bool m_is_read_free_rpl_table{false};
bool put_dict(Rdb_dict_manager *const dict, rocksdb::WriteBatch *const batch,
const rocksdb::Slice &key);
const std::string &full_tablename() const { return m_dbname_tablename; }
const std::string &base_dbname() const { return m_dbname; }
const std::string &base_tablename() const { return m_tablename; }
const std::string &base_partition() const { return m_partition; }
GL_INDEX_ID get_autoincr_gl_index_id();
time_t get_create_time();
std::atomic<time_t> m_update_time; // in-memory only value
private:
const time_t CREATE_TIME_UNKNOWN= 1;
// CREATE_TIME_UNKNOWN means "didn't try to read, yet"
// 0 means "no data available"
std::atomic<time_t> m_create_time;
};
/*
A thread-safe sequential number generator. Its performance is not a concern
hence it is ok to protect it by a mutex.
*/
class Rdb_seq_generator {
uint m_next_number = 0;
mysql_mutex_t m_mutex;
public:
Rdb_seq_generator(const Rdb_seq_generator &) = delete;
Rdb_seq_generator &operator=(const Rdb_seq_generator &) = delete;
Rdb_seq_generator() = default;
void init(const uint initial_number) {
mysql_mutex_init(0, &m_mutex, MY_MUTEX_INIT_FAST);
m_next_number = initial_number;
}
uint get_and_update_next_number(Rdb_dict_manager *const dict);
void cleanup() { mysql_mutex_destroy(&m_mutex); }
};
interface Rdb_tables_scanner {
virtual int add_table(Rdb_tbl_def * tdef) = 0;
virtual ~Rdb_tables_scanner() = default; /* Keep the compiler happy */
};
/*
This contains a mapping of
dbname.table_name -> array{Rdb_key_def}.
objects are shared among all threads.
*/
class Rdb_ddl_manager {
Rdb_dict_manager *m_dict = nullptr;
// Contains Rdb_tbl_def elements
std::unordered_map<std::string, Rdb_tbl_def *> m_ddl_map;
// Maps index id to <table_name, index number>
std::map<GL_INDEX_ID, std::pair<std::string, uint>> m_index_num_to_keydef;
// Maps index id to key definitons not yet committed to data dictionary.
// This is mainly used to store key definitions during ALTER TABLE.
std::map<GL_INDEX_ID, std::shared_ptr<Rdb_key_def>>
m_index_num_to_uncommitted_keydef;
mysql_rwlock_t m_rwlock;
Rdb_seq_generator m_sequence;
// A queue of table stats to write into data dictionary
// It is produced by event listener (ie compaction and flush threads)
// and consumed by the rocksdb background thread
std::map<GL_INDEX_ID, Rdb_index_stats> m_stats2store;
const std::shared_ptr<Rdb_key_def> &find(GL_INDEX_ID gl_index_id);
public:
Rdb_ddl_manager(const Rdb_ddl_manager &) = delete;
Rdb_ddl_manager &operator=(const Rdb_ddl_manager &) = delete;
Rdb_ddl_manager() = default;
/* Load the data dictionary from on-disk storage */
bool init(Rdb_dict_manager *const dict_arg, Rdb_cf_manager *const cf_manager,
const uint32_t validate_tables);
void cleanup();
Rdb_tbl_def *find(const std::string &table_name, const bool lock = true);
std::shared_ptr<const Rdb_key_def> safe_find(GL_INDEX_ID gl_index_id);
void set_stats(const std::unordered_map<GL_INDEX_ID, Rdb_index_stats> &stats);
void adjust_stats(const std::vector<Rdb_index_stats> &new_data,
const std::vector<Rdb_index_stats> &deleted_data =
std::vector<Rdb_index_stats>());
void persist_stats(const bool sync = false);
/* Modify the mapping and write it to on-disk storage */
int put_and_write(Rdb_tbl_def *const key_descr,
rocksdb::WriteBatch *const batch);
void remove(Rdb_tbl_def *const rec, rocksdb::WriteBatch *const batch,
const bool lock = true);
bool rename(const std::string &from, const std::string &to,
rocksdb::WriteBatch *const batch);
uint get_and_update_next_number(Rdb_dict_manager *const dict) {
return m_sequence.get_and_update_next_number(dict);
}
const std::string safe_get_table_name(const GL_INDEX_ID &gl_index_id);
/* Walk the data dictionary */
int scan_for_tables(Rdb_tables_scanner *tables_scanner);
void erase_index_num(const GL_INDEX_ID &gl_index_id);
void add_uncommitted_keydefs(
const std::unordered_set<std::shared_ptr<Rdb_key_def>> &indexes);
void remove_uncommitted_keydefs(
const std::unordered_set<std::shared_ptr<Rdb_key_def>> &indexes);
private:
/* Put the data into in-memory table (only) */
int put(Rdb_tbl_def *const key_descr, const bool lock = true);
/* Helper functions to be passed to my_core::HASH object */
static const uchar *get_hash_key(Rdb_tbl_def *const rec, size_t *const length,
my_bool not_used MY_ATTRIBUTE((unused)));
static void free_hash_elem(void *const data);
bool validate_schemas();
bool validate_auto_incr();
};
/*
Writing binlog information into RocksDB at commit(),
and retrieving binlog information at crash recovery.
commit() and recovery are always executed by at most single client
at the same time, so concurrency control is not needed.
Binlog info is stored in RocksDB as the following.
key: BINLOG_INFO_INDEX_NUMBER
value: packed single row:
binlog_name_length (2 byte form)
binlog_name
binlog_position (4 byte form)
binlog_gtid_length (2 byte form)
binlog_gtid
*/
class Rdb_binlog_manager {
public:
Rdb_binlog_manager(const Rdb_binlog_manager &) = delete;
Rdb_binlog_manager &operator=(const Rdb_binlog_manager &) = delete;
Rdb_binlog_manager() = default;
bool init(Rdb_dict_manager *const dict);
void cleanup();
void update(const char *const binlog_name, const my_off_t binlog_pos,
rocksdb::WriteBatchBase *const batch);
bool read(char *const binlog_name, my_off_t *const binlog_pos,
char *const binlog_gtid) const;
void update_slave_gtid_info(const uint id, const char *const db,
const char *const gtid,
rocksdb::WriteBatchBase *const write_batch);
private:
Rdb_dict_manager *m_dict = nullptr;
Rdb_buf_writer<Rdb_key_def::INDEX_NUMBER_SIZE> m_key_writer;
rocksdb::Slice m_key_slice;
bool unpack_value(const uchar *const value, size_t value_size,
char *const binlog_name,
my_off_t *const binlog_pos, char *const binlog_gtid) const;
std::atomic<Rdb_tbl_def *> m_slave_gtid_info_tbl;
};
/*
Rdb_dict_manager manages how MySQL on RocksDB (MyRocks) stores its
internal data dictionary.
MyRocks stores data dictionary on dedicated system column family
named __system__. The system column family is used by MyRocks
internally only, and not used by applications.
Currently MyRocks has the following data dictionary data models.
1. Table Name => internal index id mappings
key: Rdb_key_def::DDL_ENTRY_INDEX_START_NUMBER(0x1) + dbname.tablename
value: version, {cf_id, index_id}*n_indexes_of_the_table
version is 2 bytes. cf_id and index_id are 4 bytes.
2. internal cf_id, index id => index information
key: Rdb_key_def::INDEX_INFO(0x2) + cf_id + index_id
value: version, index_type, kv_format_version, index_flags, ttl_duration
index_type is 1 byte, version and kv_format_version are 2 bytes.
index_flags is 4 bytes.
ttl_duration is 8 bytes.
3. CF id => CF flags
key: Rdb_key_def::CF_DEFINITION(0x3) + cf_id
value: version, {is_reverse_cf, is_auto_cf (deprecated), is_per_partition_cf}
cf_flags is 4 bytes in total.
4. Binlog entry (updated at commit)
key: Rdb_key_def::BINLOG_INFO_INDEX_NUMBER (0x4)
value: version, {binlog_name,binlog_pos,binlog_gtid}
5. Ongoing drop index entry
key: Rdb_key_def::DDL_DROP_INDEX_ONGOING(0x5) + cf_id + index_id
value: version
6. index stats
key: Rdb_key_def::INDEX_STATISTICS(0x6) + cf_id + index_id
value: version, {materialized PropertiesCollector::IndexStats}
7. maximum index id
key: Rdb_key_def::MAX_INDEX_ID(0x7)
value: index_id
index_id is 4 bytes
8. Ongoing create index entry
key: Rdb_key_def::DDL_CREATE_INDEX_ONGOING(0x8) + cf_id + index_id
value: version
9. auto_increment values
key: Rdb_key_def::AUTO_INC(0x9) + cf_id + index_id
value: version, {max auto_increment so far}
max auto_increment is 8 bytes
Data dictionary operations are atomic inside RocksDB. For example,
when creating a table with two indexes, it is necessary to call Put
three times. They have to be atomic. Rdb_dict_manager has a wrapper function
begin() and commit() to make it easier to do atomic operations.
*/
class Rdb_dict_manager {
private:
mysql_mutex_t m_mutex;
rocksdb::TransactionDB *m_db = nullptr;
rocksdb::ColumnFamilyHandle *m_system_cfh = nullptr;
/* Utility to put INDEX_INFO and CF_DEFINITION */
uchar m_key_buf_max_index_id[Rdb_key_def::INDEX_NUMBER_SIZE] = {0};
rocksdb::Slice m_key_slice_max_index_id;
static void dump_index_id(uchar *const netbuf,
Rdb_key_def::DATA_DICT_TYPE dict_type,
const GL_INDEX_ID &gl_index_id);
template <size_t T>
static void dump_index_id(Rdb_buf_writer<T> *buf_writer,
Rdb_key_def::DATA_DICT_TYPE dict_type,
const GL_INDEX_ID &gl_index_id) {
buf_writer->write_uint32(dict_type);
buf_writer->write_uint32(gl_index_id.cf_id);
buf_writer->write_uint32(gl_index_id.index_id);
}
void delete_with_prefix(rocksdb::WriteBatch *const batch,
Rdb_key_def::DATA_DICT_TYPE dict_type,
const GL_INDEX_ID &gl_index_id) const;
/* Functions for fast DROP TABLE/INDEX */
void resume_drop_indexes() const;
void log_start_drop_table(const std::shared_ptr<Rdb_key_def> *const key_descr,
const uint32 n_keys,
const char *const log_action) const;
void log_start_drop_index(GL_INDEX_ID gl_index_id,
const char *log_action) const;
public:
Rdb_dict_manager(const Rdb_dict_manager &) = delete;
Rdb_dict_manager &operator=(const Rdb_dict_manager &) = delete;
Rdb_dict_manager() = default;
bool init(rocksdb::TransactionDB *const rdb_dict,
Rdb_cf_manager *const cf_manager);
inline void cleanup() { mysql_mutex_destroy(&m_mutex); }
inline void lock() { RDB_MUTEX_LOCK_CHECK(m_mutex); }
inline void unlock() { RDB_MUTEX_UNLOCK_CHECK(m_mutex); }
inline rocksdb::ColumnFamilyHandle *get_system_cf() const {
return m_system_cfh;
}
/* Raw RocksDB operations */
std::unique_ptr<rocksdb::WriteBatch> begin() const;
int commit(rocksdb::WriteBatch *const batch, const bool sync = true) const;
rocksdb::Status get_value(const rocksdb::Slice &key,
std::string *const value) const;
void put_key(rocksdb::WriteBatchBase *const batch, const rocksdb::Slice &key,
const rocksdb::Slice &value) const;
void delete_key(rocksdb::WriteBatchBase *batch,
const rocksdb::Slice &key) const;
rocksdb::Iterator *new_iterator() const;
/* Internal Index id => CF */
void add_or_update_index_cf_mapping(
rocksdb::WriteBatch *batch,
struct Rdb_index_info *const index_info) const;
void delete_index_info(rocksdb::WriteBatch *batch,
const GL_INDEX_ID &index_id) const;
bool get_index_info(const GL_INDEX_ID &gl_index_id,
struct Rdb_index_info *const index_info) const;
/* CF id => CF flags */
void add_cf_flags(rocksdb::WriteBatch *const batch, const uint cf_id,
const uint cf_flags) const;
bool get_cf_flags(const uint cf_id, uint *const cf_flags) const;
/* Functions for fast CREATE/DROP TABLE/INDEX */
void get_ongoing_index_operation(
std::unordered_set<GL_INDEX_ID> *gl_index_ids,
Rdb_key_def::DATA_DICT_TYPE dd_type) const;
bool is_index_operation_ongoing(const GL_INDEX_ID &gl_index_id,
Rdb_key_def::DATA_DICT_TYPE dd_type) const;
void start_ongoing_index_operation(rocksdb::WriteBatch *batch,
const GL_INDEX_ID &gl_index_id,
Rdb_key_def::DATA_DICT_TYPE dd_type) const;
void end_ongoing_index_operation(rocksdb::WriteBatch *const batch,
const GL_INDEX_ID &gl_index_id,
Rdb_key_def::DATA_DICT_TYPE dd_type) const;
bool is_drop_index_empty() const;
void add_drop_table(std::shared_ptr<Rdb_key_def> *const key_descr,
const uint32 n_keys,
rocksdb::WriteBatch *const batch) const;
void add_drop_index(const std::unordered_set<GL_INDEX_ID> &gl_index_ids,
rocksdb::WriteBatch *const batch) const;
void add_create_index(const std::unordered_set<GL_INDEX_ID> &gl_index_ids,
rocksdb::WriteBatch *const batch) const;
void finish_indexes_operation(
const std::unordered_set<GL_INDEX_ID> &gl_index_ids,
Rdb_key_def::DATA_DICT_TYPE dd_type) const;
void rollback_ongoing_index_creation() const;
inline void get_ongoing_drop_indexes(
std::unordered_set<GL_INDEX_ID> *gl_index_ids) const {
get_ongoing_index_operation(gl_index_ids,
Rdb_key_def::DDL_DROP_INDEX_ONGOING);
}
inline void get_ongoing_create_indexes(
std::unordered_set<GL_INDEX_ID> *gl_index_ids) const {
get_ongoing_index_operation(gl_index_ids,
Rdb_key_def::DDL_CREATE_INDEX_ONGOING);
}
inline void start_drop_index(rocksdb::WriteBatch *wb,
const GL_INDEX_ID &gl_index_id) const {
start_ongoing_index_operation(wb, gl_index_id,
Rdb_key_def::DDL_DROP_INDEX_ONGOING);
}
inline void start_create_index(rocksdb::WriteBatch *wb,
const GL_INDEX_ID &gl_index_id) const {
start_ongoing_index_operation(wb, gl_index_id,
Rdb_key_def::DDL_CREATE_INDEX_ONGOING);
}
inline void finish_drop_indexes(
const std::unordered_set<GL_INDEX_ID> &gl_index_ids) const {
finish_indexes_operation(gl_index_ids, Rdb_key_def::DDL_DROP_INDEX_ONGOING);
}
inline void finish_create_indexes(
const std::unordered_set<GL_INDEX_ID> &gl_index_ids) const {
finish_indexes_operation(gl_index_ids,
Rdb_key_def::DDL_CREATE_INDEX_ONGOING);
}
inline bool is_drop_index_ongoing(const GL_INDEX_ID &gl_index_id) const {
return is_index_operation_ongoing(gl_index_id,
Rdb_key_def::DDL_DROP_INDEX_ONGOING);
}
inline bool is_create_index_ongoing(const GL_INDEX_ID &gl_index_id) const {
return is_index_operation_ongoing(gl_index_id,
Rdb_key_def::DDL_CREATE_INDEX_ONGOING);
}
bool get_max_index_id(uint32_t *const index_id) const;
bool update_max_index_id(rocksdb::WriteBatch *const batch,
const uint32_t index_id) const;
void add_stats(rocksdb::WriteBatch *const batch,
const std::vector<Rdb_index_stats> &stats) const;
Rdb_index_stats get_stats(GL_INDEX_ID gl_index_id) const;
rocksdb::Status put_auto_incr_val(rocksdb::WriteBatchBase *batch,
const GL_INDEX_ID &gl_index_id,
ulonglong val,
bool overwrite = false) const;
bool get_auto_incr_val(const GL_INDEX_ID &gl_index_id,
ulonglong *new_val) const;
};
struct Rdb_index_info {
GL_INDEX_ID m_gl_index_id;
uint16_t m_index_dict_version = 0;
uchar m_index_type = 0;
uint16_t m_kv_version = 0;
uint32 m_index_flags = 0;
uint64 m_ttl_duration = 0;
};
/*
@brief
Merge Operator for the auto_increment value in the system_cf
@detail
This class implements the rocksdb Merge Operator for auto_increment values
that are stored to the data dictionary every transaction.
The actual Merge function is triggered on compaction, memtable flushes, or
when get() is called on the same key.
*/
class Rdb_system_merge_op : public rocksdb::AssociativeMergeOperator {
public:
/*
Updates the new value associated with a key to be the maximum of the
passed in value and the existing value.
@param[IN] key
@param[IN] existing_value existing value for a key; nullptr if nonexistent
key
@param[IN] value
@param[OUT] new_value new value after Merge
@param[IN] logger
*/
bool Merge(const rocksdb::Slice &key, const rocksdb::Slice *existing_value,
const rocksdb::Slice &value, std::string *new_value,
rocksdb::Logger *logger) const override {
DBUG_ASSERT(new_value != nullptr);
if (key.size() != Rdb_key_def::INDEX_NUMBER_SIZE * 3 ||
GetKeyType(key) != Rdb_key_def::AUTO_INC ||
value.size() !=
RDB_SIZEOF_AUTO_INCREMENT_VERSION + ROCKSDB_SIZEOF_AUTOINC_VALUE ||
GetVersion(value) > Rdb_key_def::AUTO_INCREMENT_VERSION) {
abort();
}
uint64_t merged_value = Deserialize(value);
if (existing_value != nullptr) {
if (existing_value->size() != RDB_SIZEOF_AUTO_INCREMENT_VERSION +
ROCKSDB_SIZEOF_AUTOINC_VALUE ||
GetVersion(*existing_value) > Rdb_key_def::AUTO_INCREMENT_VERSION) {
abort();
}
merged_value = std::max(merged_value, Deserialize(*existing_value));
}
Serialize(merged_value, new_value);
return true;
}
const char *Name() const override { return "Rdb_system_merge_op"; }
private:
/*
Serializes the integer data to the new_value buffer or the target buffer
the merge operator will update to
*/
void Serialize(const uint64_t data, std::string *new_value) const {
uchar value_buf[RDB_SIZEOF_AUTO_INCREMENT_VERSION +
ROCKSDB_SIZEOF_AUTOINC_VALUE] = {0};
uchar *ptr = value_buf;
/* fill in the auto increment version */
rdb_netbuf_store_uint16(ptr, Rdb_key_def::AUTO_INCREMENT_VERSION);
ptr += RDB_SIZEOF_AUTO_INCREMENT_VERSION;
/* fill in the auto increment value */
rdb_netbuf_store_uint64(ptr, data);
ptr += ROCKSDB_SIZEOF_AUTOINC_VALUE;
new_value->assign(reinterpret_cast<char *>(value_buf), ptr - value_buf);
}
/*
Gets the value of auto_increment type in the data dictionary from the
value slice
@Note Only to be used on data dictionary keys for the auto_increment type
*/
uint64_t Deserialize(const rocksdb::Slice &s) const {
return rdb_netbuf_to_uint64(reinterpret_cast<const uchar *>(s.data()) +
RDB_SIZEOF_AUTO_INCREMENT_VERSION);
}
/*
Gets the type of the key of the key in the data dictionary.
@Note Only to be used on data dictionary keys for the auto_increment type
*/
uint16_t GetKeyType(const rocksdb::Slice &s) const {
return rdb_netbuf_to_uint32(reinterpret_cast<const uchar *>(s.data()));
}
/*
Gets the version of the auto_increment value in the data dictionary.
@Note Only to be used on data dictionary value for the auto_increment type
*/
uint16_t GetVersion(const rocksdb::Slice &s) const {
return rdb_netbuf_to_uint16(reinterpret_cast<const uchar *>(s.data()));
}
};
bool rdb_is_collation_supported(const my_core::CHARSET_INFO *const cs);
} // namespace myrocks