mirror of
https://github.com/MariaDB/server.git
synced 2025-01-27 09:14:17 +01:00
5425 lines
180 KiB
C++
5425 lines
180 KiB
C++
/*
|
|
Copyright (c) 2012,2013 Monty Program Ab
|
|
Copyright (c) 2020, MariaDB Corporation.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1301 USA */
|
|
|
|
/* For use of 'PRIu64': */
|
|
#define __STDC_FORMAT_MACROS
|
|
|
|
#include <my_global.h>
|
|
/* This C++ file's header file */
|
|
#include "./rdb_datadic.h"
|
|
|
|
#include <inttypes.h>
|
|
/* C++ standard header files */
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <set>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
/* MySQL header files */
|
|
#include "./field.h"
|
|
#include "./key.h"
|
|
#include "./m_ctype.h"
|
|
#include "./my_bit.h"
|
|
#include "./my_bitmap.h"
|
|
#include "./sql_table.h"
|
|
|
|
/* MyRocks header files */
|
|
#include "./ha_rocksdb.h"
|
|
#include "./ha_rocksdb_proto.h"
|
|
#include "./my_stacktrace.h"
|
|
#include "./rdb_cf_manager.h"
|
|
#include "./rdb_psi.h"
|
|
#include "./rdb_utils.h"
|
|
|
|
namespace myrocks {
|
|
|
|
void get_mem_comparable_space(const CHARSET_INFO *cs,
|
|
const std::vector<uchar> **xfrm, size_t *xfrm_len,
|
|
size_t *mb_len);
|
|
|
|
/*
|
|
MariaDB's replacement for FB/MySQL Field::check_field_name_match :
|
|
*/
|
|
inline bool field_check_field_name_match(Field *field, std::string *str)
|
|
{
|
|
// Lex_ident_column::streq() expects str[length]=='\0', hence c_str().
|
|
return field->field_name.streq(Lex_cstring(str->c_str(), str->length()));
|
|
}
|
|
|
|
|
|
/*
|
|
Decode current key field
|
|
@param fpi IN data structure contains field metadata
|
|
@param field IN current field
|
|
@param reader IN key slice reader
|
|
@param unp_reader IN unpack information reader
|
|
@return
|
|
HA_EXIT_SUCCESS OK
|
|
other HA_ERR error code
|
|
*/
|
|
int Rdb_convert_to_record_key_decoder::decode_field(
|
|
Rdb_field_packing *fpi, Field *field, Rdb_string_reader *reader,
|
|
const uchar *const default_value, Rdb_string_reader *unpack_reader) {
|
|
if (fpi->m_maybe_null) {
|
|
const char *nullp;
|
|
if (!(nullp = reader->read(1))) {
|
|
return HA_EXIT_FAILURE;
|
|
}
|
|
|
|
if (*nullp == 0) {
|
|
/* Set the NULL-bit of this field */
|
|
field->set_null();
|
|
/* Also set the field to its default value */
|
|
memcpy(field->ptr, default_value, field->pack_length());
|
|
return HA_EXIT_SUCCESS;
|
|
} else if (*nullp == 1) {
|
|
field->set_notnull();
|
|
} else {
|
|
return HA_EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
return (fpi->m_unpack_func)(fpi, field, field->ptr, reader, unpack_reader);
|
|
}
|
|
|
|
/*
|
|
Decode current key field
|
|
|
|
@param buf OUT the buf starting address
|
|
@param offset OUT the bytes offset when data is written
|
|
@param fpi IN data structure contains field metadata
|
|
@param table IN current table
|
|
@param field IN current field
|
|
@param has_unpack_inf IN whether contains unpack inf
|
|
@param reader IN key slice reader
|
|
@param unp_reader IN unpack information reader
|
|
@return
|
|
HA_EXIT_SUCCESS OK
|
|
other HA_ERR error code
|
|
*/
|
|
int Rdb_convert_to_record_key_decoder::decode(
|
|
uchar *const buf, uint *offset, Rdb_field_packing *fpi, TABLE *table,
|
|
Field *field, bool has_unpack_info, Rdb_string_reader *reader,
|
|
Rdb_string_reader *unpack_reader) {
|
|
DBUG_ASSERT(buf != nullptr);
|
|
DBUG_ASSERT(offset != nullptr);
|
|
|
|
uint field_offset = field->ptr - table->record[0];
|
|
*offset = field_offset;
|
|
uint null_offset = field->null_offset();
|
|
bool maybe_null = field->real_maybe_null();
|
|
|
|
field->move_field(buf + field_offset,
|
|
maybe_null ? buf + null_offset : nullptr, field->null_bit);
|
|
|
|
// If we need unpack info, but there is none, tell the unpack function
|
|
// this by passing unp_reader as nullptr. If we never read unpack_info
|
|
// during unpacking anyway, then there won't an error.
|
|
bool maybe_missing_unpack = !has_unpack_info && fpi->uses_unpack_info();
|
|
|
|
int res =
|
|
decode_field(fpi, field, reader, table->s->default_values + field_offset,
|
|
maybe_missing_unpack ? nullptr : unpack_reader);
|
|
|
|
// Restore field->ptr and field->null_ptr
|
|
field->move_field(table->record[0] + field_offset,
|
|
maybe_null ? table->record[0] + null_offset : nullptr,
|
|
field->null_bit);
|
|
if (res != UNPACK_SUCCESS) {
|
|
return HA_ERR_ROCKSDB_CORRUPT_DATA;
|
|
}
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
Skip current key field
|
|
|
|
@param fpi IN data structure contains field metadata
|
|
@param field IN current field
|
|
@param reader IN key slice reader
|
|
@param unp_reader IN unpack information reader
|
|
@return
|
|
HA_EXIT_SUCCESS OK
|
|
other HA_ERR error code
|
|
*/
|
|
int Rdb_convert_to_record_key_decoder::skip(const Rdb_field_packing *fpi,
|
|
const Field *field,
|
|
Rdb_string_reader *reader,
|
|
Rdb_string_reader *unp_reader) {
|
|
/* It is impossible to unpack the column. Skip it. */
|
|
if (fpi->m_maybe_null) {
|
|
const char *nullp;
|
|
if (!(nullp = reader->read(1))) {
|
|
return HA_ERR_ROCKSDB_CORRUPT_DATA;
|
|
}
|
|
if (*nullp == 0) {
|
|
/* This is a NULL value */
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
/* If NULL marker is not '0', it can be only '1' */
|
|
if (*nullp != 1) {
|
|
return HA_ERR_ROCKSDB_CORRUPT_DATA;
|
|
}
|
|
}
|
|
if ((fpi->m_skip_func)(fpi, field, reader)) {
|
|
return HA_ERR_ROCKSDB_CORRUPT_DATA;
|
|
}
|
|
// If this is a space padded varchar, we need to skip the indicator
|
|
// bytes for trailing bytes. They're useless since we can't restore the
|
|
// field anyway.
|
|
//
|
|
// There is a special case for prefixed varchars where we do not
|
|
// generate unpack info, because we know prefixed varchars cannot be
|
|
// unpacked. In this case, it is not necessary to skip.
|
|
if (fpi->m_skip_func == &Rdb_key_def::skip_variable_space_pad &&
|
|
!fpi->m_unpack_info_stores_value) {
|
|
unp_reader->read(fpi->m_unpack_info_uses_two_bytes ? 2 : 1);
|
|
}
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
Rdb_key_field_iterator::Rdb_key_field_iterator(
|
|
const Rdb_key_def *key_def, Rdb_field_packing *pack_info,
|
|
Rdb_string_reader *reader, Rdb_string_reader *unp_reader, TABLE *table,
|
|
bool has_unpack_info, const MY_BITMAP *covered_bitmap, uchar *const buf) {
|
|
m_key_def = key_def;
|
|
m_pack_info = pack_info;
|
|
m_iter_index = 0;
|
|
m_iter_end = key_def->get_key_parts();
|
|
m_reader = reader;
|
|
m_unp_reader = unp_reader;
|
|
m_table = table;
|
|
m_has_unpack_info = has_unpack_info;
|
|
m_covered_bitmap = covered_bitmap;
|
|
m_buf = buf;
|
|
m_secondary_key =
|
|
(key_def->m_index_type == Rdb_key_def::INDEX_TYPE_SECONDARY);
|
|
m_hidden_pk_exists = Rdb_key_def::table_has_hidden_pk(table);
|
|
m_is_hidden_pk =
|
|
(key_def->m_index_type == Rdb_key_def::INDEX_TYPE_HIDDEN_PRIMARY);
|
|
m_curr_bitmap_pos = 0;
|
|
m_offset = 0;
|
|
}
|
|
|
|
void *Rdb_key_field_iterator::get_dst() const { return m_buf + m_offset; }
|
|
|
|
int Rdb_key_field_iterator::get_field_index() const {
|
|
DBUG_ASSERT(m_field != nullptr);
|
|
return m_field->field_index;
|
|
}
|
|
|
|
bool Rdb_key_field_iterator::get_is_null() const { return m_is_null; }
|
|
Field *Rdb_key_field_iterator::get_field() const {
|
|
DBUG_ASSERT(m_field != nullptr);
|
|
return m_field;
|
|
}
|
|
|
|
bool Rdb_key_field_iterator::has_next() { return m_iter_index < m_iter_end; }
|
|
|
|
/**
|
|
Iterate each field in the key and decode/skip one by one
|
|
*/
|
|
int Rdb_key_field_iterator::next() {
|
|
int status = HA_EXIT_SUCCESS;
|
|
while (m_iter_index < m_iter_end) {
|
|
int curr_index = m_iter_index++;
|
|
|
|
m_fpi = &m_pack_info[curr_index];
|
|
/*
|
|
Hidden pk field is packed at the end of the secondary keys, but the SQL
|
|
layer does not know about it. Skip retrieving field if hidden pk.
|
|
*/
|
|
if ((m_secondary_key && m_hidden_pk_exists &&
|
|
curr_index + 1 == m_iter_end) ||
|
|
m_is_hidden_pk) {
|
|
DBUG_ASSERT(m_fpi->m_unpack_func);
|
|
if ((m_fpi->m_skip_func)(m_fpi, nullptr, m_reader)) {
|
|
return HA_ERR_ROCKSDB_CORRUPT_DATA;
|
|
}
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
m_field = m_fpi->get_field_in_table(m_table);
|
|
|
|
bool covered_column = true;
|
|
if (m_covered_bitmap != nullptr &&
|
|
m_field->real_type() == MYSQL_TYPE_VARCHAR && !m_fpi->m_covered) {
|
|
uint tmp= m_curr_bitmap_pos++;
|
|
covered_column = m_curr_bitmap_pos < MAX_REF_PARTS &&
|
|
bitmap_is_set(m_covered_bitmap, tmp);
|
|
}
|
|
|
|
if (m_fpi->m_unpack_func && covered_column) {
|
|
/* It is possible to unpack this column. Do it. */
|
|
status = Rdb_convert_to_record_key_decoder::decode(
|
|
m_buf, &m_offset, m_fpi, m_table, m_field, m_has_unpack_info,
|
|
m_reader, m_unp_reader);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
break;
|
|
} else {
|
|
status = Rdb_convert_to_record_key_decoder::skip(m_fpi, m_field, m_reader,
|
|
m_unp_reader);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
}
|
|
}
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
Rdb_key_def class implementation
|
|
*/
|
|
Rdb_key_def::Rdb_key_def(uint indexnr_arg, uint keyno_arg,
|
|
rocksdb::ColumnFamilyHandle *cf_handle_arg,
|
|
uint16_t index_dict_version_arg, uchar index_type_arg,
|
|
uint16_t kv_format_version_arg, bool is_reverse_cf_arg,
|
|
bool is_per_partition_cf_arg, const char *_name,
|
|
Rdb_index_stats _stats, uint32 index_flags_bitmap,
|
|
uint32 ttl_rec_offset, uint64 ttl_duration)
|
|
: m_index_number(indexnr_arg),
|
|
m_cf_handle(cf_handle_arg),
|
|
m_index_dict_version(index_dict_version_arg),
|
|
m_index_type(index_type_arg),
|
|
m_kv_format_version(kv_format_version_arg),
|
|
m_is_reverse_cf(is_reverse_cf_arg),
|
|
m_is_per_partition_cf(is_per_partition_cf_arg),
|
|
m_name(_name),
|
|
m_stats(_stats),
|
|
m_index_flags_bitmap(index_flags_bitmap),
|
|
m_ttl_rec_offset(ttl_rec_offset),
|
|
m_ttl_duration(ttl_duration),
|
|
m_ttl_column(""),
|
|
m_pk_part_no(nullptr),
|
|
m_pack_info(nullptr),
|
|
m_keyno(keyno_arg),
|
|
m_key_parts(0),
|
|
m_ttl_pk_key_part_offset(UINT_MAX),
|
|
m_ttl_field_index(UINT_MAX),
|
|
m_prefix_extractor(nullptr),
|
|
m_maxlength(0) // means 'not intialized'
|
|
{
|
|
mysql_mutex_init(0, &m_mutex, MY_MUTEX_INIT_FAST);
|
|
rdb_netbuf_store_index(m_index_number_storage_form, m_index_number);
|
|
m_total_index_flags_length =
|
|
calculate_index_flag_offset(m_index_flags_bitmap, MAX_FLAG);
|
|
DBUG_ASSERT_IMP(m_index_type == INDEX_TYPE_SECONDARY &&
|
|
m_kv_format_version <= SECONDARY_FORMAT_VERSION_UPDATE2,
|
|
m_total_index_flags_length == 0);
|
|
DBUG_ASSERT_IMP(m_index_type == INDEX_TYPE_PRIMARY &&
|
|
m_kv_format_version <= PRIMARY_FORMAT_VERSION_UPDATE2,
|
|
m_total_index_flags_length == 0);
|
|
DBUG_ASSERT(m_cf_handle != nullptr);
|
|
}
|
|
|
|
Rdb_key_def::Rdb_key_def(const Rdb_key_def &k)
|
|
: m_index_number(k.m_index_number),
|
|
m_cf_handle(k.m_cf_handle),
|
|
m_is_reverse_cf(k.m_is_reverse_cf),
|
|
m_is_per_partition_cf(k.m_is_per_partition_cf),
|
|
m_name(k.m_name),
|
|
m_stats(k.m_stats),
|
|
m_index_flags_bitmap(k.m_index_flags_bitmap),
|
|
m_ttl_rec_offset(k.m_ttl_rec_offset),
|
|
m_ttl_duration(k.m_ttl_duration),
|
|
m_ttl_column(k.m_ttl_column),
|
|
m_pk_part_no(k.m_pk_part_no),
|
|
m_pack_info(k.m_pack_info),
|
|
m_keyno(k.m_keyno),
|
|
m_key_parts(k.m_key_parts),
|
|
m_ttl_pk_key_part_offset(k.m_ttl_pk_key_part_offset),
|
|
m_ttl_field_index(UINT_MAX),
|
|
m_prefix_extractor(k.m_prefix_extractor),
|
|
m_maxlength(k.m_maxlength) {
|
|
mysql_mutex_init(0, &m_mutex, MY_MUTEX_INIT_FAST);
|
|
rdb_netbuf_store_index(m_index_number_storage_form, m_index_number);
|
|
m_total_index_flags_length =
|
|
calculate_index_flag_offset(m_index_flags_bitmap, MAX_FLAG);
|
|
DBUG_ASSERT_IMP(m_index_type == INDEX_TYPE_SECONDARY &&
|
|
m_kv_format_version <= SECONDARY_FORMAT_VERSION_UPDATE2,
|
|
m_total_index_flags_length == 0);
|
|
DBUG_ASSERT_IMP(m_index_type == INDEX_TYPE_PRIMARY &&
|
|
m_kv_format_version <= PRIMARY_FORMAT_VERSION_UPDATE2,
|
|
m_total_index_flags_length == 0);
|
|
if (k.m_pack_info) {
|
|
const size_t size = sizeof(Rdb_field_packing) * k.m_key_parts;
|
|
void *pack_info= my_malloc(PSI_INSTRUMENT_ME, size, MYF(0));
|
|
memcpy(pack_info, k.m_pack_info, size);
|
|
m_pack_info = reinterpret_cast<Rdb_field_packing *>(pack_info);
|
|
}
|
|
|
|
if (k.m_pk_part_no) {
|
|
const size_t size = sizeof(uint) * m_key_parts;
|
|
m_pk_part_no = reinterpret_cast<uint *>(my_malloc(PSI_INSTRUMENT_ME, size, MYF(0)));
|
|
memcpy(m_pk_part_no, k.m_pk_part_no, size);
|
|
}
|
|
}
|
|
|
|
Rdb_key_def::~Rdb_key_def() {
|
|
mysql_mutex_destroy(&m_mutex);
|
|
|
|
my_free(m_pk_part_no);
|
|
m_pk_part_no = nullptr;
|
|
|
|
my_free(m_pack_info);
|
|
m_pack_info = nullptr;
|
|
}
|
|
|
|
uint Rdb_key_def::setup(const TABLE *const tbl,
|
|
const Rdb_tbl_def *const tbl_def) {
|
|
DBUG_ASSERT(tbl != nullptr);
|
|
DBUG_ASSERT(tbl_def != nullptr);
|
|
|
|
/*
|
|
Set max_length based on the table. This can be called concurrently from
|
|
multiple threads, so there is a mutex to protect this code.
|
|
*/
|
|
const bool is_hidden_pk = (m_index_type == INDEX_TYPE_HIDDEN_PRIMARY);
|
|
const bool hidden_pk_exists = table_has_hidden_pk(tbl);
|
|
const bool secondary_key = (m_index_type == INDEX_TYPE_SECONDARY);
|
|
if (!m_maxlength) {
|
|
RDB_MUTEX_LOCK_CHECK(m_mutex);
|
|
if (m_maxlength != 0) {
|
|
RDB_MUTEX_UNLOCK_CHECK(m_mutex);
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
KEY *key_info = nullptr;
|
|
KEY *pk_info = nullptr;
|
|
if (!is_hidden_pk) {
|
|
key_info = &tbl->key_info[m_keyno];
|
|
if (!hidden_pk_exists) pk_info = &tbl->key_info[tbl->s->primary_key];
|
|
m_name = std::string(key_info->name.str);
|
|
} else {
|
|
m_name = HIDDEN_PK_NAME;
|
|
}
|
|
|
|
if (secondary_key) {
|
|
m_pk_key_parts= hidden_pk_exists ? 1 : pk_info->ext_key_parts;
|
|
} else {
|
|
pk_info = nullptr;
|
|
m_pk_key_parts = 0;
|
|
}
|
|
|
|
// "unique" secondary keys support:
|
|
m_key_parts= is_hidden_pk ? 1 : key_info->ext_key_parts;
|
|
|
|
if (secondary_key) {
|
|
/*
|
|
In most cases, SQL layer puts PK columns as invisible suffix at the
|
|
end of secondary key. There are cases where this doesn't happen:
|
|
- unique secondary indexes.
|
|
- partitioned tables.
|
|
|
|
Internally, we always need PK columns as suffix (and InnoDB does,
|
|
too, if you were wondering).
|
|
|
|
The loop below will attempt to put all PK columns at the end of key
|
|
definition. Columns that are already included in the index (either
|
|
by the user or by "extended keys" feature) are not included for the
|
|
second time.
|
|
*/
|
|
m_key_parts += m_pk_key_parts;
|
|
}
|
|
|
|
if (secondary_key) {
|
|
m_pk_part_no = reinterpret_cast<uint *>(
|
|
my_malloc(PSI_INSTRUMENT_ME, sizeof(uint) * m_key_parts, MYF(0)));
|
|
} else {
|
|
m_pk_part_no = nullptr;
|
|
}
|
|
|
|
const size_t size = sizeof(Rdb_field_packing) * m_key_parts;
|
|
m_pack_info =
|
|
reinterpret_cast<Rdb_field_packing *>(my_malloc(PSI_INSTRUMENT_ME, size, MYF(0)));
|
|
|
|
/*
|
|
Guaranteed not to error here as checks have been made already during
|
|
table creation.
|
|
*/
|
|
Rdb_key_def::extract_ttl_col(tbl, tbl_def, &m_ttl_column,
|
|
&m_ttl_field_index, true);
|
|
|
|
size_t max_len = INDEX_NUMBER_SIZE;
|
|
int unpack_len = 0;
|
|
int max_part_len = 0;
|
|
bool simulating_extkey = false;
|
|
uint dst_i = 0;
|
|
|
|
uint keyno_to_set = m_keyno;
|
|
uint keypart_to_set = 0;
|
|
|
|
if (is_hidden_pk) {
|
|
Field *field = nullptr;
|
|
m_pack_info[dst_i].setup(this, field, keyno_to_set, 0, 0);
|
|
m_pack_info[dst_i].m_unpack_data_offset = unpack_len;
|
|
max_len += m_pack_info[dst_i].m_max_image_len;
|
|
max_part_len = std::max(max_part_len, m_pack_info[dst_i].m_max_image_len);
|
|
dst_i++;
|
|
} else {
|
|
KEY_PART_INFO *key_part = key_info->key_part;
|
|
|
|
/* this loop also loops over the 'extended key' tail */
|
|
for (uint src_i = 0; src_i < m_key_parts; src_i++, keypart_to_set++) {
|
|
Field *const field = key_part ? key_part->field : nullptr;
|
|
|
|
if (key_part && key_part->key_part_flag & HA_REVERSE_SORT)
|
|
{
|
|
my_error(ER_ILLEGAL_HA_CREATE_OPTION, MYF(0),
|
|
"ROCKSDB", "DESC");
|
|
RDB_MUTEX_UNLOCK_CHECK(m_mutex);
|
|
return HA_EXIT_FAILURE;
|
|
}
|
|
|
|
if (simulating_extkey && !hidden_pk_exists) {
|
|
DBUG_ASSERT(secondary_key);
|
|
/* Check if this field is already present in the key definition */
|
|
bool found = false;
|
|
for (uint j= 0; j < key_info->ext_key_parts; j++) {
|
|
if (field->field_index ==
|
|
key_info->key_part[j].field->field_index &&
|
|
key_part->length == key_info->key_part[j].length) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (found) {
|
|
key_part++;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (field && field->real_maybe_null()) max_len += 1; // NULL-byte
|
|
|
|
m_pack_info[dst_i].setup(this, field, keyno_to_set, keypart_to_set,
|
|
key_part ? key_part->length : 0);
|
|
m_pack_info[dst_i].m_unpack_data_offset = unpack_len;
|
|
|
|
if (pk_info) {
|
|
m_pk_part_no[dst_i] = -1;
|
|
for (uint j = 0; j < m_pk_key_parts; j++) {
|
|
if (field->field_index == pk_info->key_part[j].field->field_index) {
|
|
m_pk_part_no[dst_i] = j;
|
|
break;
|
|
}
|
|
}
|
|
} else if (secondary_key && hidden_pk_exists) {
|
|
/*
|
|
The hidden pk can never be part of the sk. So it is always
|
|
appended to the end of the sk.
|
|
*/
|
|
m_pk_part_no[dst_i] = -1;
|
|
if (simulating_extkey) m_pk_part_no[dst_i] = 0;
|
|
}
|
|
|
|
max_len += m_pack_info[dst_i].m_max_image_len;
|
|
|
|
max_part_len =
|
|
std::max(max_part_len, m_pack_info[dst_i].m_max_image_len);
|
|
|
|
/*
|
|
Check key part name here, if it matches the TTL column then we store
|
|
the offset of the TTL key part here.
|
|
*/
|
|
if (!m_ttl_column.empty() &&
|
|
field_check_field_name_match(field, &m_ttl_column)) {
|
|
DBUG_ASSERT(field->real_type() == MYSQL_TYPE_LONGLONG);
|
|
DBUG_ASSERT(field->key_type() == HA_KEYTYPE_ULONGLONG);
|
|
DBUG_ASSERT(!field->real_maybe_null());
|
|
m_ttl_pk_key_part_offset = dst_i;
|
|
}
|
|
|
|
key_part++;
|
|
/*
|
|
For "unique" secondary indexes, pretend they have
|
|
"index extensions".
|
|
|
|
MariaDB also has this property: if an index has a partially-covered
|
|
column like KEY(varchar_col(N)), then the SQL layer will think it is
|
|
not "extended" with PK columns. The code below handles this case,
|
|
also.
|
|
*/
|
|
if (secondary_key && src_i+1 == key_info->ext_key_parts) {
|
|
simulating_extkey = true;
|
|
if (!hidden_pk_exists) {
|
|
keyno_to_set = tbl->s->primary_key;
|
|
key_part = pk_info->key_part;
|
|
keypart_to_set = (uint)-1;
|
|
} else {
|
|
keyno_to_set = tbl_def->m_key_count - 1;
|
|
key_part = nullptr;
|
|
keypart_to_set = 0;
|
|
}
|
|
}
|
|
|
|
dst_i++;
|
|
}
|
|
}
|
|
|
|
m_key_parts = dst_i;
|
|
|
|
/* Initialize the memory needed by the stats structure */
|
|
m_stats.m_distinct_keys_per_prefix.resize(get_key_parts());
|
|
|
|
/* Cache prefix extractor for bloom filter usage later */
|
|
rocksdb::Options opt = rdb_get_rocksdb_db()->GetOptions(get_cf());
|
|
m_prefix_extractor = opt.prefix_extractor;
|
|
|
|
/*
|
|
This should be the last member variable set before releasing the mutex
|
|
so that other threads can't see the object partially set up.
|
|
*/
|
|
m_maxlength = max_len;
|
|
|
|
RDB_MUTEX_UNLOCK_CHECK(m_mutex);
|
|
}
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
Determine if the table has TTL enabled by parsing the table comment.
|
|
|
|
@param[IN] table_arg
|
|
@param[IN] tbl_def_arg
|
|
@param[OUT] ttl_duration Default TTL value parsed from table comment
|
|
*/
|
|
uint Rdb_key_def::extract_ttl_duration(const TABLE *const table_arg,
|
|
const Rdb_tbl_def *const tbl_def_arg,
|
|
uint64 *ttl_duration) {
|
|
DBUG_ASSERT(table_arg != nullptr);
|
|
DBUG_ASSERT(tbl_def_arg != nullptr);
|
|
DBUG_ASSERT(ttl_duration != nullptr);
|
|
std::string table_comment(table_arg->s->comment.str,
|
|
table_arg->s->comment.length);
|
|
|
|
bool ttl_duration_per_part_match_found = false;
|
|
std::string ttl_duration_str = Rdb_key_def::parse_comment_for_qualifier(
|
|
table_comment, table_arg, tbl_def_arg, &ttl_duration_per_part_match_found,
|
|
RDB_TTL_DURATION_QUALIFIER);
|
|
|
|
/* If we don't have a ttl duration, nothing to do here. */
|
|
if (ttl_duration_str.empty()) {
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
Catch errors where a non-integral value was used as ttl duration, strtoull
|
|
will return 0.
|
|
*/
|
|
*ttl_duration = std::strtoull(ttl_duration_str.c_str(), nullptr, 0);
|
|
if (!*ttl_duration) {
|
|
my_error(ER_RDB_TTL_DURATION_FORMAT, MYF(0), ttl_duration_str.c_str());
|
|
return HA_EXIT_FAILURE;
|
|
}
|
|
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
Determine if the table has TTL enabled by parsing the table comment.
|
|
|
|
@param[IN] table_arg
|
|
@param[IN] tbl_def_arg
|
|
@param[OUT] ttl_column TTL column in the table
|
|
@param[IN] skip_checks Skip validation checks (when called in
|
|
setup())
|
|
*/
|
|
uint Rdb_key_def::extract_ttl_col(const TABLE *const table_arg,
|
|
const Rdb_tbl_def *const tbl_def_arg,
|
|
std::string *ttl_column,
|
|
uint *ttl_field_index, bool skip_checks) {
|
|
std::string table_comment(table_arg->s->comment.str,
|
|
table_arg->s->comment.length);
|
|
/*
|
|
Check if there is a TTL column specified. Note that this is not required
|
|
and if omitted, an 8-byte ttl field will be prepended to each record
|
|
implicitly.
|
|
*/
|
|
bool ttl_col_per_part_match_found = false;
|
|
std::string ttl_col_str = Rdb_key_def::parse_comment_for_qualifier(
|
|
table_comment, table_arg, tbl_def_arg, &ttl_col_per_part_match_found,
|
|
RDB_TTL_COL_QUALIFIER);
|
|
|
|
if (skip_checks) {
|
|
for (uint i = 0; i < table_arg->s->fields; i++) {
|
|
Field *const field = table_arg->field[i];
|
|
if (field_check_field_name_match(field, &ttl_col_str)) {
|
|
*ttl_column = ttl_col_str;
|
|
*ttl_field_index = i;
|
|
}
|
|
}
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
/* Check if TTL column exists in table */
|
|
if (!ttl_col_str.empty()) {
|
|
bool found = false;
|
|
for (uint i = 0; i < table_arg->s->fields; i++) {
|
|
Field *const field = table_arg->field[i];
|
|
if (field_check_field_name_match(field, &ttl_col_str) &&
|
|
field->real_type() == MYSQL_TYPE_LONGLONG &&
|
|
field->key_type() == HA_KEYTYPE_ULONGLONG &&
|
|
!field->real_maybe_null()) {
|
|
*ttl_column = ttl_col_str;
|
|
*ttl_field_index = i;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
my_error(ER_RDB_TTL_COL_FORMAT, MYF(0), ttl_col_str.c_str());
|
|
return HA_EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
const std::string Rdb_key_def::gen_qualifier_for_table(
|
|
const char *const qualifier, const std::string &partition_name) {
|
|
bool has_partition = !partition_name.empty();
|
|
std::string qualifier_str = "";
|
|
|
|
if (!strcmp(qualifier, RDB_CF_NAME_QUALIFIER)) {
|
|
return has_partition ? gen_cf_name_qualifier_for_partition(partition_name)
|
|
: qualifier_str + RDB_CF_NAME_QUALIFIER +
|
|
RDB_QUALIFIER_VALUE_SEP;
|
|
} else if (!strcmp(qualifier, RDB_TTL_DURATION_QUALIFIER)) {
|
|
return has_partition
|
|
? gen_ttl_duration_qualifier_for_partition(partition_name)
|
|
: qualifier_str + RDB_TTL_DURATION_QUALIFIER +
|
|
RDB_QUALIFIER_VALUE_SEP;
|
|
} else if (!strcmp(qualifier, RDB_TTL_COL_QUALIFIER)) {
|
|
return has_partition ? gen_ttl_col_qualifier_for_partition(partition_name)
|
|
: qualifier_str + RDB_TTL_COL_QUALIFIER +
|
|
RDB_QUALIFIER_VALUE_SEP;
|
|
} else {
|
|
DBUG_ASSERT(0);
|
|
}
|
|
|
|
return qualifier_str;
|
|
}
|
|
|
|
/*
|
|
Formats the string and returns the column family name assignment part for a
|
|
specific partition.
|
|
*/
|
|
const std::string Rdb_key_def::gen_cf_name_qualifier_for_partition(
|
|
const std::string &prefix) {
|
|
DBUG_ASSERT(!prefix.empty());
|
|
|
|
return prefix + RDB_PER_PARTITION_QUALIFIER_NAME_SEP + RDB_CF_NAME_QUALIFIER +
|
|
RDB_QUALIFIER_VALUE_SEP;
|
|
}
|
|
|
|
const std::string Rdb_key_def::gen_ttl_duration_qualifier_for_partition(
|
|
const std::string &prefix) {
|
|
DBUG_ASSERT(!prefix.empty());
|
|
|
|
return prefix + RDB_PER_PARTITION_QUALIFIER_NAME_SEP +
|
|
RDB_TTL_DURATION_QUALIFIER + RDB_QUALIFIER_VALUE_SEP;
|
|
}
|
|
|
|
const std::string Rdb_key_def::gen_ttl_col_qualifier_for_partition(
|
|
const std::string &prefix) {
|
|
DBUG_ASSERT(!prefix.empty());
|
|
|
|
return prefix + RDB_PER_PARTITION_QUALIFIER_NAME_SEP + RDB_TTL_COL_QUALIFIER +
|
|
RDB_QUALIFIER_VALUE_SEP;
|
|
}
|
|
|
|
const std::string Rdb_key_def::parse_comment_for_qualifier(
|
|
const std::string &comment, const TABLE *const table_arg,
|
|
const Rdb_tbl_def *const tbl_def_arg, bool *per_part_match_found,
|
|
const char *const qualifier) {
|
|
DBUG_ASSERT(table_arg != nullptr);
|
|
DBUG_ASSERT(tbl_def_arg != nullptr);
|
|
DBUG_ASSERT(per_part_match_found != nullptr);
|
|
DBUG_ASSERT(qualifier != nullptr);
|
|
|
|
std::string empty_result;
|
|
|
|
// Flag which marks if partition specific options were found.
|
|
*per_part_match_found = false;
|
|
|
|
if (comment.empty()) {
|
|
return empty_result;
|
|
}
|
|
|
|
// Let's fetch the comment for a index and check if there's a custom key
|
|
// name specified for a partition we are handling.
|
|
std::vector<std::string> v =
|
|
myrocks::parse_into_tokens(comment, RDB_QUALIFIER_SEP);
|
|
|
|
std::string search_str = gen_qualifier_for_table(qualifier);
|
|
|
|
// If table has partitions then we need to check if user has requested
|
|
// qualifiers on a per partition basis.
|
|
//
|
|
// NOTE: this means if you specify a qualifier for a specific partition it
|
|
// will take precedence the 'table level' qualifier if one exists.
|
|
std::string search_str_part;
|
|
if (IF_PARTITIONING(table_arg->part_info,nullptr) != nullptr) {
|
|
std::string partition_name = tbl_def_arg->base_partition();
|
|
DBUG_ASSERT(!partition_name.empty());
|
|
search_str_part = gen_qualifier_for_table(qualifier, partition_name);
|
|
}
|
|
|
|
DBUG_ASSERT(!search_str.empty());
|
|
|
|
// Basic O(N) search for a matching assignment. At most we expect maybe
|
|
// ten or so elements here.
|
|
if (!search_str_part.empty()) {
|
|
for (const auto &it : v) {
|
|
if (it.substr(0, search_str_part.length()) == search_str_part) {
|
|
// We found a prefix match. Try to parse it as an assignment.
|
|
std::vector<std::string> tokens =
|
|
myrocks::parse_into_tokens(it, RDB_QUALIFIER_VALUE_SEP);
|
|
|
|
// We found a custom qualifier, it was in the form we expected it to be.
|
|
// Return that instead of whatever we initially wanted to return. In
|
|
// a case below the `foo` part will be returned to the caller.
|
|
//
|
|
// p3_cfname=foo
|
|
//
|
|
// If no value was specified then we'll return an empty string which
|
|
// later gets translated into using a default CF.
|
|
if (tokens.size() == 2) {
|
|
*per_part_match_found = true;
|
|
return tokens[1];
|
|
} else {
|
|
return empty_result;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Do this loop again, this time searching for 'table level' qualifiers if we
|
|
// didn't find any partition level qualifiers above.
|
|
for (const auto &it : v) {
|
|
if (it.substr(0, search_str.length()) == search_str) {
|
|
std::vector<std::string> tokens =
|
|
myrocks::parse_into_tokens(it, RDB_QUALIFIER_VALUE_SEP);
|
|
if (tokens.size() == 2) {
|
|
return tokens[1];
|
|
} else {
|
|
return empty_result;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we didn't find any partitioned/non-partitioned qualifiers, return an
|
|
// empty string.
|
|
return empty_result;
|
|
}
|
|
|
|
/**
|
|
Read a memcmp key part from a slice using the passed in reader.
|
|
|
|
Returns -1 if field was null, 1 if error, 0 otherwise.
|
|
*/
|
|
int Rdb_key_def::read_memcmp_key_part(const TABLE *table_arg,
|
|
Rdb_string_reader *reader,
|
|
const uint part_num) const {
|
|
/* It is impossible to unpack the column. Skip it. */
|
|
if (m_pack_info[part_num].m_maybe_null) {
|
|
const char *nullp;
|
|
if (!(nullp = reader->read(1))) return 1;
|
|
if (*nullp == 0) {
|
|
/* This is a NULL value */
|
|
return -1;
|
|
} else {
|
|
/* If NULL marker is not '0', it can be only '1' */
|
|
if (*nullp != 1) return 1;
|
|
}
|
|
}
|
|
|
|
Rdb_field_packing *fpi = &m_pack_info[part_num];
|
|
DBUG_ASSERT(table_arg->s != nullptr);
|
|
|
|
bool is_hidden_pk_part = (part_num + 1 == m_key_parts) &&
|
|
(table_arg->s->primary_key == MAX_INDEXES);
|
|
Field *field = nullptr;
|
|
if (!is_hidden_pk_part) {
|
|
field = fpi->get_field_in_table(table_arg);
|
|
}
|
|
if ((fpi->m_skip_func)(fpi, field, reader)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
Get a mem-comparable form of Primary Key from mem-comparable form of this key
|
|
|
|
@param
|
|
pk_descr Primary Key descriptor
|
|
key Index tuple from this key in mem-comparable form
|
|
pk_buffer OUT Put here mem-comparable form of the Primary Key.
|
|
|
|
@note
|
|
It may or may not be possible to restore primary key columns to their
|
|
mem-comparable form. To handle all cases, this function copies mem-
|
|
comparable forms directly.
|
|
|
|
RocksDB SE supports "Extended keys". This means that PK columns are present
|
|
at the end of every key. If the key already includes PK columns, then
|
|
these columns are not present at the end of the key.
|
|
|
|
Because of the above, we copy each primary key column.
|
|
|
|
@todo
|
|
If we checked crc32 checksums in this function, we would catch some CRC
|
|
violations that we currently don't. On the other hand, there is a broader
|
|
set of queries for which we would check the checksum twice.
|
|
*/
|
|
|
|
uint Rdb_key_def::get_primary_key_tuple(const TABLE *const table,
|
|
const Rdb_key_def &pk_descr,
|
|
const rocksdb::Slice *const key,
|
|
uchar *const pk_buffer) const {
|
|
DBUG_ASSERT(table != nullptr);
|
|
DBUG_ASSERT(key != nullptr);
|
|
DBUG_ASSERT(m_index_type == Rdb_key_def::INDEX_TYPE_SECONDARY);
|
|
DBUG_ASSERT(pk_buffer);
|
|
|
|
uint size = 0;
|
|
uchar *buf = pk_buffer;
|
|
DBUG_ASSERT(m_pk_key_parts);
|
|
|
|
/* Put the PK number */
|
|
rdb_netbuf_store_index(buf, pk_descr.m_index_number);
|
|
buf += INDEX_NUMBER_SIZE;
|
|
size += INDEX_NUMBER_SIZE;
|
|
|
|
const char *start_offs[MAX_REF_PARTS];
|
|
const char *end_offs[MAX_REF_PARTS];
|
|
int pk_key_part;
|
|
uint i;
|
|
Rdb_string_reader reader(key);
|
|
|
|
// Skip the index number
|
|
if ((!reader.read(INDEX_NUMBER_SIZE))) return RDB_INVALID_KEY_LEN;
|
|
|
|
for (i = 0; i < m_key_parts; i++) {
|
|
if ((pk_key_part = m_pk_part_no[i]) != -1) {
|
|
start_offs[pk_key_part] = reader.get_current_ptr();
|
|
}
|
|
|
|
if (read_memcmp_key_part(table, &reader, i) > 0) {
|
|
return RDB_INVALID_KEY_LEN;
|
|
}
|
|
|
|
if (pk_key_part != -1) {
|
|
end_offs[pk_key_part] = reader.get_current_ptr();
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < m_pk_key_parts; i++) {
|
|
const uint part_size = end_offs[i] - start_offs[i];
|
|
memcpy(buf, start_offs[i], end_offs[i] - start_offs[i]);
|
|
buf += part_size;
|
|
size += part_size;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
Get a mem-comparable form of Secondary Key from mem-comparable form of this
|
|
key, without the extended primary key tail.
|
|
|
|
@param
|
|
key Index tuple from this key in mem-comparable form
|
|
sk_buffer OUT Put here mem-comparable form of the Secondary Key.
|
|
n_null_fields OUT Put number of null fields contained within sk entry
|
|
*/
|
|
uint Rdb_key_def::get_memcmp_sk_parts(const TABLE *table,
|
|
const rocksdb::Slice &key,
|
|
uchar *sk_buffer,
|
|
uint *n_null_fields) const {
|
|
DBUG_ASSERT(table != nullptr);
|
|
DBUG_ASSERT(sk_buffer != nullptr);
|
|
DBUG_ASSERT(n_null_fields != nullptr);
|
|
DBUG_ASSERT(m_keyno != table->s->primary_key && !table_has_hidden_pk(table));
|
|
|
|
uchar *buf = sk_buffer;
|
|
|
|
int res;
|
|
Rdb_string_reader reader(&key);
|
|
const char *start = reader.get_current_ptr();
|
|
|
|
// Skip the index number
|
|
if ((!reader.read(INDEX_NUMBER_SIZE))) return RDB_INVALID_KEY_LEN;
|
|
|
|
for (uint i = 0; i < table->key_info[m_keyno].user_defined_key_parts; i++) {
|
|
if ((res = read_memcmp_key_part(table, &reader, i)) > 0) {
|
|
return RDB_INVALID_KEY_LEN;
|
|
} else if (res == -1) {
|
|
(*n_null_fields)++;
|
|
}
|
|
}
|
|
|
|
uint sk_memcmp_len = reader.get_current_ptr() - start;
|
|
memcpy(buf, start, sk_memcmp_len);
|
|
return sk_memcmp_len;
|
|
}
|
|
|
|
/**
|
|
Convert index tuple into storage (i.e. mem-comparable) format
|
|
|
|
@detail
|
|
Currently this is done by unpacking into record_buffer and then
|
|
packing index columns into storage format.
|
|
|
|
@param pack_buffer Temporary area for packing varchar columns. Its
|
|
size is at least max_storage_fmt_length() bytes.
|
|
*/
|
|
|
|
uint Rdb_key_def::pack_index_tuple(TABLE *const tbl, uchar *const pack_buffer,
|
|
uchar *const packed_tuple,
|
|
uchar *const record_buffer,
|
|
const uchar *const key_tuple,
|
|
const key_part_map &keypart_map) const {
|
|
DBUG_ASSERT(tbl != nullptr);
|
|
DBUG_ASSERT(pack_buffer != nullptr);
|
|
DBUG_ASSERT(packed_tuple != nullptr);
|
|
DBUG_ASSERT(key_tuple != nullptr);
|
|
|
|
/* We were given a record in KeyTupleFormat. First, save it to record */
|
|
const uint key_len = calculate_key_len(tbl, m_keyno, key_tuple, keypart_map);
|
|
key_restore(record_buffer, key_tuple, &tbl->key_info[m_keyno], key_len);
|
|
|
|
uint n_used_parts = my_count_bits(keypart_map);
|
|
if (keypart_map == HA_WHOLE_KEY) n_used_parts = 0; // Full key is used
|
|
|
|
/* Then, convert the record into a mem-comparable form */
|
|
return pack_record(tbl, pack_buffer, record_buffer, packed_tuple, nullptr,
|
|
false, 0, n_used_parts);
|
|
}
|
|
|
|
/**
|
|
@brief
|
|
Check if "unpack info" data includes checksum.
|
|
|
|
@detail
|
|
This is used only by CHECK TABLE to count the number of rows that have
|
|
checksums.
|
|
*/
|
|
|
|
bool Rdb_key_def::unpack_info_has_checksum(const rocksdb::Slice &unpack_info) {
|
|
size_t size = unpack_info.size();
|
|
if (size == 0) {
|
|
return false;
|
|
}
|
|
const uchar *ptr = (const uchar *)unpack_info.data();
|
|
|
|
// Skip unpack info if present.
|
|
if (is_unpack_data_tag(ptr[0]) && size >= get_unpack_header_size(ptr[0])) {
|
|
const uint16 skip_len = rdb_netbuf_to_uint16(ptr + 1);
|
|
SHIP_ASSERT(size >= skip_len);
|
|
|
|
size -= skip_len;
|
|
ptr += skip_len;
|
|
}
|
|
|
|
return (size == RDB_CHECKSUM_CHUNK_SIZE && ptr[0] == RDB_CHECKSUM_DATA_TAG);
|
|
}
|
|
|
|
/*
|
|
@return Number of bytes that were changed
|
|
*/
|
|
int Rdb_key_def::successor(uchar *const packed_tuple, const uint len) {
|
|
DBUG_ASSERT(packed_tuple != nullptr);
|
|
|
|
int changed = 0;
|
|
uchar *p = packed_tuple + len - 1;
|
|
for (; p > packed_tuple; p--) {
|
|
changed++;
|
|
if (*p != uchar(0xFF)) {
|
|
*p = *p + 1;
|
|
break;
|
|
}
|
|
*p = '\0';
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
/*
|
|
@return Number of bytes that were changed
|
|
*/
|
|
int Rdb_key_def::predecessor(uchar *const packed_tuple, const uint len) {
|
|
DBUG_ASSERT(packed_tuple != nullptr);
|
|
|
|
int changed = 0;
|
|
uchar *p = packed_tuple + len - 1;
|
|
for (; p > packed_tuple; p--) {
|
|
changed++;
|
|
if (*p != uchar(0x00)) {
|
|
*p = *p - 1;
|
|
break;
|
|
}
|
|
*p = 0xFF;
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
static const std::map<char, size_t> UNPACK_HEADER_SIZES = {
|
|
{RDB_UNPACK_DATA_TAG, RDB_UNPACK_HEADER_SIZE},
|
|
{RDB_UNPACK_COVERED_DATA_TAG, RDB_UNPACK_COVERED_HEADER_SIZE}};
|
|
|
|
/*
|
|
@return The length in bytes of the header specified by the given tag
|
|
*/
|
|
size_t Rdb_key_def::get_unpack_header_size(char tag) {
|
|
DBUG_ASSERT(is_unpack_data_tag(tag));
|
|
return UNPACK_HEADER_SIZES.at(tag);
|
|
}
|
|
|
|
/*
|
|
Get a bitmap indicating which varchar columns must be covered for this
|
|
lookup to be covered. If the bitmap is a subset of the covered bitmap, then
|
|
the lookup is covered. If it can already be determined that the lookup is
|
|
not covered, map->bitmap will be set to null.
|
|
*/
|
|
void Rdb_key_def::get_lookup_bitmap(const TABLE *table, MY_BITMAP *map) const {
|
|
DBUG_ASSERT(map->bitmap == nullptr);
|
|
my_bitmap_init(map, nullptr, MAX_REF_PARTS);
|
|
uint curr_bitmap_pos = 0;
|
|
|
|
// Indicates which columns in the read set might be covered.
|
|
MY_BITMAP maybe_covered_bitmap;
|
|
my_bitmap_init(&maybe_covered_bitmap, nullptr, table->read_set->n_bits);
|
|
|
|
for (uint i = 0; i < m_key_parts; i++) {
|
|
if (table_has_hidden_pk(table) && i + 1 == m_key_parts) {
|
|
continue;
|
|
}
|
|
|
|
Field *const field = m_pack_info[i].get_field_in_table(table);
|
|
|
|
// Columns which are always covered are not stored in the covered bitmap so
|
|
// we can ignore them here too.
|
|
if (m_pack_info[i].m_covered &&
|
|
bitmap_is_set(table->read_set, field->field_index)) {
|
|
bitmap_set_bit(&maybe_covered_bitmap, field->field_index);
|
|
continue;
|
|
}
|
|
|
|
switch (field->real_type()) {
|
|
// This type may be covered depending on the record. If it was requested,
|
|
// we require the covered bitmap to have this bit set.
|
|
case MYSQL_TYPE_VARCHAR:
|
|
if (curr_bitmap_pos < MAX_REF_PARTS) {
|
|
if (bitmap_is_set(table->read_set, field->field_index)) {
|
|
bitmap_set_bit(map, curr_bitmap_pos);
|
|
bitmap_set_bit(&maybe_covered_bitmap, field->field_index);
|
|
}
|
|
curr_bitmap_pos++;
|
|
} else {
|
|
my_bitmap_free(&maybe_covered_bitmap);
|
|
my_bitmap_free(map);
|
|
return;
|
|
}
|
|
break;
|
|
// This column is a type which is never covered. If it was requested, we
|
|
// know this lookup will never be covered.
|
|
default:
|
|
if (bitmap_is_set(table->read_set, field->field_index)) {
|
|
my_bitmap_free(&maybe_covered_bitmap);
|
|
my_bitmap_free(map);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If there are columns which are not covered in the read set, the lookup
|
|
// can't be covered.
|
|
if (!bitmap_cmp(table->read_set, &maybe_covered_bitmap)) {
|
|
my_bitmap_free(map);
|
|
}
|
|
my_bitmap_free(&maybe_covered_bitmap);
|
|
}
|
|
|
|
/*
|
|
Return true if for this secondary index
|
|
- All of the requested columns are in the index
|
|
- All values for columns that are prefix-only indexes are shorter or equal
|
|
in length to the prefix
|
|
*/
|
|
bool Rdb_key_def::covers_lookup(const rocksdb::Slice *const unpack_info,
|
|
const MY_BITMAP *const lookup_bitmap) const {
|
|
DBUG_ASSERT(lookup_bitmap != nullptr);
|
|
if (!use_covered_bitmap_format() || lookup_bitmap->bitmap == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
Rdb_string_reader unp_reader = Rdb_string_reader::read_or_empty(unpack_info);
|
|
|
|
// Check if this unpack_info has a covered_bitmap
|
|
const char *unpack_header = unp_reader.get_current_ptr();
|
|
const bool has_covered_unpack_info =
|
|
unp_reader.remaining_bytes() &&
|
|
unpack_header[0] == RDB_UNPACK_COVERED_DATA_TAG;
|
|
if (!has_covered_unpack_info ||
|
|
!unp_reader.read(RDB_UNPACK_COVERED_HEADER_SIZE)) {
|
|
return false;
|
|
}
|
|
|
|
MY_BITMAP covered_bitmap;
|
|
my_bitmap_map covered_bits;
|
|
my_bitmap_init(&covered_bitmap, &covered_bits, MAX_REF_PARTS);
|
|
covered_bits = rdb_netbuf_to_uint16((const uchar *)unpack_header +
|
|
sizeof(RDB_UNPACK_COVERED_DATA_TAG) +
|
|
RDB_UNPACK_COVERED_DATA_LEN_SIZE);
|
|
|
|
return bitmap_is_subset(lookup_bitmap, &covered_bitmap);
|
|
}
|
|
|
|
/* Indicates that all key parts can be unpacked to cover a secondary lookup */
|
|
bool Rdb_key_def::can_cover_lookup() const {
|
|
for (uint i = 0; i < m_key_parts; i++) {
|
|
if (!m_pack_info[i].m_covered) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
uchar *Rdb_key_def::pack_field(Field *const field, Rdb_field_packing *pack_info,
|
|
uchar *tuple, uchar *const packed_tuple,
|
|
uchar *const pack_buffer,
|
|
Rdb_string_writer *const unpack_info,
|
|
uint *const n_null_fields) const {
|
|
if (field->real_maybe_null()) {
|
|
DBUG_ASSERT(is_storage_available(tuple - packed_tuple, 1));
|
|
if (field->is_real_null()) {
|
|
/* NULL value. store '\0' so that it sorts before non-NULL values */
|
|
*tuple++ = 0;
|
|
/* That's it, don't store anything else */
|
|
if (n_null_fields) (*n_null_fields)++;
|
|
return tuple;
|
|
} else {
|
|
/* Not a NULL value. Store '1' */
|
|
*tuple++ = 1;
|
|
}
|
|
}
|
|
|
|
const bool create_unpack_info =
|
|
(unpack_info && // we were requested to generate unpack_info
|
|
pack_info->uses_unpack_info()); // and this keypart uses it
|
|
Rdb_pack_field_context pack_ctx(unpack_info);
|
|
|
|
// Set the offset for methods which do not take an offset as an argument
|
|
DBUG_ASSERT(
|
|
is_storage_available(tuple - packed_tuple, pack_info->m_max_image_len));
|
|
|
|
(pack_info->m_pack_func)(pack_info, field, pack_buffer, &tuple, &pack_ctx);
|
|
|
|
/* Make "unpack info" to be stored in the value */
|
|
if (create_unpack_info) {
|
|
(pack_info->m_make_unpack_info_func)(pack_info->m_charset_codec, field,
|
|
&pack_ctx);
|
|
}
|
|
|
|
return tuple;
|
|
}
|
|
|
|
/**
|
|
Get index columns from the record and pack them into mem-comparable form.
|
|
|
|
@param
|
|
tbl Table we're working on
|
|
record IN Record buffer with fields in table->record format
|
|
pack_buffer IN Temporary area for packing varchars. The size is
|
|
at least max_storage_fmt_length() bytes.
|
|
packed_tuple OUT Key in the mem-comparable form
|
|
unpack_info OUT Unpack data
|
|
unpack_info_len OUT Unpack data length
|
|
n_key_parts Number of keyparts to process. 0 means all of them.
|
|
n_null_fields OUT Number of key fields with NULL value.
|
|
ttl_bytes IN Previous ttl bytes from old record for update case or
|
|
current ttl bytes from just packed primary key/value
|
|
@detail
|
|
Some callers do not need the unpack information, they can pass
|
|
unpack_info=nullptr, unpack_info_len=nullptr.
|
|
|
|
@return
|
|
Length of the packed tuple
|
|
*/
|
|
|
|
uint Rdb_key_def::pack_record(const TABLE *const tbl, uchar *const pack_buffer,
|
|
const uchar *const record,
|
|
uchar *const packed_tuple,
|
|
Rdb_string_writer *const unpack_info,
|
|
const bool should_store_row_debug_checksums,
|
|
const longlong hidden_pk_id, uint n_key_parts,
|
|
uint *const n_null_fields,
|
|
const char *const ttl_bytes) const {
|
|
DBUG_ASSERT(tbl != nullptr);
|
|
DBUG_ASSERT(pack_buffer != nullptr);
|
|
DBUG_ASSERT(record != nullptr);
|
|
DBUG_ASSERT(packed_tuple != nullptr);
|
|
// Checksums for PKs are made when record is packed.
|
|
// We should never attempt to make checksum just from PK values
|
|
DBUG_ASSERT_IMP(should_store_row_debug_checksums,
|
|
(m_index_type == INDEX_TYPE_SECONDARY));
|
|
|
|
uchar *tuple = packed_tuple;
|
|
size_t unpack_start_pos = size_t(-1);
|
|
size_t unpack_len_pos = size_t(-1);
|
|
size_t covered_bitmap_pos = size_t(-1);
|
|
const bool hidden_pk_exists = table_has_hidden_pk(tbl);
|
|
|
|
rdb_netbuf_store_index(tuple, m_index_number);
|
|
tuple += INDEX_NUMBER_SIZE;
|
|
|
|
// If n_key_parts is 0, it means all columns.
|
|
// The following includes the 'extended key' tail.
|
|
// The 'extended key' includes primary key. This is done to 'uniqify'
|
|
// non-unique indexes
|
|
const bool use_all_columns = n_key_parts == 0 || n_key_parts == MAX_REF_PARTS;
|
|
|
|
// If hidden pk exists, but hidden pk wasnt passed in, we can't pack the
|
|
// hidden key part. So we skip it (its always 1 part).
|
|
if (hidden_pk_exists && !hidden_pk_id && use_all_columns) {
|
|
n_key_parts = m_key_parts - 1;
|
|
} else if (use_all_columns) {
|
|
n_key_parts = m_key_parts;
|
|
}
|
|
|
|
if (n_null_fields) *n_null_fields = 0;
|
|
|
|
// Check if we need a covered bitmap. If it is certain that all key parts are
|
|
// covering, we don't need one.
|
|
bool store_covered_bitmap = false;
|
|
if (unpack_info && use_covered_bitmap_format()) {
|
|
for (uint i = 0; i < n_key_parts; i++) {
|
|
if (!m_pack_info[i].m_covered) {
|
|
store_covered_bitmap = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
const char tag =
|
|
store_covered_bitmap ? RDB_UNPACK_COVERED_DATA_TAG : RDB_UNPACK_DATA_TAG;
|
|
|
|
if (unpack_info) {
|
|
unpack_info->clear();
|
|
|
|
if (m_index_type == INDEX_TYPE_SECONDARY &&
|
|
m_total_index_flags_length > 0) {
|
|
// Reserve space for index flag fields
|
|
unpack_info->allocate(m_total_index_flags_length);
|
|
|
|
// Insert TTL timestamp
|
|
if (has_ttl() && ttl_bytes) {
|
|
write_index_flag_field(unpack_info,
|
|
reinterpret_cast<const uchar *>(ttl_bytes),
|
|
Rdb_key_def::TTL_FLAG);
|
|
}
|
|
}
|
|
|
|
unpack_start_pos = unpack_info->get_current_pos();
|
|
unpack_info->write_uint8(tag);
|
|
unpack_len_pos = unpack_info->get_current_pos();
|
|
// we don't know the total length yet, so write a zero
|
|
unpack_info->write_uint16(0);
|
|
|
|
if (store_covered_bitmap) {
|
|
// Reserve two bytes for the covered bitmap. This will store, for key
|
|
// parts which are not always covering, whether or not it is covering
|
|
// for this record.
|
|
covered_bitmap_pos = unpack_info->get_current_pos();
|
|
unpack_info->write_uint16(0);
|
|
}
|
|
}
|
|
|
|
MY_BITMAP covered_bitmap;
|
|
my_bitmap_map covered_bits;
|
|
uint curr_bitmap_pos = 0;
|
|
my_bitmap_init(&covered_bitmap, &covered_bits, MAX_REF_PARTS);
|
|
|
|
for (uint i = 0; i < n_key_parts; i++) {
|
|
// Fill hidden pk id into the last key part for secondary keys for tables
|
|
// with no pk
|
|
if (hidden_pk_exists && hidden_pk_id && i + 1 == n_key_parts) {
|
|
m_pack_info[i].fill_hidden_pk_val(&tuple, hidden_pk_id);
|
|
break;
|
|
}
|
|
|
|
Field *const field = m_pack_info[i].get_field_in_table(tbl);
|
|
DBUG_ASSERT(field != nullptr);
|
|
|
|
uint field_offset = field->ptr - tbl->record[0];
|
|
uint null_offset = field->null_offset(tbl->record[0]);
|
|
bool maybe_null = field->real_maybe_null();
|
|
|
|
field->move_field(
|
|
const_cast<uchar *>(record) + field_offset,
|
|
maybe_null ? const_cast<uchar *>(record) + null_offset : nullptr,
|
|
field->null_bit);
|
|
// WARNING! Don't return without restoring field->ptr and field->null_ptr
|
|
|
|
tuple = pack_field(field, &m_pack_info[i], tuple, packed_tuple, pack_buffer,
|
|
unpack_info, n_null_fields);
|
|
|
|
// If this key part is a prefix of a VARCHAR field, check if it's covered.
|
|
if (store_covered_bitmap && field->real_type() == MYSQL_TYPE_VARCHAR &&
|
|
!m_pack_info[i].m_covered && curr_bitmap_pos < MAX_REF_PARTS) {
|
|
size_t data_length = field->data_length();
|
|
uint16 key_length;
|
|
if (m_pk_part_no[i] == (uint)-1) {
|
|
key_length = tbl->key_info[get_keyno()].key_part[i].length;
|
|
} else {
|
|
key_length =
|
|
tbl->key_info[tbl->s->primary_key].key_part[m_pk_part_no[i]].length;
|
|
}
|
|
|
|
if (m_pack_info[i].m_unpack_func != nullptr &&
|
|
data_length <= key_length) {
|
|
bitmap_set_bit(&covered_bitmap, curr_bitmap_pos);
|
|
}
|
|
curr_bitmap_pos++;
|
|
}
|
|
|
|
// Restore field->ptr and field->null_ptr
|
|
field->move_field(tbl->record[0] + field_offset,
|
|
maybe_null ? tbl->record[0] + null_offset : nullptr,
|
|
field->null_bit);
|
|
}
|
|
|
|
if (unpack_info) {
|
|
const size_t len = unpack_info->get_current_pos() - unpack_start_pos;
|
|
DBUG_ASSERT(len <= std::numeric_limits<uint16_t>::max());
|
|
|
|
// Don't store the unpack_info if it has only the header (that is, there's
|
|
// no meaningful content).
|
|
// Primary Keys are special: for them, store the unpack_info even if it's
|
|
// empty (provided m_maybe_unpack_info==true, see
|
|
// ha_rocksdb::convert_record_to_storage_format)
|
|
if (m_index_type == Rdb_key_def::INDEX_TYPE_SECONDARY) {
|
|
if (len == get_unpack_header_size(tag) && !covered_bits) {
|
|
unpack_info->truncate(unpack_start_pos);
|
|
} else if (store_covered_bitmap) {
|
|
unpack_info->write_uint16_at(covered_bitmap_pos, covered_bits);
|
|
}
|
|
} else {
|
|
unpack_info->write_uint16_at(unpack_len_pos, len);
|
|
}
|
|
|
|
//
|
|
// Secondary keys have key and value checksums in the value part
|
|
// Primary key is a special case (the value part has non-indexed columns),
|
|
// so the checksums are computed and stored by
|
|
// ha_rocksdb::convert_record_to_storage_format
|
|
//
|
|
if (should_store_row_debug_checksums) {
|
|
const uint32_t key_crc32 =
|
|
my_checksum(0, packed_tuple, tuple - packed_tuple);
|
|
const uint32_t val_crc32 =
|
|
my_checksum(0, unpack_info->ptr(), unpack_info->get_current_pos());
|
|
|
|
unpack_info->write_uint8(RDB_CHECKSUM_DATA_TAG);
|
|
unpack_info->write_uint32(key_crc32);
|
|
unpack_info->write_uint32(val_crc32);
|
|
}
|
|
}
|
|
|
|
DBUG_ASSERT(is_storage_available(tuple - packed_tuple, 0));
|
|
|
|
return tuple - packed_tuple;
|
|
}
|
|
|
|
/**
|
|
Pack the hidden primary key into mem-comparable form.
|
|
|
|
@param
|
|
tbl Table we're working on
|
|
hidden_pk_id IN New value to be packed into key
|
|
packed_tuple OUT Key in the mem-comparable form
|
|
|
|
@return
|
|
Length of the packed tuple
|
|
*/
|
|
|
|
uint Rdb_key_def::pack_hidden_pk(const longlong hidden_pk_id,
|
|
uchar *const packed_tuple) const {
|
|
DBUG_ASSERT(packed_tuple != nullptr);
|
|
|
|
uchar *tuple = packed_tuple;
|
|
rdb_netbuf_store_index(tuple, m_index_number);
|
|
tuple += INDEX_NUMBER_SIZE;
|
|
DBUG_ASSERT(m_key_parts == 1);
|
|
DBUG_ASSERT(is_storage_available(tuple - packed_tuple,
|
|
m_pack_info[0].m_max_image_len));
|
|
|
|
m_pack_info[0].fill_hidden_pk_val(&tuple, hidden_pk_id);
|
|
|
|
DBUG_ASSERT(is_storage_available(tuple - packed_tuple, 0));
|
|
return tuple - packed_tuple;
|
|
}
|
|
|
|
/*
|
|
Function of type rdb_index_field_pack_t
|
|
*/
|
|
|
|
void Rdb_key_def::pack_with_make_sort_key(
|
|
Rdb_field_packing *const fpi, Field *const field,
|
|
uchar *const buf MY_ATTRIBUTE((__unused__)), uchar **dst,
|
|
Rdb_pack_field_context *const pack_ctx MY_ATTRIBUTE((__unused__))) {
|
|
DBUG_ASSERT(fpi != nullptr);
|
|
DBUG_ASSERT(field != nullptr);
|
|
DBUG_ASSERT(dst != nullptr);
|
|
DBUG_ASSERT(*dst != nullptr);
|
|
|
|
const int max_len = fpi->m_max_image_len;
|
|
MY_BITMAP*old_map;
|
|
|
|
old_map= dbug_tmp_use_all_columns(field->table,
|
|
&field->table->read_set);
|
|
field->sort_string(*dst, max_len);
|
|
dbug_tmp_restore_column_map(&field->table->read_set, old_map);
|
|
*dst += max_len;
|
|
}
|
|
|
|
/*
|
|
Compares two keys without unpacking
|
|
|
|
@detail
|
|
@return
|
|
0 - Ok. column_index is the index of the first column which is different.
|
|
-1 if two kes are equal
|
|
1 - Data format error.
|
|
*/
|
|
int Rdb_key_def::compare_keys(const rocksdb::Slice *key1,
|
|
const rocksdb::Slice *key2,
|
|
std::size_t *const column_index) const {
|
|
DBUG_ASSERT(key1 != nullptr);
|
|
DBUG_ASSERT(key2 != nullptr);
|
|
DBUG_ASSERT(column_index != nullptr);
|
|
|
|
// the caller should check the return value and
|
|
// not rely on column_index being valid
|
|
*column_index = 0xbadf00d;
|
|
|
|
Rdb_string_reader reader1(key1);
|
|
Rdb_string_reader reader2(key2);
|
|
|
|
// Skip the index number
|
|
if ((!reader1.read(INDEX_NUMBER_SIZE))) return HA_EXIT_FAILURE;
|
|
|
|
if ((!reader2.read(INDEX_NUMBER_SIZE))) return HA_EXIT_FAILURE;
|
|
|
|
for (uint i = 0; i < m_key_parts; i++) {
|
|
const Rdb_field_packing *const fpi = &m_pack_info[i];
|
|
if (fpi->m_maybe_null) {
|
|
const auto nullp1 = reader1.read(1);
|
|
const auto nullp2 = reader2.read(1);
|
|
|
|
if (nullp1 == nullptr || nullp2 == nullptr) {
|
|
return HA_EXIT_FAILURE;
|
|
}
|
|
|
|
if (*nullp1 != *nullp2) {
|
|
*column_index = i;
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
if (*nullp1 == 0) {
|
|
/* This is a NULL value */
|
|
continue;
|
|
}
|
|
}
|
|
|
|
const auto before_skip1 = reader1.get_current_ptr();
|
|
const auto before_skip2 = reader2.get_current_ptr();
|
|
DBUG_ASSERT(fpi->m_skip_func);
|
|
if ((fpi->m_skip_func)(fpi, nullptr, &reader1)) {
|
|
return HA_EXIT_FAILURE;
|
|
}
|
|
if ((fpi->m_skip_func)(fpi, nullptr, &reader2)) {
|
|
return HA_EXIT_FAILURE;
|
|
}
|
|
const auto size1 = reader1.get_current_ptr() - before_skip1;
|
|
const auto size2 = reader2.get_current_ptr() - before_skip2;
|
|
if (size1 != size2) {
|
|
*column_index = i;
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
if (memcmp(before_skip1, before_skip2, size1) != 0) {
|
|
*column_index = i;
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
}
|
|
|
|
*column_index = m_key_parts;
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
@brief
|
|
Given a zero-padded key, determine its real key length
|
|
|
|
@detail
|
|
Fixed-size skip functions just read.
|
|
*/
|
|
|
|
size_t Rdb_key_def::key_length(const TABLE *const table,
|
|
const rocksdb::Slice &key) const {
|
|
DBUG_ASSERT(table != nullptr);
|
|
|
|
Rdb_string_reader reader(&key);
|
|
|
|
if ((!reader.read(INDEX_NUMBER_SIZE))) {
|
|
return size_t(-1);
|
|
}
|
|
for (uint i = 0; i < m_key_parts; i++) {
|
|
const Rdb_field_packing *fpi = &m_pack_info[i];
|
|
const Field *field = nullptr;
|
|
if (m_index_type != INDEX_TYPE_HIDDEN_PRIMARY) {
|
|
field = fpi->get_field_in_table(table);
|
|
}
|
|
if ((fpi->m_skip_func)(fpi, field, &reader)) {
|
|
return size_t(-1);
|
|
}
|
|
}
|
|
return key.size() - reader.remaining_bytes();
|
|
}
|
|
|
|
/*
|
|
Take mem-comparable form and unpack_info and unpack it to Table->record
|
|
|
|
@detail
|
|
not all indexes support this
|
|
|
|
@return
|
|
HA_EXIT_SUCCESS OK
|
|
other HA_ERR error code
|
|
*/
|
|
|
|
int Rdb_key_def::unpack_record(TABLE *const table, uchar *const buf,
|
|
const rocksdb::Slice *const packed_key,
|
|
const rocksdb::Slice *const unpack_info,
|
|
const bool verify_row_debug_checksums) const {
|
|
Rdb_string_reader reader(packed_key);
|
|
Rdb_string_reader unp_reader = Rdb_string_reader::read_or_empty(unpack_info);
|
|
|
|
// There is no checksuming data after unpack_info for primary keys, because
|
|
// the layout there is different. The checksum is verified in
|
|
// ha_rocksdb::convert_record_from_storage_format instead.
|
|
DBUG_ASSERT_IMP(!(m_index_type == INDEX_TYPE_SECONDARY),
|
|
!verify_row_debug_checksums);
|
|
|
|
// Skip the index number
|
|
if ((!reader.read(INDEX_NUMBER_SIZE))) {
|
|
return HA_ERR_ROCKSDB_CORRUPT_DATA;
|
|
}
|
|
|
|
// For secondary keys, we expect the value field to contain index flags,
|
|
// unpack data, and checksum data in that order. One or all can be missing,
|
|
// but they cannot be reordered.
|
|
if (unp_reader.remaining_bytes()) {
|
|
if (m_index_type == INDEX_TYPE_SECONDARY &&
|
|
m_total_index_flags_length > 0 &&
|
|
!unp_reader.read(m_total_index_flags_length)) {
|
|
return HA_ERR_ROCKSDB_CORRUPT_DATA;
|
|
}
|
|
}
|
|
|
|
const char *unpack_header = unp_reader.get_current_ptr();
|
|
bool has_unpack_info =
|
|
unp_reader.remaining_bytes() && is_unpack_data_tag(unpack_header[0]);
|
|
if (has_unpack_info) {
|
|
if (!unp_reader.read(get_unpack_header_size(unpack_header[0]))) {
|
|
return HA_ERR_ROCKSDB_CORRUPT_DATA;
|
|
}
|
|
}
|
|
|
|
// Read the covered bitmap
|
|
MY_BITMAP covered_bitmap;
|
|
my_bitmap_map covered_bits;
|
|
bool has_covered_bitmap =
|
|
has_unpack_info && (unpack_header[0] == RDB_UNPACK_COVERED_DATA_TAG);
|
|
if (has_covered_bitmap) {
|
|
my_bitmap_init(&covered_bitmap, &covered_bits, MAX_REF_PARTS);
|
|
covered_bits = rdb_netbuf_to_uint16((const uchar *)unpack_header +
|
|
sizeof(RDB_UNPACK_COVERED_DATA_TAG) +
|
|
RDB_UNPACK_COVERED_DATA_LEN_SIZE);
|
|
}
|
|
|
|
int err = HA_EXIT_SUCCESS;
|
|
|
|
|
|
Rdb_key_field_iterator iter(
|
|
this, m_pack_info, &reader, &unp_reader, table, has_unpack_info,
|
|
has_covered_bitmap ? &covered_bitmap : nullptr, buf);
|
|
while (iter.has_next()) {
|
|
err = iter.next();
|
|
if (err) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Check checksum values if present
|
|
*/
|
|
const char *ptr;
|
|
if ((ptr = unp_reader.read(1)) && *ptr == RDB_CHECKSUM_DATA_TAG) {
|
|
if (verify_row_debug_checksums) {
|
|
uint32_t stored_key_chksum = rdb_netbuf_to_uint32(
|
|
(const uchar *)unp_reader.read(RDB_CHECKSUM_SIZE));
|
|
const uint32_t stored_val_chksum = rdb_netbuf_to_uint32(
|
|
(const uchar *)unp_reader.read(RDB_CHECKSUM_SIZE));
|
|
|
|
const uint32_t computed_key_chksum =
|
|
my_checksum(0, packed_key->data(), packed_key->size());
|
|
const uint32_t computed_val_chksum =
|
|
my_checksum(0, unpack_info->data(),
|
|
unpack_info->size() - RDB_CHECKSUM_CHUNK_SIZE);
|
|
|
|
DBUG_EXECUTE_IF("myrocks_simulate_bad_key_checksum1",
|
|
stored_key_chksum++;);
|
|
|
|
if (stored_key_chksum != computed_key_chksum) {
|
|
report_checksum_mismatch(true, packed_key->data(), packed_key->size());
|
|
return HA_ERR_ROCKSDB_CHECKSUM_MISMATCH;
|
|
}
|
|
|
|
if (stored_val_chksum != computed_val_chksum) {
|
|
report_checksum_mismatch(false, unpack_info->data(),
|
|
unpack_info->size() - RDB_CHECKSUM_CHUNK_SIZE);
|
|
return HA_ERR_ROCKSDB_CHECKSUM_MISMATCH;
|
|
}
|
|
} else {
|
|
/* The checksums are present but we are not checking checksums */
|
|
}
|
|
}
|
|
|
|
if (reader.remaining_bytes()) return HA_ERR_ROCKSDB_CORRUPT_DATA;
|
|
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
bool Rdb_key_def::table_has_hidden_pk(const TABLE *const table) {
|
|
return table->s->primary_key == MAX_INDEXES;
|
|
}
|
|
|
|
void Rdb_key_def::report_checksum_mismatch(const bool is_key,
|
|
const char *const data,
|
|
const size_t data_size) const {
|
|
// NO_LINT_DEBUG
|
|
sql_print_error("Checksum mismatch in %s of key-value pair for index 0x%x",
|
|
is_key ? "key" : "value", get_index_number());
|
|
|
|
const std::string buf = rdb_hexdump(data, data_size, RDB_MAX_HEXDUMP_LEN);
|
|
// NO_LINT_DEBUG
|
|
sql_print_error("Data with incorrect checksum (%" PRIu64 " bytes): %s",
|
|
(uint64_t)data_size, buf.c_str());
|
|
|
|
my_error(ER_INTERNAL_ERROR, MYF(0), "Record checksum mismatch");
|
|
}
|
|
|
|
bool Rdb_key_def::index_format_min_check(const int pk_min,
|
|
const int sk_min) const {
|
|
switch (m_index_type) {
|
|
case INDEX_TYPE_PRIMARY:
|
|
case INDEX_TYPE_HIDDEN_PRIMARY:
|
|
return (m_kv_format_version >= pk_min);
|
|
case INDEX_TYPE_SECONDARY:
|
|
return (m_kv_format_version >= sk_min);
|
|
default:
|
|
DBUG_ASSERT(0);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////
|
|
// Rdb_field_packing
|
|
///////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/*
|
|
Function of type rdb_index_field_skip_t
|
|
*/
|
|
|
|
int Rdb_key_def::skip_max_length(const Rdb_field_packing *const fpi,
|
|
const Field *const field
|
|
MY_ATTRIBUTE((__unused__)),
|
|
Rdb_string_reader *const reader) {
|
|
if (!reader->read(fpi->m_max_image_len)) return HA_EXIT_FAILURE;
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
(RDB_ESCAPE_LENGTH-1) must be an even number so that pieces of lines are not
|
|
split in the middle of an UTF-8 character. See the implementation of
|
|
unpack_binary_or_utf8_varchar.
|
|
*/
|
|
#define RDB_ESCAPE_LENGTH 9
|
|
#define RDB_LEGACY_ESCAPE_LENGTH RDB_ESCAPE_LENGTH
|
|
static_assert((RDB_ESCAPE_LENGTH - 1) % 2 == 0,
|
|
"RDB_ESCAPE_LENGTH-1 must be even.");
|
|
|
|
#define RDB_ENCODED_SIZE(len) \
|
|
((len + (RDB_ESCAPE_LENGTH - 2)) / (RDB_ESCAPE_LENGTH - 1)) * \
|
|
RDB_ESCAPE_LENGTH
|
|
|
|
#define RDB_LEGACY_ENCODED_SIZE(len) \
|
|
((len + (RDB_LEGACY_ESCAPE_LENGTH - 1)) / (RDB_LEGACY_ESCAPE_LENGTH - 1)) * \
|
|
RDB_LEGACY_ESCAPE_LENGTH
|
|
|
|
/*
|
|
Function of type rdb_index_field_skip_t
|
|
*/
|
|
|
|
int Rdb_key_def::skip_variable_length(const Rdb_field_packing *const fpi,
|
|
const Field *const field,
|
|
Rdb_string_reader *const reader) {
|
|
const uchar *ptr;
|
|
bool finished = false;
|
|
|
|
size_t dst_len; /* How much data can be there */
|
|
if (field) {
|
|
const Field_varstring *const field_var =
|
|
static_cast<const Field_varstring *>(field);
|
|
dst_len = field_var->pack_length() - field_var->length_bytes;
|
|
} else {
|
|
dst_len = UINT_MAX;
|
|
}
|
|
|
|
bool use_legacy_format = fpi->m_use_legacy_varbinary_format;
|
|
|
|
/* Decode the length-emitted encoding here */
|
|
while ((ptr = (const uchar *)reader->read(RDB_ESCAPE_LENGTH))) {
|
|
uint used_bytes;
|
|
|
|
/* See pack_with_varchar_encoding. */
|
|
if (use_legacy_format) {
|
|
used_bytes = calc_unpack_legacy_variable_format(
|
|
ptr[RDB_ESCAPE_LENGTH - 1], &finished);
|
|
} else {
|
|
used_bytes =
|
|
calc_unpack_variable_format(ptr[RDB_ESCAPE_LENGTH - 1], &finished);
|
|
}
|
|
|
|
if (used_bytes == (uint)-1 || dst_len < used_bytes) {
|
|
return HA_EXIT_FAILURE; // Corruption in the data
|
|
}
|
|
|
|
if (finished) {
|
|
break;
|
|
}
|
|
|
|
dst_len -= used_bytes;
|
|
}
|
|
|
|
if (!finished) {
|
|
return HA_EXIT_FAILURE;
|
|
}
|
|
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
const int VARCHAR_CMP_LESS_THAN_SPACES = 1;
|
|
const int VARCHAR_CMP_EQUAL_TO_SPACES = 2;
|
|
const int VARCHAR_CMP_GREATER_THAN_SPACES = 3;
|
|
|
|
/*
|
|
Skip a keypart that uses Variable-Length Space-Padded encoding
|
|
*/
|
|
|
|
int Rdb_key_def::skip_variable_space_pad(const Rdb_field_packing *const fpi,
|
|
const Field *const field,
|
|
Rdb_string_reader *const reader) {
|
|
const uchar *ptr;
|
|
bool finished = false;
|
|
|
|
size_t dst_len = UINT_MAX; /* How much data can be there */
|
|
|
|
if (field) {
|
|
const Field_varstring *const field_var =
|
|
static_cast<const Field_varstring *>(field);
|
|
dst_len = field_var->pack_length() - field_var->length_bytes;
|
|
}
|
|
|
|
/* Decode the length-emitted encoding here */
|
|
while ((ptr = (const uchar *)reader->read(fpi->m_segment_size))) {
|
|
// See pack_with_varchar_space_pad
|
|
const uchar c = ptr[fpi->m_segment_size - 1];
|
|
if (c == VARCHAR_CMP_EQUAL_TO_SPACES) {
|
|
// This is the last segment
|
|
finished = true;
|
|
break;
|
|
} else if (c == VARCHAR_CMP_LESS_THAN_SPACES ||
|
|
c == VARCHAR_CMP_GREATER_THAN_SPACES) {
|
|
// This is not the last segment
|
|
if ((fpi->m_segment_size - 1) > dst_len) {
|
|
// The segment is full of data but the table field can't hold that
|
|
// much! This must be data corruption.
|
|
return HA_EXIT_FAILURE;
|
|
}
|
|
dst_len -= (fpi->m_segment_size - 1);
|
|
} else {
|
|
// Encountered a value that's none of the VARCHAR_CMP* constants
|
|
// It's data corruption.
|
|
return HA_EXIT_FAILURE;
|
|
}
|
|
}
|
|
return finished ? HA_EXIT_SUCCESS : HA_EXIT_FAILURE;
|
|
}
|
|
|
|
/*
|
|
Function of type rdb_index_field_unpack_t
|
|
*/
|
|
|
|
int Rdb_key_def::unpack_integer(
|
|
Rdb_field_packing *const fpi, Field *const field, uchar *const to,
|
|
Rdb_string_reader *const reader,
|
|
Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__))) {
|
|
const int length = fpi->m_max_image_len;
|
|
|
|
const uchar *from;
|
|
if (!(from = (const uchar *)reader->read(length))) {
|
|
return UNPACK_FAILURE; /* Mem-comparable image doesn't have enough bytes */
|
|
}
|
|
|
|
#ifdef WORDS_BIGENDIAN
|
|
{
|
|
if (static_cast<Field_num *>(field)->unsigned_flag) {
|
|
to[0] = from[0];
|
|
} else {
|
|
to[0] = static_cast<char>(from[0] ^ 128); // Reverse the sign bit.
|
|
}
|
|
memcpy(to + 1, from + 1, length - 1);
|
|
}
|
|
#else
|
|
{
|
|
const int sign_byte = from[0];
|
|
if (static_cast<Field_num *>(field)->unsigned_flag) {
|
|
to[length - 1] = sign_byte;
|
|
} else {
|
|
to[length - 1] =
|
|
static_cast<char>(sign_byte ^ 128); // Reverse the sign bit.
|
|
}
|
|
for (int i = 0, j = length - 1; i < length - 1; ++i, --j) to[i] = from[j];
|
|
}
|
|
#endif
|
|
return UNPACK_SUCCESS;
|
|
}
|
|
|
|
#if !defined(WORDS_BIGENDIAN)
|
|
static void rdb_swap_double_bytes(uchar *const dst, const uchar *const src) {
|
|
#if defined(__FLOAT_WORD_ORDER) && (__FLOAT_WORD_ORDER == __BIG_ENDIAN)
|
|
// A few systems store the most-significant _word_ first on little-endian
|
|
dst[0] = src[3];
|
|
dst[1] = src[2];
|
|
dst[2] = src[1];
|
|
dst[3] = src[0];
|
|
dst[4] = src[7];
|
|
dst[5] = src[6];
|
|
dst[6] = src[5];
|
|
dst[7] = src[4];
|
|
#else
|
|
dst[0] = src[7];
|
|
dst[1] = src[6];
|
|
dst[2] = src[5];
|
|
dst[3] = src[4];
|
|
dst[4] = src[3];
|
|
dst[5] = src[2];
|
|
dst[6] = src[1];
|
|
dst[7] = src[0];
|
|
#endif
|
|
}
|
|
|
|
static void rdb_swap_float_bytes(uchar *const dst, const uchar *const src) {
|
|
dst[0] = src[3];
|
|
dst[1] = src[2];
|
|
dst[2] = src[1];
|
|
dst[3] = src[0];
|
|
}
|
|
#else
|
|
#define rdb_swap_double_bytes nullptr
|
|
#define rdb_swap_float_bytes nullptr
|
|
#endif
|
|
|
|
int Rdb_key_def::unpack_floating_point(
|
|
uchar *const dst, Rdb_string_reader *const reader, const size_t size,
|
|
const int exp_digit, const uchar *const zero_pattern,
|
|
const uchar *const zero_val, void (*swap_func)(uchar *, const uchar *)) {
|
|
const uchar *const from = (const uchar *)reader->read(size);
|
|
if (from == nullptr) {
|
|
/* Mem-comparable image doesn't have enough bytes */
|
|
return UNPACK_FAILURE;
|
|
}
|
|
|
|
/* Check to see if the value is zero */
|
|
if (memcmp(from, zero_pattern, size) == 0) {
|
|
memcpy(dst, zero_val, size);
|
|
return UNPACK_SUCCESS;
|
|
}
|
|
|
|
#if defined(WORDS_BIGENDIAN)
|
|
// On big-endian, output can go directly into result
|
|
uchar *const tmp = dst;
|
|
#else
|
|
// Otherwise use a temporary buffer to make byte-swapping easier later
|
|
uchar tmp[8];
|
|
#endif
|
|
|
|
memcpy(tmp, from, size);
|
|
|
|
if (tmp[0] & 0x80) {
|
|
// If the high bit is set the original value was positive so
|
|
// remove the high bit and subtract one from the exponent.
|
|
ushort exp_part = ((ushort)tmp[0] << 8) | (ushort)tmp[1];
|
|
exp_part &= 0x7FFF; // clear high bit;
|
|
exp_part -= (ushort)1 << (16 - 1 - exp_digit); // subtract from exponent
|
|
tmp[0] = (uchar)(exp_part >> 8);
|
|
tmp[1] = (uchar)exp_part;
|
|
} else {
|
|
// Otherwise the original value was negative and all bytes have been
|
|
// negated.
|
|
for (size_t ii = 0; ii < size; ii++) tmp[ii] ^= 0xFF;
|
|
}
|
|
|
|
#if !defined(WORDS_BIGENDIAN)
|
|
// On little-endian, swap the bytes around
|
|
swap_func(dst, tmp);
|
|
#else
|
|
DBUG_ASSERT(swap_func == nullptr);
|
|
#endif
|
|
|
|
return UNPACK_SUCCESS;
|
|
}
|
|
|
|
#if !defined(DBL_EXP_DIG)
|
|
#define DBL_EXP_DIG (sizeof(double) * 8 - DBL_MANT_DIG)
|
|
#endif
|
|
|
|
/*
|
|
Function of type rdb_index_field_unpack_t
|
|
|
|
Unpack a double by doing the reverse action of change_double_for_sort
|
|
(sql/filesort.cc). Note that this only works on IEEE values.
|
|
Note also that this code assumes that NaN and +/-Infinity are never
|
|
allowed in the database.
|
|
*/
|
|
int Rdb_key_def::unpack_double(
|
|
Rdb_field_packing *const fpi MY_ATTRIBUTE((__unused__)),
|
|
Field *const field MY_ATTRIBUTE((__unused__)), uchar *const field_ptr,
|
|
Rdb_string_reader *const reader,
|
|
Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__))) {
|
|
static double zero_val = 0.0;
|
|
static const uchar zero_pattern[8] = {128, 0, 0, 0, 0, 0, 0, 0};
|
|
|
|
return unpack_floating_point(field_ptr, reader, sizeof(double), DBL_EXP_DIG,
|
|
zero_pattern, (const uchar *)&zero_val,
|
|
rdb_swap_double_bytes);
|
|
}
|
|
|
|
#if !defined(FLT_EXP_DIG)
|
|
#define FLT_EXP_DIG (sizeof(float) * 8 - FLT_MANT_DIG)
|
|
#endif
|
|
|
|
/*
|
|
Function of type rdb_index_field_unpack_t
|
|
|
|
Unpack a float by doing the reverse action of Field_float::make_sort_key
|
|
(sql/field.cc). Note that this only works on IEEE values.
|
|
Note also that this code assumes that NaN and +/-Infinity are never
|
|
allowed in the database.
|
|
*/
|
|
int Rdb_key_def::unpack_float(
|
|
Rdb_field_packing *const fpi, Field *const field MY_ATTRIBUTE((__unused__)),
|
|
uchar *const field_ptr, Rdb_string_reader *const reader,
|
|
Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__))) {
|
|
static float zero_val = 0.0;
|
|
static const uchar zero_pattern[4] = {128, 0, 0, 0};
|
|
|
|
return unpack_floating_point(field_ptr, reader, sizeof(float), FLT_EXP_DIG,
|
|
zero_pattern, (const uchar *)&zero_val,
|
|
rdb_swap_float_bytes);
|
|
}
|
|
|
|
/*
|
|
Function of type rdb_index_field_unpack_t used to
|
|
Unpack by doing the reverse action to Field_newdate::make_sort_key.
|
|
*/
|
|
|
|
int Rdb_key_def::unpack_newdate(
|
|
Rdb_field_packing *const fpi, Field *const field MY_ATTRIBUTE((__unused__)),
|
|
uchar *const field_ptr, Rdb_string_reader *const reader,
|
|
Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__))) {
|
|
const char *from;
|
|
DBUG_ASSERT(fpi->m_max_image_len == 3);
|
|
|
|
if (!(from = reader->read(3))) {
|
|
/* Mem-comparable image doesn't have enough bytes */
|
|
return UNPACK_FAILURE;
|
|
}
|
|
|
|
field_ptr[0] = from[2];
|
|
field_ptr[1] = from[1];
|
|
field_ptr[2] = from[0];
|
|
return UNPACK_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
Function of type rdb_index_field_unpack_t, used to
|
|
Unpack the string by copying it over.
|
|
This is for BINARY(n) where the value occupies the whole length.
|
|
*/
|
|
|
|
int Rdb_key_def::unpack_binary_str(
|
|
Rdb_field_packing *const fpi, Field *const field, uchar *const to,
|
|
Rdb_string_reader *const reader,
|
|
Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__))) {
|
|
const char *from;
|
|
if (!(from = reader->read(fpi->m_max_image_len))) {
|
|
/* Mem-comparable image doesn't have enough bytes */
|
|
return UNPACK_FAILURE;
|
|
}
|
|
|
|
memcpy(to, from, fpi->m_max_image_len);
|
|
return UNPACK_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
Function of type rdb_index_field_unpack_t.
|
|
For UTF-8, we need to convert 2-byte wide-character entities back into
|
|
UTF8 sequences.
|
|
*/
|
|
|
|
int Rdb_key_def::unpack_utf8_str(
|
|
Rdb_field_packing *const fpi, Field *const field, uchar *dst,
|
|
Rdb_string_reader *const reader,
|
|
Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__))) {
|
|
my_core::CHARSET_INFO *const cset = (my_core::CHARSET_INFO *)field->charset();
|
|
const uchar *src;
|
|
if (!(src = (const uchar *)reader->read(fpi->m_max_image_len))) {
|
|
/* Mem-comparable image doesn't have enough bytes */
|
|
return UNPACK_FAILURE;
|
|
}
|
|
|
|
const uchar *const src_end = src + fpi->m_max_image_len;
|
|
uchar *const dst_end = dst + field->pack_length();
|
|
|
|
while (src < src_end) {
|
|
my_wc_t wc = (src[0] << 8) | src[1];
|
|
src += 2;
|
|
int res = cset->wc_mb(wc, dst, dst_end);
|
|
DBUG_ASSERT(res > 0 && res <= 3);
|
|
if (res < 0) return UNPACK_FAILURE;
|
|
dst += res;
|
|
}
|
|
|
|
cset->fill(reinterpret_cast<char *>(dst), dst_end - dst,
|
|
cset->pad_char);
|
|
return UNPACK_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
This is the original algorithm to encode a variable binary field. It
|
|
sets a flag byte every Nth byte. The flag value is (255 - #pad) where
|
|
#pad is the number of padding bytes that were needed (0 if all N-1
|
|
bytes were used).
|
|
|
|
If N=8 and the field is:
|
|
* 3 bytes (1, 2, 3) this is encoded as: 1, 2, 3, 0, 0, 0, 0, 251
|
|
* 4 bytes (1, 2, 3, 0) this is encoded as: 1, 2, 3, 0, 0, 0, 0, 252
|
|
And the 4 byte string compares as greater than the 3 byte string
|
|
|
|
Unfortunately the algorithm has a flaw. If the input is exactly a
|
|
multiple of N-1, an extra N bytes are written. Since we usually use
|
|
N=9, an 8 byte input will generate 18 bytes of output instead of the
|
|
9 bytes of output that is optimal.
|
|
|
|
See pack_variable_format for the newer algorithm.
|
|
*/
|
|
void Rdb_key_def::pack_legacy_variable_format(
|
|
const uchar *src, // The data to encode
|
|
size_t src_len, // The length of the data to encode
|
|
uchar **dst) // The location to encode the data
|
|
{
|
|
size_t copy_len;
|
|
size_t padding_bytes;
|
|
uchar *ptr = *dst;
|
|
|
|
do {
|
|
copy_len = std::min((size_t)RDB_LEGACY_ESCAPE_LENGTH - 1, src_len);
|
|
padding_bytes = RDB_LEGACY_ESCAPE_LENGTH - 1 - copy_len;
|
|
memcpy(ptr, src, copy_len);
|
|
ptr += copy_len;
|
|
src += copy_len;
|
|
// pad with zeros if necessary
|
|
if (padding_bytes > 0) {
|
|
memset(ptr, 0, padding_bytes);
|
|
ptr += padding_bytes;
|
|
}
|
|
|
|
*(ptr++) = 255 - padding_bytes;
|
|
|
|
src_len -= copy_len;
|
|
} while (padding_bytes == 0);
|
|
|
|
*dst = ptr;
|
|
}
|
|
|
|
/*
|
|
This is the new algorithm. Similarly to the legacy format the input
|
|
is split up into N-1 bytes and a flag byte is used as the Nth byte
|
|
in the output.
|
|
|
|
- If the previous segment needed any padding the flag is set to the
|
|
number of bytes used (0..N-2). 0 is possible in the first segment
|
|
if the input is 0 bytes long.
|
|
- If no padding was used and there is no more data left in the input
|
|
the flag is set to N-1
|
|
- If no padding was used and there is still data left in the input the
|
|
flag is set to N.
|
|
|
|
For N=9, the following input values encode to the specified
|
|
outout (where 'X' indicates a byte of the original input):
|
|
- 0 bytes is encoded as 0 0 0 0 0 0 0 0 0
|
|
- 1 byte is encoded as X 0 0 0 0 0 0 0 1
|
|
- 2 bytes is encoded as X X 0 0 0 0 0 0 2
|
|
- 7 bytes is encoded as X X X X X X X 0 7
|
|
- 8 bytes is encoded as X X X X X X X X 8
|
|
- 9 bytes is encoded as X X X X X X X X 9 X 0 0 0 0 0 0 0 1
|
|
- 10 bytes is encoded as X X X X X X X X 9 X X 0 0 0 0 0 0 2
|
|
*/
|
|
void Rdb_key_def::pack_variable_format(
|
|
const uchar *src, // The data to encode
|
|
size_t src_len, // The length of the data to encode
|
|
uchar **dst) // The location to encode the data
|
|
{
|
|
uchar *ptr = *dst;
|
|
|
|
for (;;) {
|
|
// Figure out how many bytes to copy, copy them and adjust pointers
|
|
const size_t copy_len = std::min((size_t)RDB_ESCAPE_LENGTH - 1, src_len);
|
|
memcpy(ptr, src, copy_len);
|
|
ptr += copy_len;
|
|
src += copy_len;
|
|
src_len -= copy_len;
|
|
|
|
// Are we at the end of the input?
|
|
if (src_len == 0) {
|
|
// pad with zeros if necessary;
|
|
const size_t padding_bytes = RDB_ESCAPE_LENGTH - 1 - copy_len;
|
|
if (padding_bytes > 0) {
|
|
memset(ptr, 0, padding_bytes);
|
|
ptr += padding_bytes;
|
|
}
|
|
|
|
// Put the flag byte (0 - N-1) in the output
|
|
*(ptr++) = (uchar)copy_len;
|
|
break;
|
|
}
|
|
|
|
// We have more data - put the flag byte (N) in and continue
|
|
*(ptr++) = RDB_ESCAPE_LENGTH;
|
|
}
|
|
|
|
*dst = ptr;
|
|
}
|
|
|
|
/*
|
|
Function of type rdb_index_field_pack_t
|
|
*/
|
|
|
|
void Rdb_key_def::pack_with_varchar_encoding(
|
|
Rdb_field_packing *const fpi, Field *const field, uchar *buf, uchar **dst,
|
|
Rdb_pack_field_context *const pack_ctx MY_ATTRIBUTE((__unused__))) {
|
|
const CHARSET_INFO *const charset = field->charset();
|
|
Field_varstring *const field_var = (Field_varstring *)field;
|
|
|
|
const size_t value_length = (field_var->length_bytes == 1)
|
|
? (uint)*field->ptr
|
|
: uint2korr(field->ptr);
|
|
size_t xfrm_len = charset->strnxfrm(
|
|
buf, fpi->m_max_image_len, field_var->char_length(),
|
|
field_var->ptr + field_var->length_bytes,
|
|
value_length, 0).m_result_length;
|
|
|
|
/* Got a mem-comparable image in 'buf'. Now, produce varlength encoding */
|
|
if (fpi->m_use_legacy_varbinary_format) {
|
|
pack_legacy_variable_format(buf, xfrm_len, dst);
|
|
} else {
|
|
pack_variable_format(buf, xfrm_len, dst);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Compare the string in [buf..buf_end) with a string that is an infinite
|
|
sequence of strings in space_xfrm
|
|
*/
|
|
|
|
static int rdb_compare_string_with_spaces(
|
|
const uchar *buf, const uchar *const buf_end,
|
|
const std::vector<uchar> *const space_xfrm) {
|
|
int cmp = 0;
|
|
while (buf < buf_end) {
|
|
size_t bytes = std::min((size_t)(buf_end - buf), space_xfrm->size());
|
|
if ((cmp = memcmp(buf, space_xfrm->data(), bytes)) != 0) break;
|
|
buf += bytes;
|
|
}
|
|
return cmp;
|
|
}
|
|
|
|
static const int RDB_TRIMMED_CHARS_OFFSET = 8;
|
|
/*
|
|
Pack the data with Variable-Length Space-Padded Encoding.
|
|
|
|
The encoding is there to meet two goals:
|
|
|
|
Goal#1. Comparison. The SQL standard says
|
|
|
|
" If the collation for the comparison has the PAD SPACE characteristic,
|
|
for the purposes of the comparison, the shorter value is effectively
|
|
extended to the length of the longer by concatenation of <space>s on the
|
|
right.
|
|
|
|
At the moment, all MySQL collations except one have the PAD SPACE
|
|
characteristic. The exception is the "binary" collation that is used by
|
|
[VAR]BINARY columns. (Note that binary collations for specific charsets,
|
|
like utf8_bin or latin1_bin are not the same as "binary" collation, they have
|
|
the PAD SPACE characteristic).
|
|
|
|
Goal#2 is to preserve the number of trailing spaces in the original value.
|
|
|
|
This is achieved by using the following encoding:
|
|
The key part:
|
|
- Stores mem-comparable image of the column
|
|
- It is stored in chunks of fpi->m_segment_size bytes (*)
|
|
= If the remainder of the chunk is not occupied, it is padded with mem-
|
|
comparable image of the space character (cs->pad_char to be precise).
|
|
- The last byte of the chunk shows how the rest of column's mem-comparable
|
|
image would compare to mem-comparable image of the column extended with
|
|
spaces. There are three possible values.
|
|
- VARCHAR_CMP_LESS_THAN_SPACES,
|
|
- VARCHAR_CMP_EQUAL_TO_SPACES
|
|
- VARCHAR_CMP_GREATER_THAN_SPACES
|
|
|
|
VARCHAR_CMP_EQUAL_TO_SPACES means that this chunk is the last one (the rest
|
|
is spaces, or something that sorts as spaces, so there is no reason to store
|
|
it).
|
|
|
|
Example: if fpi->m_segment_size=5, and the collation is latin1_bin:
|
|
|
|
'abcd\0' => [ 'abcd' <VARCHAR_CMP_LESS> ]['\0 ' <VARCHAR_CMP_EQUAL> ]
|
|
'abcd' => [ 'abcd' <VARCHAR_CMP_EQUAL>]
|
|
'abcd ' => [ 'abcd' <VARCHAR_CMP_EQUAL>]
|
|
'abcdZZZZ' => [ 'abcd' <VARCHAR_CMP_GREATER>][ 'ZZZZ' <VARCHAR_CMP_EQUAL>]
|
|
|
|
As mentioned above, the last chunk is padded with mem-comparable images of
|
|
cs->pad_char. It can be 1-byte long (latin1), 2 (utf8_bin), 3 (utf8mb4), etc.
|
|
|
|
fpi->m_segment_size depends on the used collation. It is chosen to be such
|
|
that no mem-comparable image of space will ever stretch across the segments
|
|
(see get_segment_size_from_collation).
|
|
|
|
== The value part (aka unpack_info) ==
|
|
The value part stores the number of space characters that one needs to add
|
|
when unpacking the string.
|
|
- If the number is positive, it means add this many spaces at the end
|
|
- If the number is negative, it means padding has added extra spaces which
|
|
must be removed.
|
|
|
|
Storage considerations
|
|
- depending on column's max size, the number may occupy 1 or 2 bytes
|
|
- the number of spaces that need to be removed is not more than
|
|
RDB_TRIMMED_CHARS_OFFSET=8, so we offset the number by that value and
|
|
then store it as unsigned.
|
|
|
|
@seealso
|
|
unpack_binary_or_utf8_varchar_space_pad
|
|
unpack_simple_varchar_space_pad
|
|
dummy_make_unpack_info
|
|
skip_variable_space_pad
|
|
*/
|
|
|
|
void Rdb_key_def::pack_with_varchar_space_pad(
|
|
Rdb_field_packing *const fpi, Field *const field, uchar *buf, uchar **dst,
|
|
Rdb_pack_field_context *const pack_ctx) {
|
|
Rdb_string_writer *const unpack_info = pack_ctx->writer;
|
|
const CHARSET_INFO *const charset = field->charset();
|
|
const auto field_var = static_cast<Field_varstring *>(field);
|
|
|
|
const size_t value_length = (field_var->length_bytes == 1)
|
|
? (uint)*field->ptr
|
|
: uint2korr(field->ptr);
|
|
|
|
const size_t trimmed_len = charset->lengthsp(
|
|
(const char *)field_var->ptr + field_var->length_bytes,
|
|
value_length);
|
|
const size_t xfrm_len = charset->strnxfrm(
|
|
buf, fpi->m_max_image_len, field_var->char_length(),
|
|
field_var->ptr + field_var->length_bytes,
|
|
trimmed_len, 0).m_result_length;
|
|
|
|
/* Got a mem-comparable image in 'buf'. Now, produce varlength encoding */
|
|
uchar *const buf_end = buf + xfrm_len;
|
|
|
|
size_t encoded_size = 0;
|
|
uchar *ptr = *dst;
|
|
size_t padding_bytes;
|
|
while (true) {
|
|
const size_t copy_len =
|
|
std::min<size_t>(fpi->m_segment_size - 1, buf_end - buf);
|
|
padding_bytes = fpi->m_segment_size - 1 - copy_len;
|
|
memcpy(ptr, buf, copy_len);
|
|
ptr += copy_len;
|
|
buf += copy_len;
|
|
|
|
if (padding_bytes) {
|
|
memcpy(ptr, fpi->space_xfrm->data(), padding_bytes);
|
|
ptr += padding_bytes;
|
|
*ptr = VARCHAR_CMP_EQUAL_TO_SPACES; // last segment
|
|
} else {
|
|
// Compare the string suffix with a hypothetical infinite string of
|
|
// spaces. It could be that the first difference is beyond the end of
|
|
// current chunk.
|
|
const int cmp =
|
|
rdb_compare_string_with_spaces(buf, buf_end, fpi->space_xfrm);
|
|
|
|
if (cmp < 0) {
|
|
*ptr = VARCHAR_CMP_LESS_THAN_SPACES;
|
|
} else if (cmp > 0) {
|
|
*ptr = VARCHAR_CMP_GREATER_THAN_SPACES;
|
|
} else {
|
|
// It turns out all the rest are spaces.
|
|
*ptr = VARCHAR_CMP_EQUAL_TO_SPACES;
|
|
}
|
|
}
|
|
encoded_size += fpi->m_segment_size;
|
|
|
|
if (*(ptr++) == VARCHAR_CMP_EQUAL_TO_SPACES) break;
|
|
}
|
|
|
|
// m_unpack_info_stores_value means unpack_info stores the whole original
|
|
// value. There is no need to store the number of trimmed/padded endspaces
|
|
// in that case.
|
|
if (unpack_info && !fpi->m_unpack_info_stores_value) {
|
|
// (value_length - trimmed_len) is the number of trimmed space *characters*
|
|
// then, padding_bytes is the number of *bytes* added as padding
|
|
// then, we add 8, because we don't store negative values.
|
|
DBUG_ASSERT(padding_bytes % fpi->space_xfrm_len == 0);
|
|
DBUG_ASSERT((value_length - trimmed_len) % fpi->space_mb_len == 0);
|
|
const size_t removed_chars =
|
|
RDB_TRIMMED_CHARS_OFFSET +
|
|
(value_length - trimmed_len) / fpi->space_mb_len -
|
|
padding_bytes / fpi->space_xfrm_len;
|
|
|
|
if (fpi->m_unpack_info_uses_two_bytes) {
|
|
unpack_info->write_uint16(removed_chars);
|
|
} else {
|
|
DBUG_ASSERT(removed_chars < 0x100);
|
|
unpack_info->write_uint8(removed_chars);
|
|
}
|
|
}
|
|
|
|
*dst += encoded_size;
|
|
}
|
|
|
|
/*
|
|
Calculate the number of used bytes in the chunk and whether this is the
|
|
last chunk in the input. This is based on the old legacy format - see
|
|
pack_legacy_variable_format.
|
|
*/
|
|
uint Rdb_key_def::calc_unpack_legacy_variable_format(uchar flag, bool *done) {
|
|
uint pad = 255 - flag;
|
|
uint used_bytes = RDB_LEGACY_ESCAPE_LENGTH - 1 - pad;
|
|
if (used_bytes > RDB_LEGACY_ESCAPE_LENGTH - 1) {
|
|
return (uint)-1;
|
|
}
|
|
|
|
*done = used_bytes < RDB_LEGACY_ESCAPE_LENGTH - 1;
|
|
return used_bytes;
|
|
}
|
|
|
|
/*
|
|
Calculate the number of used bytes in the chunk and whether this is the
|
|
last chunk in the input. This is based on the new format - see
|
|
pack_variable_format.
|
|
*/
|
|
uint Rdb_key_def::calc_unpack_variable_format(uchar flag, bool *done) {
|
|
// Check for invalid flag values
|
|
if (flag > RDB_ESCAPE_LENGTH) {
|
|
return (uint)-1;
|
|
}
|
|
|
|
// Values from 1 to N-1 indicate this is the last chunk and that is how
|
|
// many bytes were used
|
|
if (flag < RDB_ESCAPE_LENGTH) {
|
|
*done = true;
|
|
return flag;
|
|
}
|
|
|
|
// A value of N means we used N-1 bytes and had more to go
|
|
*done = false;
|
|
return RDB_ESCAPE_LENGTH - 1;
|
|
}
|
|
|
|
/*
|
|
Unpack data that has charset information. Each two bytes of the input is
|
|
treated as a wide-character and converted to its multibyte equivalent in
|
|
the output.
|
|
*/
|
|
static int unpack_charset(
|
|
const CHARSET_INFO *cset, // character set information
|
|
const uchar *src, // source data to unpack
|
|
uint src_len, // length of source data
|
|
uchar *dst, // destination of unpacked data
|
|
uint dst_len, // length of destination data
|
|
uint *used_bytes) // output number of bytes used
|
|
{
|
|
if (src_len & 1) {
|
|
/*
|
|
UTF-8 characters are encoded into two-byte entities. There is no way
|
|
we can have an odd number of bytes after encoding.
|
|
*/
|
|
return UNPACK_FAILURE;
|
|
}
|
|
|
|
uchar *dst_end = dst + dst_len;
|
|
uint used = 0;
|
|
|
|
for (uint ii = 0; ii < src_len; ii += 2) {
|
|
my_wc_t wc = (src[ii] << 8) | src[ii + 1];
|
|
int res = cset->wc_mb(wc, dst + used, dst_end);
|
|
DBUG_ASSERT(res > 0 && res <= 3);
|
|
if (res < 0) {
|
|
return UNPACK_FAILURE;
|
|
}
|
|
|
|
used += res;
|
|
}
|
|
|
|
*used_bytes = used;
|
|
return UNPACK_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
Function of type rdb_index_field_unpack_t
|
|
*/
|
|
|
|
int Rdb_key_def::unpack_binary_or_utf8_varchar(
|
|
Rdb_field_packing *const fpi, Field *const field, uchar *dst,
|
|
Rdb_string_reader *const reader,
|
|
Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__))) {
|
|
const uchar *ptr;
|
|
size_t len = 0;
|
|
bool finished = false;
|
|
uchar *d0 = dst;
|
|
Field_varstring *const field_var = (Field_varstring *)field;
|
|
dst += field_var->length_bytes;
|
|
// How much we can unpack
|
|
size_t dst_len = field_var->pack_length() - field_var->length_bytes;
|
|
|
|
bool use_legacy_format = fpi->m_use_legacy_varbinary_format;
|
|
|
|
/* Decode the length-emitted encoding here */
|
|
while ((ptr = (const uchar *)reader->read(RDB_ESCAPE_LENGTH))) {
|
|
uint used_bytes;
|
|
|
|
/* See pack_with_varchar_encoding. */
|
|
if (use_legacy_format) {
|
|
used_bytes = calc_unpack_legacy_variable_format(
|
|
ptr[RDB_ESCAPE_LENGTH - 1], &finished);
|
|
} else {
|
|
used_bytes =
|
|
calc_unpack_variable_format(ptr[RDB_ESCAPE_LENGTH - 1], &finished);
|
|
}
|
|
|
|
if (used_bytes == (uint)-1 || dst_len < used_bytes) {
|
|
return UNPACK_FAILURE; // Corruption in the data
|
|
}
|
|
|
|
/*
|
|
Now, we need to decode used_bytes of data and append them to the value.
|
|
*/
|
|
if (fpi->m_varchar_charset->number == COLLATION_UTF8_BIN) {
|
|
int err = unpack_charset(fpi->m_varchar_charset, ptr, used_bytes, dst,
|
|
dst_len, &used_bytes);
|
|
if (err != UNPACK_SUCCESS) {
|
|
return err;
|
|
}
|
|
} else {
|
|
memcpy(dst, ptr, used_bytes);
|
|
}
|
|
|
|
dst += used_bytes;
|
|
dst_len -= used_bytes;
|
|
len += used_bytes;
|
|
|
|
if (finished) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!finished) {
|
|
return UNPACK_FAILURE;
|
|
}
|
|
|
|
/* Save the length */
|
|
if (field_var->length_bytes == 1) {
|
|
d0[0] = (uchar)len;
|
|
} else {
|
|
DBUG_ASSERT(field_var->length_bytes == 2);
|
|
int2store(d0, len);
|
|
}
|
|
return UNPACK_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
@seealso
|
|
pack_with_varchar_space_pad - packing function
|
|
unpack_simple_varchar_space_pad - unpacking function for 'simple'
|
|
charsets.
|
|
skip_variable_space_pad - skip function
|
|
*/
|
|
int Rdb_key_def::unpack_binary_or_utf8_varchar_space_pad(
|
|
Rdb_field_packing *const fpi, Field *const field, uchar *dst,
|
|
Rdb_string_reader *const reader, Rdb_string_reader *const unp_reader) {
|
|
const uchar *ptr;
|
|
size_t len = 0;
|
|
bool finished = false;
|
|
Field_varstring *const field_var = static_cast<Field_varstring *>(field);
|
|
uchar *d0 = dst;
|
|
uchar *dst_end = dst + field_var->pack_length();
|
|
dst += field_var->length_bytes;
|
|
|
|
uint space_padding_bytes = 0;
|
|
uint extra_spaces;
|
|
if ((fpi->m_unpack_info_uses_two_bytes
|
|
? unp_reader->read_uint16(&extra_spaces)
|
|
: unp_reader->read_uint8(&extra_spaces))) {
|
|
return UNPACK_FAILURE;
|
|
}
|
|
|
|
if (extra_spaces <= RDB_TRIMMED_CHARS_OFFSET) {
|
|
space_padding_bytes =
|
|
-(static_cast<int>(extra_spaces) - RDB_TRIMMED_CHARS_OFFSET);
|
|
extra_spaces = 0;
|
|
} else {
|
|
extra_spaces -= RDB_TRIMMED_CHARS_OFFSET;
|
|
}
|
|
|
|
space_padding_bytes *= fpi->space_xfrm_len;
|
|
|
|
/* Decode the length-emitted encoding here */
|
|
while ((ptr = (const uchar *)reader->read(fpi->m_segment_size))) {
|
|
const char last_byte = ptr[fpi->m_segment_size - 1];
|
|
size_t used_bytes;
|
|
if (last_byte == VARCHAR_CMP_EQUAL_TO_SPACES) // this is the last segment
|
|
{
|
|
if (space_padding_bytes > (fpi->m_segment_size - 1)) {
|
|
return UNPACK_FAILURE; // Cannot happen, corrupted data
|
|
}
|
|
used_bytes = (fpi->m_segment_size - 1) - space_padding_bytes;
|
|
finished = true;
|
|
} else {
|
|
if (last_byte != VARCHAR_CMP_LESS_THAN_SPACES &&
|
|
last_byte != VARCHAR_CMP_GREATER_THAN_SPACES) {
|
|
return UNPACK_FAILURE; // Invalid value
|
|
}
|
|
used_bytes = fpi->m_segment_size - 1;
|
|
}
|
|
|
|
// Now, need to decode used_bytes of data and append them to the value.
|
|
if (fpi->m_varchar_charset->number == COLLATION_UTF8_BIN) {
|
|
if (used_bytes & 1) {
|
|
/*
|
|
UTF-8 characters are encoded into two-byte entities. There is no way
|
|
we can have an odd number of bytes after encoding.
|
|
*/
|
|
return UNPACK_FAILURE;
|
|
}
|
|
|
|
const uchar *src = ptr;
|
|
const uchar *const src_end = ptr + used_bytes;
|
|
while (src < src_end) {
|
|
my_wc_t wc = (src[0] << 8) | src[1];
|
|
src += 2;
|
|
const CHARSET_INFO *cset = fpi->m_varchar_charset;
|
|
int res = cset->wc_mb(wc, dst, dst_end);
|
|
DBUG_ASSERT(res <= 3);
|
|
if (res <= 0) return UNPACK_FAILURE;
|
|
dst += res;
|
|
len += res;
|
|
}
|
|
} else {
|
|
if (dst + used_bytes > dst_end) return UNPACK_FAILURE;
|
|
memcpy(dst, ptr, used_bytes);
|
|
dst += used_bytes;
|
|
len += used_bytes;
|
|
}
|
|
|
|
if (finished) {
|
|
if (extra_spaces) {
|
|
// Both binary and UTF-8 charset store space as ' ',
|
|
// so the following is ok:
|
|
if (dst + extra_spaces > dst_end) return UNPACK_FAILURE;
|
|
memset(dst, fpi->m_varchar_charset->pad_char, extra_spaces);
|
|
len += extra_spaces;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!finished) return UNPACK_FAILURE;
|
|
|
|
/* Save the length */
|
|
if (field_var->length_bytes == 1) {
|
|
d0[0] = (uchar)len;
|
|
} else {
|
|
DBUG_ASSERT(field_var->length_bytes == 2);
|
|
int2store(d0, len);
|
|
}
|
|
return UNPACK_SUCCESS;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
/*
|
|
Function of type rdb_make_unpack_info_t
|
|
*/
|
|
|
|
void Rdb_key_def::make_unpack_unknown(
|
|
const Rdb_collation_codec *codec MY_ATTRIBUTE((__unused__)),
|
|
const Field *const field, Rdb_pack_field_context *const pack_ctx) {
|
|
pack_ctx->writer->write(field->ptr, field->pack_length());
|
|
}
|
|
|
|
/*
|
|
This point of this function is only to indicate that unpack_info is
|
|
available.
|
|
|
|
The actual unpack_info data is produced by the function that packs the key,
|
|
that is, pack_with_varchar_space_pad.
|
|
*/
|
|
|
|
void Rdb_key_def::dummy_make_unpack_info(
|
|
const Rdb_collation_codec *codec MY_ATTRIBUTE((__unused__)),
|
|
const Field *field MY_ATTRIBUTE((__unused__)),
|
|
Rdb_pack_field_context *pack_ctx MY_ATTRIBUTE((__unused__))) {
|
|
// Do nothing
|
|
}
|
|
|
|
/*
|
|
Function of type rdb_index_field_unpack_t
|
|
*/
|
|
|
|
int Rdb_key_def::unpack_unknown(Rdb_field_packing *const fpi,
|
|
Field *const field, uchar *const dst,
|
|
Rdb_string_reader *const reader,
|
|
Rdb_string_reader *const unp_reader) {
|
|
const uchar *ptr;
|
|
const uint len = fpi->m_unpack_data_len;
|
|
// We don't use anything from the key, so skip over it.
|
|
if (skip_max_length(fpi, field, reader)) {
|
|
return UNPACK_FAILURE;
|
|
}
|
|
|
|
DBUG_ASSERT_IMP(len > 0, unp_reader != nullptr);
|
|
|
|
if ((ptr = (const uchar *)unp_reader->read(len))) {
|
|
memcpy(dst, ptr, len);
|
|
return UNPACK_SUCCESS;
|
|
}
|
|
return UNPACK_FAILURE;
|
|
}
|
|
|
|
/*
|
|
Function of type rdb_make_unpack_info_t
|
|
*/
|
|
|
|
void Rdb_key_def::make_unpack_unknown_varchar(
|
|
const Rdb_collation_codec *const codec MY_ATTRIBUTE((__unused__)),
|
|
const Field *const field, Rdb_pack_field_context *const pack_ctx) {
|
|
const auto f = static_cast<const Field_varstring *>(field);
|
|
uint len = f->length_bytes == 1 ? (uint)*f->ptr : uint2korr(f->ptr);
|
|
len += f->length_bytes;
|
|
pack_ctx->writer->write(field->ptr, len);
|
|
}
|
|
|
|
/*
|
|
Function of type rdb_index_field_unpack_t
|
|
|
|
@detail
|
|
Unpack a key part in an "unknown" collation from its
|
|
(mem_comparable_form, unpack_info) form.
|
|
|
|
"Unknown" means we have no clue about how mem_comparable_form is made from
|
|
the original string, so we keep the whole original string in the unpack_info.
|
|
|
|
@seealso
|
|
make_unpack_unknown, unpack_unknown
|
|
*/
|
|
|
|
int Rdb_key_def::unpack_unknown_varchar(Rdb_field_packing *const fpi,
|
|
Field *const field, uchar *dst,
|
|
Rdb_string_reader *const reader,
|
|
Rdb_string_reader *const unp_reader) {
|
|
const uchar *ptr;
|
|
uchar *const d0 = dst;
|
|
const auto f = static_cast<Field_varstring *>(field);
|
|
dst += f->length_bytes;
|
|
const uint len_bytes = f->length_bytes;
|
|
// We don't use anything from the key, so skip over it.
|
|
if ((fpi->m_skip_func)(fpi, field, reader)) {
|
|
return UNPACK_FAILURE;
|
|
}
|
|
|
|
DBUG_ASSERT(len_bytes > 0);
|
|
DBUG_ASSERT(unp_reader != nullptr);
|
|
|
|
if ((ptr = (const uchar *)unp_reader->read(len_bytes))) {
|
|
memcpy(d0, ptr, len_bytes);
|
|
const uint len = len_bytes == 1 ? (uint)*ptr : uint2korr(ptr);
|
|
if ((ptr = (const uchar *)unp_reader->read(len))) {
|
|
memcpy(dst, ptr, len);
|
|
return UNPACK_SUCCESS;
|
|
}
|
|
}
|
|
return UNPACK_FAILURE;
|
|
}
|
|
|
|
/*
|
|
Write unpack_data for a "simple" collation
|
|
*/
|
|
static void rdb_write_unpack_simple(Rdb_bit_writer *const writer,
|
|
const Rdb_collation_codec *const codec,
|
|
const uchar *const src,
|
|
const size_t src_len) {
|
|
for (uint i = 0; i < src_len; i++) {
|
|
writer->write(codec->m_enc_size[src[i]], codec->m_enc_idx[src[i]]);
|
|
}
|
|
}
|
|
|
|
static uint rdb_read_unpack_simple(Rdb_bit_reader *const reader,
|
|
const Rdb_collation_codec *const codec,
|
|
const uchar *const src, const size_t src_len,
|
|
uchar *const dst) {
|
|
for (uint i = 0; i < src_len; i++) {
|
|
if (codec->m_dec_size[src[i]] > 0) {
|
|
uint *ret;
|
|
DBUG_ASSERT(reader != nullptr);
|
|
|
|
if ((ret = reader->read(codec->m_dec_size[src[i]])) == nullptr) {
|
|
return UNPACK_FAILURE;
|
|
}
|
|
dst[i] = codec->m_dec_idx[*ret][src[i]];
|
|
} else {
|
|
dst[i] = codec->m_dec_idx[0][src[i]];
|
|
}
|
|
}
|
|
|
|
return UNPACK_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
Function of type rdb_make_unpack_info_t
|
|
|
|
@detail
|
|
Make unpack_data for VARCHAR(n) in a "simple" charset.
|
|
*/
|
|
|
|
void Rdb_key_def::make_unpack_simple_varchar(
|
|
const Rdb_collation_codec *const codec, const Field *const field,
|
|
Rdb_pack_field_context *const pack_ctx) {
|
|
const auto f = static_cast<const Field_varstring *>(field);
|
|
uchar *const src = f->ptr + f->length_bytes;
|
|
const size_t src_len =
|
|
f->length_bytes == 1 ? (uint)*f->ptr : uint2korr(f->ptr);
|
|
Rdb_bit_writer bit_writer(pack_ctx->writer);
|
|
// The std::min compares characters with bytes, but for simple collations,
|
|
// mbmaxlen = 1.
|
|
rdb_write_unpack_simple(&bit_writer, codec, src,
|
|
std::min((size_t)f->char_length(), src_len));
|
|
}
|
|
|
|
/*
|
|
Function of type rdb_index_field_unpack_t
|
|
|
|
@seealso
|
|
pack_with_varchar_space_pad - packing function
|
|
unpack_binary_or_utf8_varchar_space_pad - a similar unpacking function
|
|
*/
|
|
|
|
int Rdb_key_def::unpack_simple_varchar_space_pad(
|
|
Rdb_field_packing *const fpi, Field *const field, uchar *dst,
|
|
Rdb_string_reader *const reader, Rdb_string_reader *const unp_reader) {
|
|
const uchar *ptr;
|
|
size_t len = 0;
|
|
bool finished = false;
|
|
uchar *d0 = dst;
|
|
const Field_varstring *const field_var =
|
|
static_cast<Field_varstring *>(field);
|
|
// For simple collations, char_length is also number of bytes.
|
|
DBUG_ASSERT((size_t)fpi->m_max_image_len >= field_var->char_length());
|
|
uchar *dst_end = dst + field_var->pack_length();
|
|
dst += field_var->length_bytes;
|
|
Rdb_bit_reader bit_reader(unp_reader);
|
|
|
|
uint space_padding_bytes = 0;
|
|
uint extra_spaces;
|
|
DBUG_ASSERT(unp_reader != nullptr);
|
|
|
|
if ((fpi->m_unpack_info_uses_two_bytes
|
|
? unp_reader->read_uint16(&extra_spaces)
|
|
: unp_reader->read_uint8(&extra_spaces))) {
|
|
return UNPACK_FAILURE;
|
|
}
|
|
|
|
if (extra_spaces <= 8) {
|
|
space_padding_bytes = -(static_cast<int>(extra_spaces) - 8);
|
|
extra_spaces = 0;
|
|
} else {
|
|
extra_spaces -= 8;
|
|
}
|
|
|
|
space_padding_bytes *= fpi->space_xfrm_len;
|
|
|
|
/* Decode the length-emitted encoding here */
|
|
while ((ptr = (const uchar *)reader->read(fpi->m_segment_size))) {
|
|
const char last_byte =
|
|
ptr[fpi->m_segment_size - 1]; // number of padding bytes
|
|
size_t used_bytes;
|
|
if (last_byte == VARCHAR_CMP_EQUAL_TO_SPACES) {
|
|
// this is the last one
|
|
if (space_padding_bytes > (fpi->m_segment_size - 1)) {
|
|
return UNPACK_FAILURE; // Cannot happen, corrupted data
|
|
}
|
|
used_bytes = (fpi->m_segment_size - 1) - space_padding_bytes;
|
|
finished = true;
|
|
} else {
|
|
if (last_byte != VARCHAR_CMP_LESS_THAN_SPACES &&
|
|
last_byte != VARCHAR_CMP_GREATER_THAN_SPACES) {
|
|
return UNPACK_FAILURE;
|
|
}
|
|
used_bytes = fpi->m_segment_size - 1;
|
|
}
|
|
|
|
if (dst + used_bytes > dst_end) {
|
|
// The value on disk is longer than the field definition allows?
|
|
return UNPACK_FAILURE;
|
|
}
|
|
|
|
uint ret;
|
|
if ((ret = rdb_read_unpack_simple(&bit_reader, fpi->m_charset_codec, ptr,
|
|
used_bytes, dst)) != UNPACK_SUCCESS) {
|
|
return ret;
|
|
}
|
|
|
|
dst += used_bytes;
|
|
len += used_bytes;
|
|
|
|
if (finished) {
|
|
if (extra_spaces) {
|
|
if (dst + extra_spaces > dst_end) return UNPACK_FAILURE;
|
|
// pad_char has a 1-byte form in all charsets that
|
|
// are handled by rdb_init_collation_mapping.
|
|
memset(dst, field_var->charset()->pad_char, extra_spaces);
|
|
len += extra_spaces;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!finished) return UNPACK_FAILURE;
|
|
|
|
/* Save the length */
|
|
if (field_var->length_bytes == 1) {
|
|
d0[0] = (uchar)len;
|
|
} else {
|
|
DBUG_ASSERT(field_var->length_bytes == 2);
|
|
int2store(d0, len);
|
|
}
|
|
return UNPACK_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
Function of type rdb_make_unpack_info_t
|
|
|
|
@detail
|
|
Make unpack_data for CHAR(n) value in a "simple" charset.
|
|
It is CHAR(N), so SQL layer has padded the value with spaces up to N chars.
|
|
|
|
@seealso
|
|
The VARCHAR variant is in make_unpack_simple_varchar
|
|
*/
|
|
|
|
void Rdb_key_def::make_unpack_simple(const Rdb_collation_codec *const codec,
|
|
const Field *const field,
|
|
Rdb_pack_field_context *const pack_ctx) {
|
|
const uchar *const src = field->ptr;
|
|
Rdb_bit_writer bit_writer(pack_ctx->writer);
|
|
rdb_write_unpack_simple(&bit_writer, codec, src, field->pack_length());
|
|
}
|
|
|
|
/*
|
|
Function of type rdb_index_field_unpack_t
|
|
*/
|
|
|
|
int Rdb_key_def::unpack_simple(Rdb_field_packing *const fpi,
|
|
Field *const field MY_ATTRIBUTE((__unused__)),
|
|
uchar *const dst,
|
|
Rdb_string_reader *const reader,
|
|
Rdb_string_reader *const unp_reader) {
|
|
const uchar *ptr;
|
|
const uint len = fpi->m_max_image_len;
|
|
Rdb_bit_reader bit_reader(unp_reader);
|
|
|
|
if (!(ptr = (const uchar *)reader->read(len))) {
|
|
return UNPACK_FAILURE;
|
|
}
|
|
|
|
return rdb_read_unpack_simple(unp_reader ? &bit_reader : nullptr,
|
|
fpi->m_charset_codec, ptr, len, dst);
|
|
}
|
|
|
|
// See Rdb_charset_space_info::spaces_xfrm
|
|
const int RDB_SPACE_XFRM_SIZE = 32;
|
|
|
|
// A class holding information about how space character is represented in a
|
|
// charset.
|
|
class Rdb_charset_space_info {
|
|
public:
|
|
Rdb_charset_space_info(const Rdb_charset_space_info &) = delete;
|
|
Rdb_charset_space_info &operator=(const Rdb_charset_space_info &) = delete;
|
|
Rdb_charset_space_info() = default;
|
|
|
|
// A few strxfrm'ed space characters, at least RDB_SPACE_XFRM_SIZE bytes
|
|
std::vector<uchar> spaces_xfrm;
|
|
|
|
// length(strxfrm(' '))
|
|
size_t space_xfrm_len;
|
|
|
|
// length of the space character itself
|
|
// Typically space is just 0x20 (length=1) but in ucs2 it is 0x00 0x20
|
|
// (length=2)
|
|
size_t space_mb_len;
|
|
};
|
|
|
|
static std::array<std::unique_ptr<Rdb_charset_space_info>, MY_ALL_CHARSETS_SIZE>
|
|
rdb_mem_comparable_space;
|
|
|
|
/*
|
|
@brief
|
|
For a given charset, get
|
|
- strxfrm(' '), a sample that is at least RDB_SPACE_XFRM_SIZE bytes long.
|
|
- length of strxfrm(charset, ' ')
|
|
- length of the space character in the charset
|
|
|
|
@param cs IN Charset to get the space for
|
|
@param ptr OUT A few space characters
|
|
@param len OUT Return length of the space (in bytes)
|
|
|
|
@detail
|
|
It is tempting to pre-generate mem-comparable form of space character for
|
|
every charset on server startup.
|
|
One can't do that: some charsets are not initialized until somebody
|
|
attempts to use them (e.g. create or open a table that has a field that
|
|
uses the charset).
|
|
*/
|
|
|
|
static void rdb_get_mem_comparable_space(const CHARSET_INFO *const cs,
|
|
const std::vector<uchar> **xfrm,
|
|
size_t *const xfrm_len,
|
|
size_t *const mb_len) {
|
|
DBUG_ASSERT(cs->number < MY_ALL_CHARSETS_SIZE);
|
|
if (!rdb_mem_comparable_space[cs->number].get()) {
|
|
RDB_MUTEX_LOCK_CHECK(rdb_mem_cmp_space_mutex);
|
|
if (!rdb_mem_comparable_space[cs->number].get()) {
|
|
// Upper bound of how many bytes can be occupied by multi-byte form of a
|
|
// character in any charset.
|
|
const int MAX_MULTI_BYTE_CHAR_SIZE = 4;
|
|
DBUG_ASSERT(cs->mbmaxlen <= MAX_MULTI_BYTE_CHAR_SIZE);
|
|
|
|
// multi-byte form of the ' ' (space) character
|
|
uchar space_mb[MAX_MULTI_BYTE_CHAR_SIZE];
|
|
|
|
const size_t space_mb_len = cs->wc_mb(
|
|
(my_wc_t)cs->pad_char, space_mb, space_mb + sizeof(space_mb));
|
|
|
|
// mem-comparable image of the space character
|
|
std::array<uchar, 20> space;
|
|
|
|
const size_t space_len = cs->strnxfrm(
|
|
space.data(), sizeof(space), 1, space_mb,
|
|
space_mb_len, 0).m_result_length;
|
|
Rdb_charset_space_info *const info = new Rdb_charset_space_info;
|
|
info->space_xfrm_len = space_len;
|
|
info->space_mb_len = space_mb_len;
|
|
while (info->spaces_xfrm.size() < RDB_SPACE_XFRM_SIZE) {
|
|
info->spaces_xfrm.insert(info->spaces_xfrm.end(), space.data(),
|
|
space.data() + space_len);
|
|
}
|
|
rdb_mem_comparable_space[cs->number].reset(info);
|
|
}
|
|
RDB_MUTEX_UNLOCK_CHECK(rdb_mem_cmp_space_mutex);
|
|
}
|
|
|
|
*xfrm = &rdb_mem_comparable_space[cs->number]->spaces_xfrm;
|
|
*xfrm_len = rdb_mem_comparable_space[cs->number]->space_xfrm_len;
|
|
*mb_len = rdb_mem_comparable_space[cs->number]->space_mb_len;
|
|
}
|
|
|
|
mysql_mutex_t rdb_mem_cmp_space_mutex;
|
|
|
|
std::array<const Rdb_collation_codec *, MY_ALL_CHARSETS_SIZE>
|
|
rdb_collation_data;
|
|
mysql_mutex_t rdb_collation_data_mutex;
|
|
|
|
bool rdb_is_collation_supported(const my_core::CHARSET_INFO *const cs) {
|
|
return cs->strxfrm_multiply==1 && cs->mbmaxlen == 1 &&
|
|
!(cs->state & (MY_CS_BINSORT | MY_CS_NOPAD));
|
|
}
|
|
|
|
static const Rdb_collation_codec *rdb_init_collation_mapping(
|
|
const my_core::CHARSET_INFO *const cs) {
|
|
DBUG_ASSERT(cs && cs->state & MY_CS_AVAILABLE);
|
|
const Rdb_collation_codec *codec = rdb_collation_data[cs->number];
|
|
|
|
if (codec == nullptr && rdb_is_collation_supported(cs)) {
|
|
RDB_MUTEX_LOCK_CHECK(rdb_collation_data_mutex);
|
|
|
|
codec = rdb_collation_data[cs->number];
|
|
if (codec == nullptr) {
|
|
Rdb_collation_codec *cur = nullptr;
|
|
|
|
// Compute reverse mapping for simple collations.
|
|
if (rdb_is_collation_supported(cs)) {
|
|
cur = new Rdb_collation_codec;
|
|
std::map<uchar, std::vector<uchar>> rev_map;
|
|
size_t max_conflict_size = 0;
|
|
for (int src = 0; src < 256; src++) {
|
|
uchar dst = cs->sort_order[src];
|
|
rev_map[dst].push_back(src);
|
|
max_conflict_size = std::max(max_conflict_size, rev_map[dst].size());
|
|
}
|
|
cur->m_dec_idx.resize(max_conflict_size);
|
|
|
|
for (auto const &p : rev_map) {
|
|
uchar dst = p.first;
|
|
for (uint idx = 0; idx < p.second.size(); idx++) {
|
|
uchar src = p.second[idx];
|
|
uchar bits =
|
|
my_bit_log2_uint32(my_round_up_to_next_power(p.second.size()));
|
|
cur->m_enc_idx[src] = idx;
|
|
cur->m_enc_size[src] = bits;
|
|
cur->m_dec_size[dst] = bits;
|
|
cur->m_dec_idx[idx][dst] = src;
|
|
}
|
|
}
|
|
|
|
cur->m_make_unpack_info_func = {{Rdb_key_def::make_unpack_simple_varchar,
|
|
Rdb_key_def::make_unpack_simple}};
|
|
cur->m_unpack_func = {{Rdb_key_def::unpack_simple_varchar_space_pad,
|
|
Rdb_key_def::unpack_simple}};
|
|
} else {
|
|
// Out of luck for now.
|
|
}
|
|
|
|
if (cur != nullptr) {
|
|
codec = cur;
|
|
cur->m_cs = cs;
|
|
rdb_collation_data[cs->number] = cur;
|
|
}
|
|
}
|
|
|
|
RDB_MUTEX_UNLOCK_CHECK(rdb_collation_data_mutex);
|
|
}
|
|
|
|
return codec;
|
|
}
|
|
|
|
static int get_segment_size_from_collation(const CHARSET_INFO *const cs) {
|
|
int ret;
|
|
if (cs->number == COLLATION_UTF8MB4_BIN || cs->number == COLLATION_UTF16_BIN ||
|
|
cs->number == COLLATION_UTF16LE_BIN || cs->number == COLLATION_UTF32_BIN) {
|
|
/*
|
|
In these collations, a character produces one weight, which is 3 bytes.
|
|
Segment has 3 characters, add one byte for VARCHAR_CMP_* marker, and we
|
|
get 3*3+1=10
|
|
*/
|
|
ret = 10;
|
|
} else {
|
|
/*
|
|
All other collations. There are two classes:
|
|
- Unicode-based, except for collations mentioned in the if-condition.
|
|
For these all weights are 2 bytes long, a character may produce 0..8
|
|
weights.
|
|
in any case, 8 bytes of payload in the segment guarantee that the last
|
|
space character won't span across segments.
|
|
|
|
- Collations not based on unicode. These have length(strxfrm(' '))=1,
|
|
there nothing to worry about.
|
|
|
|
In both cases, take 8 bytes payload + 1 byte for VARCHAR_CMP* marker.
|
|
*/
|
|
ret = 9;
|
|
}
|
|
DBUG_ASSERT(ret < RDB_SPACE_XFRM_SIZE);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
@brief
|
|
Setup packing of index field into its mem-comparable form
|
|
|
|
@detail
|
|
- It is possible produce mem-comparable form for any datatype.
|
|
- Some datatypes also allow to unpack the original value from its
|
|
mem-comparable form.
|
|
= Some of these require extra information to be stored in "unpack_info".
|
|
unpack_info is not a part of mem-comparable form, it is only used to
|
|
restore the original value
|
|
|
|
@param
|
|
field IN field to be packed/un-packed
|
|
|
|
@return
|
|
TRUE - Field can be read with index-only reads
|
|
FALSE - Otherwise
|
|
*/
|
|
|
|
bool Rdb_field_packing::setup(const Rdb_key_def *const key_descr,
|
|
const Field *const field, const uint keynr_arg,
|
|
const uint key_part_arg,
|
|
const uint16 key_length) {
|
|
int res = false;
|
|
enum_field_types type = field ? field->real_type() : MYSQL_TYPE_LONGLONG;
|
|
|
|
m_keynr = keynr_arg;
|
|
m_key_part = key_part_arg;
|
|
|
|
m_maybe_null = field ? field->real_maybe_null() : false;
|
|
m_unpack_func = nullptr;
|
|
m_make_unpack_info_func = nullptr;
|
|
m_unpack_data_len = 0;
|
|
space_xfrm = nullptr; // safety
|
|
// whether to use legacy format for varchar
|
|
m_use_legacy_varbinary_format = false;
|
|
// ha_rocksdb::index_flags() will pass key_descr == null to
|
|
// see whether field(column) can be read-only reads through return value,
|
|
// but the legacy vs. new varchar format doesn't affect return value.
|
|
// Just change m_use_legacy_varbinary_format to true if key_descr isn't given.
|
|
if (!key_descr || key_descr->use_legacy_varbinary_format()) {
|
|
m_use_legacy_varbinary_format = true;
|
|
}
|
|
/* Calculate image length. By default, is is pack_length() */
|
|
m_max_image_len =
|
|
field ? field->pack_length() : ROCKSDB_SIZEOF_HIDDEN_PK_COLUMN;
|
|
m_skip_func = Rdb_key_def::skip_max_length;
|
|
m_pack_func = Rdb_key_def::pack_with_make_sort_key;
|
|
|
|
m_covered = false;
|
|
|
|
switch (type) {
|
|
case MYSQL_TYPE_LONGLONG:
|
|
case MYSQL_TYPE_LONG:
|
|
case MYSQL_TYPE_INT24:
|
|
case MYSQL_TYPE_SHORT:
|
|
case MYSQL_TYPE_TINY:
|
|
m_unpack_func = Rdb_key_def::unpack_integer;
|
|
m_covered = true;
|
|
return true;
|
|
|
|
case MYSQL_TYPE_DOUBLE:
|
|
m_unpack_func = Rdb_key_def::unpack_double;
|
|
m_covered = true;
|
|
return true;
|
|
|
|
case MYSQL_TYPE_FLOAT:
|
|
m_unpack_func = Rdb_key_def::unpack_float;
|
|
m_covered = true;
|
|
return true;
|
|
|
|
case MYSQL_TYPE_NEWDECIMAL:
|
|
/*
|
|
Decimal is packed with Field_new_decimal::make_sort_key, which just
|
|
does memcpy.
|
|
Unpacking decimal values was supported only after fix for issue#253,
|
|
because of that ha_rocksdb::get_storage_type() handles decimal values
|
|
in a special way.
|
|
*/
|
|
case MYSQL_TYPE_DATETIME2:
|
|
case MYSQL_TYPE_TIMESTAMP2:
|
|
/* These are packed with Field_temporal_with_date_and_timef::make_sort_key
|
|
*/
|
|
case MYSQL_TYPE_TIME2: /* TIME is packed with Field_timef::make_sort_key */
|
|
case MYSQL_TYPE_YEAR: /* YEAR is packed with Field_tiny::make_sort_key */
|
|
/* Everything that comes here is packed with just a memcpy(). */
|
|
m_unpack_func = Rdb_key_def::unpack_binary_str;
|
|
m_covered = true;
|
|
return true;
|
|
|
|
case MYSQL_TYPE_NEWDATE:
|
|
/*
|
|
This is packed by Field_newdate::make_sort_key. It assumes the data is
|
|
3 bytes, and packing is done by swapping the byte order (for both big-
|
|
and little-endian)
|
|
*/
|
|
m_unpack_func = Rdb_key_def::unpack_newdate;
|
|
m_covered = true;
|
|
return true;
|
|
case MYSQL_TYPE_TINY_BLOB:
|
|
case MYSQL_TYPE_MEDIUM_BLOB:
|
|
case MYSQL_TYPE_LONG_BLOB:
|
|
case MYSQL_TYPE_BLOB: {
|
|
if (key_descr) {
|
|
// The my_charset_bin collation is special in that it will consider
|
|
// shorter strings sorting as less than longer strings.
|
|
//
|
|
// See Field_blob::make_sort_key for details.
|
|
m_max_image_len =
|
|
key_length + (field->charset()->number == COLLATION_BINARY
|
|
? reinterpret_cast<const Field_blob *>(field)
|
|
->pack_length_no_ptr()
|
|
: 0);
|
|
// Return false because indexes on text/blob will always require
|
|
// a prefix. With a prefix, the optimizer will not be able to do an
|
|
// index-only scan since there may be content occuring after the prefix
|
|
// length.
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
m_unpack_info_stores_value = false;
|
|
/* Handle [VAR](CHAR|BINARY) */
|
|
|
|
if (type == MYSQL_TYPE_VARCHAR || type == MYSQL_TYPE_STRING) {
|
|
/*
|
|
For CHAR-based columns, check how strxfrm image will take.
|
|
field->field_length = field->char_length() * cs->mbmaxlen.
|
|
*/
|
|
const CHARSET_INFO *cs = field->charset();
|
|
m_max_image_len = cs->strnxfrmlen(type == MYSQL_TYPE_STRING ?
|
|
field->pack_length() :
|
|
field->field_length);
|
|
}
|
|
const bool is_varchar = (type == MYSQL_TYPE_VARCHAR);
|
|
const CHARSET_INFO *cs = field->charset();
|
|
// max_image_len before chunking is taken into account
|
|
const int max_image_len_before_chunks = m_max_image_len;
|
|
|
|
if (is_varchar) {
|
|
// The default for varchar is variable-length, without space-padding for
|
|
// comparisons
|
|
m_varchar_charset = cs;
|
|
m_skip_func = Rdb_key_def::skip_variable_length;
|
|
m_pack_func = Rdb_key_def::pack_with_varchar_encoding;
|
|
if (!key_descr || key_descr->use_legacy_varbinary_format()) {
|
|
m_max_image_len = RDB_LEGACY_ENCODED_SIZE(m_max_image_len);
|
|
} else {
|
|
// Calculate the maximum size of the short section plus the
|
|
// maximum size of the long section
|
|
m_max_image_len = RDB_ENCODED_SIZE(m_max_image_len);
|
|
}
|
|
|
|
const auto field_var = static_cast<const Field_varstring *>(field);
|
|
m_unpack_info_uses_two_bytes = (field_var->field_length + 8 >= 0x100);
|
|
}
|
|
|
|
if (type == MYSQL_TYPE_VARCHAR || type == MYSQL_TYPE_STRING) {
|
|
// See http://dev.mysql.com/doc/refman/5.7/en/string-types.html for
|
|
// information about character-based datatypes are compared.
|
|
bool use_unknown_collation = false;
|
|
DBUG_EXECUTE_IF("myrocks_enable_unknown_collation_index_only_scans",
|
|
use_unknown_collation = true;);
|
|
|
|
if (cs->number == COLLATION_BINARY) {
|
|
// - SQL layer pads BINARY(N) so that it always is N bytes long.
|
|
// - For VARBINARY(N), values may have different lengths, so we're using
|
|
// variable-length encoding. This is also the only charset where the
|
|
// values are not space-padded for comparison.
|
|
m_unpack_func = is_varchar ? Rdb_key_def::unpack_binary_or_utf8_varchar
|
|
: Rdb_key_def::unpack_binary_str;
|
|
res = true;
|
|
} else if (cs->number == COLLATION_LATIN1_BIN || cs->number == COLLATION_UTF8_BIN) {
|
|
// For _bin collations, mem-comparable form of the string is the string
|
|
// itself.
|
|
|
|
if (is_varchar) {
|
|
// VARCHARs - are compared as if they were space-padded - but are
|
|
// not actually space-padded (reading the value back produces the
|
|
// original value, without the padding)
|
|
m_unpack_func = Rdb_key_def::unpack_binary_or_utf8_varchar_space_pad;
|
|
m_skip_func = Rdb_key_def::skip_variable_space_pad;
|
|
m_pack_func = Rdb_key_def::pack_with_varchar_space_pad;
|
|
m_make_unpack_info_func = Rdb_key_def::dummy_make_unpack_info;
|
|
m_segment_size = get_segment_size_from_collation(cs);
|
|
m_max_image_len =
|
|
(max_image_len_before_chunks / (m_segment_size - 1) + 1) *
|
|
m_segment_size;
|
|
rdb_get_mem_comparable_space(cs, &space_xfrm, &space_xfrm_len,
|
|
&space_mb_len);
|
|
} else {
|
|
// SQL layer pads CHAR(N) values to their maximum length.
|
|
// We just store that and restore it back.
|
|
m_unpack_func = (cs->number == COLLATION_LATIN1_BIN)
|
|
? Rdb_key_def::unpack_binary_str
|
|
: Rdb_key_def::unpack_utf8_str;
|
|
}
|
|
res = true;
|
|
} else {
|
|
// This is [VAR]CHAR(n) and the collation is not $(charset_name)_bin
|
|
|
|
res = true; // index-only scans are possible
|
|
m_unpack_data_len = is_varchar ? 0 : field->field_length;
|
|
const uint idx = is_varchar ? 0 : 1;
|
|
const Rdb_collation_codec *codec = nullptr;
|
|
|
|
if (is_varchar) {
|
|
// VARCHAR requires space-padding for doing comparisons
|
|
//
|
|
// The check for cs->levels_for_order is to catch
|
|
// latin2_czech_cs and cp1250_czech_cs - multi-level collations
|
|
// that Variable-Length Space Padded Encoding can't handle.
|
|
// It is not expected to work for any other multi-level collations,
|
|
// either.
|
|
// Currently we handle these collations as NO_PAD, even if they have
|
|
// PAD_SPACE attribute.
|
|
if (cs->levels_for_order == 1) {
|
|
m_pack_func = Rdb_key_def::pack_with_varchar_space_pad;
|
|
m_skip_func = Rdb_key_def::skip_variable_space_pad;
|
|
m_segment_size = get_segment_size_from_collation(cs);
|
|
m_max_image_len =
|
|
(max_image_len_before_chunks / (m_segment_size - 1) + 1) *
|
|
m_segment_size;
|
|
rdb_get_mem_comparable_space(cs, &space_xfrm, &space_xfrm_len,
|
|
&space_mb_len);
|
|
} else {
|
|
// NO_LINT_DEBUG
|
|
sql_print_warning(
|
|
"RocksDB: you're trying to create an index "
|
|
"with a multi-level collation %s",
|
|
cs->cs_name.str);
|
|
// NO_LINT_DEBUG
|
|
sql_print_warning(
|
|
"MyRocks will handle this collation internally "
|
|
" as if it had a NO_PAD attribute.");
|
|
m_pack_func = Rdb_key_def::pack_with_varchar_encoding;
|
|
m_skip_func = Rdb_key_def::skip_variable_length;
|
|
}
|
|
}
|
|
|
|
if ((codec = rdb_init_collation_mapping(cs)) != nullptr) {
|
|
// The collation allows to store extra information in the unpack_info
|
|
// which can be used to restore the original value from the
|
|
// mem-comparable form.
|
|
m_make_unpack_info_func = codec->m_make_unpack_info_func[idx];
|
|
m_unpack_func = codec->m_unpack_func[idx];
|
|
m_charset_codec = codec;
|
|
} else if (use_unknown_collation) {
|
|
// We have no clue about how this collation produces mem-comparable
|
|
// form. Our way of restoring the original value is to keep a copy of
|
|
// the original value in unpack_info.
|
|
m_unpack_info_stores_value = true;
|
|
m_make_unpack_info_func = is_varchar
|
|
? Rdb_key_def::make_unpack_unknown_varchar
|
|
: Rdb_key_def::make_unpack_unknown;
|
|
m_unpack_func = is_varchar ? Rdb_key_def::unpack_unknown_varchar
|
|
: Rdb_key_def::unpack_unknown;
|
|
} else {
|
|
// Same as above: we don't know how to restore the value from its
|
|
// mem-comparable form.
|
|
// Here, we just indicate to the SQL layer we can't do it.
|
|
DBUG_ASSERT(m_unpack_func == nullptr);
|
|
m_unpack_info_stores_value = false;
|
|
res = false; // Indicate that index-only reads are not possible
|
|
}
|
|
}
|
|
|
|
// Make an adjustment: if this column is partially covered, tell the SQL
|
|
// layer we can't do index-only scans. Later when we perform an index read,
|
|
// we'll check on a record-by-record basis if we can do an index-only scan
|
|
// or not.
|
|
uint field_length;
|
|
if (field->table) {
|
|
field_length = field->table->field[field->field_index]->field_length;
|
|
} else {
|
|
field_length = field->field_length;
|
|
}
|
|
|
|
if (field_length != key_length) {
|
|
res = false;
|
|
// If this index doesn't support covered bitmaps, then we won't know
|
|
// during a read if the column is actually covered or not. If so, we need
|
|
// to assume the column isn't covered and skip it during unpacking.
|
|
//
|
|
// If key_descr == NULL, then this is a dummy field and we probably don't
|
|
// need to perform this step. However, to preserve the behavior before
|
|
// this change, we'll only skip this step if we have an index which
|
|
// supports covered bitmaps.
|
|
if (!key_descr || !key_descr->use_covered_bitmap_format()) {
|
|
m_unpack_func = nullptr;
|
|
m_make_unpack_info_func = nullptr;
|
|
m_unpack_info_stores_value = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
m_covered = res;
|
|
return res;
|
|
}
|
|
|
|
Field *Rdb_field_packing::get_field_in_table(const TABLE *const tbl) const {
|
|
return tbl->key_info[m_keynr].key_part[m_key_part].field;
|
|
}
|
|
|
|
void Rdb_field_packing::fill_hidden_pk_val(uchar **dst,
|
|
const longlong hidden_pk_id) const {
|
|
DBUG_ASSERT(m_max_image_len == 8);
|
|
|
|
String to;
|
|
rdb_netstr_append_uint64(&to, hidden_pk_id);
|
|
memcpy(*dst, to.ptr(), m_max_image_len);
|
|
|
|
*dst += m_max_image_len;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////
|
|
// Rdb_ddl_manager
|
|
///////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
Rdb_tbl_def::~Rdb_tbl_def() {
|
|
auto ddl_manager = rdb_get_ddl_manager();
|
|
/* Don't free key definitions */
|
|
if (m_key_descr_arr) {
|
|
for (uint i = 0; i < m_key_count; i++) {
|
|
if (ddl_manager && m_key_descr_arr[i]) {
|
|
ddl_manager->erase_index_num(m_key_descr_arr[i]->get_gl_index_id());
|
|
}
|
|
|
|
m_key_descr_arr[i] = nullptr;
|
|
}
|
|
|
|
delete[] m_key_descr_arr;
|
|
m_key_descr_arr = nullptr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Put table definition DDL entry. Actual write is done at
|
|
Rdb_dict_manager::commit.
|
|
|
|
We write
|
|
dbname.tablename -> version + {key_entry, key_entry, key_entry, ... }
|
|
|
|
Where key entries are a tuple of
|
|
( cf_id, index_nr )
|
|
*/
|
|
|
|
bool Rdb_tbl_def::put_dict(Rdb_dict_manager *const dict,
|
|
rocksdb::WriteBatch *const batch,
|
|
const rocksdb::Slice &key) {
|
|
StringBuffer<8 * Rdb_key_def::PACKED_SIZE> indexes;
|
|
indexes.alloc(Rdb_key_def::VERSION_SIZE +
|
|
m_key_count * Rdb_key_def::PACKED_SIZE * 2);
|
|
rdb_netstr_append_uint16(&indexes, Rdb_key_def::DDL_ENTRY_INDEX_VERSION);
|
|
|
|
for (uint i = 0; i < m_key_count; i++) {
|
|
const Rdb_key_def &kd = *m_key_descr_arr[i];
|
|
|
|
uchar flags =
|
|
(kd.m_is_reverse_cf ? Rdb_key_def::REVERSE_CF_FLAG : 0) |
|
|
(kd.m_is_per_partition_cf ? Rdb_key_def::PER_PARTITION_CF_FLAG : 0);
|
|
|
|
const uint cf_id = kd.get_cf()->GetID();
|
|
/*
|
|
If cf_id already exists, cf_flags must be the same.
|
|
To prevent race condition, reading/modifying/committing CF flags
|
|
need to be protected by mutex (dict_manager->lock()).
|
|
When RocksDB supports transaction with pessimistic concurrency
|
|
control, we can switch to use it and removing mutex.
|
|
*/
|
|
uint existing_cf_flags;
|
|
const std::string cf_name = kd.get_cf()->GetName();
|
|
|
|
if (dict->get_cf_flags(cf_id, &existing_cf_flags)) {
|
|
// For the purposes of comparison we'll clear the partitioning bit. The
|
|
// intent here is to make sure that both partitioned and non-partitioned
|
|
// tables can refer to the same CF.
|
|
existing_cf_flags &= ~Rdb_key_def::CF_FLAGS_TO_IGNORE;
|
|
flags &= ~Rdb_key_def::CF_FLAGS_TO_IGNORE;
|
|
|
|
if (existing_cf_flags != flags) {
|
|
my_error(ER_CF_DIFFERENT, MYF(0), cf_name.c_str(), flags,
|
|
existing_cf_flags);
|
|
return true;
|
|
}
|
|
} else {
|
|
dict->add_cf_flags(batch, cf_id, flags);
|
|
}
|
|
|
|
rdb_netstr_append_uint32(&indexes, cf_id);
|
|
|
|
uint32 index_number = kd.get_index_number();
|
|
rdb_netstr_append_uint32(&indexes, index_number);
|
|
|
|
struct Rdb_index_info index_info;
|
|
index_info.m_gl_index_id = {cf_id, index_number};
|
|
index_info.m_index_dict_version = Rdb_key_def::INDEX_INFO_VERSION_LATEST;
|
|
index_info.m_index_type = kd.m_index_type;
|
|
index_info.m_kv_version = kd.m_kv_format_version;
|
|
index_info.m_index_flags = kd.m_index_flags_bitmap;
|
|
index_info.m_ttl_duration = kd.m_ttl_duration;
|
|
|
|
dict->add_or_update_index_cf_mapping(batch, &index_info);
|
|
}
|
|
|
|
const rocksdb::Slice svalue(indexes.c_ptr(), indexes.length());
|
|
|
|
dict->put_key(batch, key, svalue);
|
|
return false;
|
|
}
|
|
|
|
time_t Rdb_tbl_def::get_create_time() {
|
|
time_t create_time = m_create_time;
|
|
|
|
if (create_time == CREATE_TIME_UNKNOWN) {
|
|
// Read it from the .frm file. It's not a problem if several threads do this
|
|
// concurrently
|
|
char path[FN_REFLEN];
|
|
snprintf(path, sizeof(path), "%s/%s/%s%s", mysql_data_home,
|
|
m_dbname.c_str(), m_tablename.c_str(), reg_ext);
|
|
unpack_filename(path,path);
|
|
MY_STAT f_stat;
|
|
if (my_stat(path, &f_stat, MYF(0)))
|
|
create_time = f_stat.st_ctime;
|
|
else
|
|
create_time = 0; // will be shown as SQL NULL
|
|
m_create_time = create_time;
|
|
}
|
|
return create_time;
|
|
}
|
|
|
|
// Length that each index flag takes inside the record.
|
|
// Each index in the array maps to the enum INDEX_FLAG
|
|
static const std::array<uint, 1> index_flag_lengths = {
|
|
{ROCKSDB_SIZEOF_TTL_RECORD}};
|
|
|
|
bool Rdb_key_def::has_index_flag(uint32 index_flags, enum INDEX_FLAG flag) {
|
|
return flag & index_flags;
|
|
}
|
|
|
|
uint32 Rdb_key_def::calculate_index_flag_offset(uint32 index_flags,
|
|
enum INDEX_FLAG flag,
|
|
uint *const length) {
|
|
DBUG_ASSERT_IMP(flag != MAX_FLAG,
|
|
Rdb_key_def::has_index_flag(index_flags, flag));
|
|
|
|
uint offset = 0;
|
|
for (size_t bit = 0; bit < sizeof(index_flags) * CHAR_BIT; ++bit) {
|
|
int mask = 1 << bit;
|
|
|
|
/* Exit once we've reached the proper flag */
|
|
if (flag & mask) {
|
|
if (length != nullptr) {
|
|
*length = index_flag_lengths[bit];
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (index_flags & mask) {
|
|
offset += index_flag_lengths[bit];
|
|
}
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
void Rdb_key_def::write_index_flag_field(Rdb_string_writer *const buf,
|
|
const uchar *const val,
|
|
enum INDEX_FLAG flag) const {
|
|
uint len;
|
|
uint offset = calculate_index_flag_offset(m_index_flags_bitmap, flag, &len);
|
|
DBUG_ASSERT(offset + len <= buf->get_current_pos());
|
|
memcpy(buf->ptr() + offset, val, len);
|
|
}
|
|
|
|
void Rdb_tbl_def::check_if_is_mysql_system_table() {
|
|
static const char *const system_dbs[] = {
|
|
"mysql",
|
|
"performance_schema",
|
|
"information_schema",
|
|
};
|
|
|
|
m_is_mysql_system_table = false;
|
|
for (uint ii = 0; ii < array_elements(system_dbs); ii++) {
|
|
if (strcmp(m_dbname.c_str(), system_dbs[ii]) == 0) {
|
|
m_is_mysql_system_table = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Rdb_tbl_def::check_and_set_read_free_rpl_table() {
|
|
m_is_read_free_rpl_table =
|
|
#if 0 // MARIAROCKS_NOT_YET : read-free replication is not supported
|
|
rdb_read_free_regex_handler.matches(base_tablename());
|
|
#else
|
|
false;
|
|
#endif
|
|
}
|
|
|
|
void Rdb_tbl_def::set_name(const std::string &name) {
|
|
int err MY_ATTRIBUTE((__unused__));
|
|
|
|
m_dbname_tablename = name;
|
|
err = rdb_split_normalized_tablename(name, &m_dbname, &m_tablename,
|
|
&m_partition);
|
|
DBUG_ASSERT(err == 0);
|
|
|
|
check_if_is_mysql_system_table();
|
|
}
|
|
|
|
GL_INDEX_ID Rdb_tbl_def::get_autoincr_gl_index_id() {
|
|
for (uint i = 0; i < m_key_count; i++) {
|
|
auto &k = m_key_descr_arr[i];
|
|
if (k->m_index_type == Rdb_key_def::INDEX_TYPE_PRIMARY ||
|
|
k->m_index_type == Rdb_key_def::INDEX_TYPE_HIDDEN_PRIMARY) {
|
|
return k->get_gl_index_id();
|
|
}
|
|
}
|
|
|
|
// Every table must have a primary key, even if it's hidden.
|
|
abort();
|
|
return GL_INDEX_ID();
|
|
}
|
|
|
|
void Rdb_ddl_manager::erase_index_num(const GL_INDEX_ID &gl_index_id) {
|
|
m_index_num_to_keydef.erase(gl_index_id);
|
|
}
|
|
|
|
void Rdb_ddl_manager::add_uncommitted_keydefs(
|
|
const std::unordered_set<std::shared_ptr<Rdb_key_def>> &indexes) {
|
|
mysql_rwlock_wrlock(&m_rwlock);
|
|
for (const auto &index : indexes) {
|
|
m_index_num_to_uncommitted_keydef[index->get_gl_index_id()] = index;
|
|
}
|
|
mysql_rwlock_unlock(&m_rwlock);
|
|
}
|
|
|
|
void Rdb_ddl_manager::remove_uncommitted_keydefs(
|
|
const std::unordered_set<std::shared_ptr<Rdb_key_def>> &indexes) {
|
|
mysql_rwlock_wrlock(&m_rwlock);
|
|
for (const auto &index : indexes) {
|
|
m_index_num_to_uncommitted_keydef.erase(index->get_gl_index_id());
|
|
}
|
|
mysql_rwlock_unlock(&m_rwlock);
|
|
}
|
|
|
|
namespace // anonymous namespace = not visible outside this source file
|
|
{
|
|
struct Rdb_validate_tbls : public Rdb_tables_scanner {
|
|
using tbl_info_t = std::pair<std::string, bool>;
|
|
using tbl_list_t = std::map<std::string, std::set<tbl_info_t>>;
|
|
|
|
tbl_list_t m_list;
|
|
|
|
int add_table(Rdb_tbl_def *tdef) override;
|
|
|
|
bool compare_to_actual_tables(const std::string &datadir, bool *has_errors);
|
|
|
|
bool scan_for_frms(const std::string &datadir, const std::string &dbname,
|
|
bool *has_errors);
|
|
|
|
bool check_frm_file(const std::string &fullpath, const std::string &dbname,
|
|
const std::string &tablename, bool *has_errors);
|
|
};
|
|
} // anonymous namespace
|
|
|
|
/*
|
|
Get a list of tables that we expect to have .frm files for. This will use the
|
|
information just read from the RocksDB data dictionary.
|
|
*/
|
|
int Rdb_validate_tbls::add_table(Rdb_tbl_def *tdef) {
|
|
DBUG_ASSERT(tdef != nullptr);
|
|
|
|
/* Add the database/table into the list that are not temp table */
|
|
if (tdef->base_tablename().find(tmp_file_prefix) == std::string::npos) {
|
|
bool is_partition = tdef->base_partition().size() != 0;
|
|
m_list[tdef->base_dbname()].insert(
|
|
tbl_info_t(tdef->base_tablename(), is_partition));
|
|
}
|
|
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
Access the .frm file for this dbname/tablename and see if it is a RocksDB
|
|
table (or partition table).
|
|
*/
|
|
bool Rdb_validate_tbls::check_frm_file(const std::string &fullpath,
|
|
const std::string &dbname,
|
|
const std::string &tablename,
|
|
bool *has_errors) {
|
|
/* Check this .frm file to see what engine it uses */
|
|
String fullfilename(fullpath.data(), fullpath.length(), &my_charset_bin);
|
|
fullfilename.append(STRING_WITH_LEN(FN_DIRSEP));
|
|
fullfilename.append(tablename.data(), tablename.length());
|
|
fullfilename.append(STRING_WITH_LEN(".frm"));
|
|
|
|
/*
|
|
This function will return the legacy_db_type of the table. Currently
|
|
it does not reference the first parameter (THD* thd), but if it ever
|
|
did in the future we would need to make a version that does it without
|
|
the connection handle as we don't have one here.
|
|
*/
|
|
char eng_type_buf[NAME_CHAR_LEN+1];
|
|
LEX_CSTRING eng_type_str = {eng_type_buf, 0};
|
|
enum Table_type type = dd_frm_type(nullptr, fullfilename.c_ptr(),
|
|
&eng_type_str, nullptr);
|
|
if (type == TABLE_TYPE_UNKNOWN) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_warning("RocksDB: Failed to open/read .from file: %s",
|
|
fullfilename.ptr());
|
|
return false;
|
|
}
|
|
|
|
if (type == TABLE_TYPE_NORMAL) {
|
|
/* For a RocksDB table do we have a reference in the data dictionary? */
|
|
if (!strncmp(eng_type_str.str, "ROCKSDB", eng_type_str.length)) {
|
|
/*
|
|
Attempt to remove the table entry from the list of tables. If this
|
|
fails then we know we had a .frm file that wasn't registered in RocksDB.
|
|
*/
|
|
tbl_info_t element(tablename, false);
|
|
if (m_list.count(dbname) == 0 || m_list[dbname].erase(element) == 0) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_warning(
|
|
"RocksDB: Schema mismatch - "
|
|
"A .frm file exists for table %s.%s, "
|
|
"but that table is not registered in RocksDB",
|
|
dbname.c_str(), tablename.c_str());
|
|
*has_errors = true;
|
|
}
|
|
} else if (!strncmp(eng_type_str.str, "partition", eng_type_str.length)) {
|
|
/*
|
|
For partition tables, see if it is in the m_list as a partition,
|
|
but don't generate an error if it isn't there - we don't know that the
|
|
.frm is for RocksDB.
|
|
*/
|
|
if (m_list.count(dbname) > 0) {
|
|
m_list[dbname].erase(tbl_info_t(tablename, true));
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Scan the database subdirectory for .frm files */
|
|
bool Rdb_validate_tbls::scan_for_frms(const std::string &datadir,
|
|
const std::string &dbname,
|
|
bool *has_errors) {
|
|
bool result = true;
|
|
std::string fullpath = datadir + dbname;
|
|
struct st_my_dir *dir_info = my_dir(fullpath.c_str(), MYF(MY_DONT_SORT));
|
|
|
|
/* Access the directory */
|
|
if (dir_info == nullptr) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_warning("RocksDB: Could not open database directory: %s",
|
|
fullpath.c_str());
|
|
return false;
|
|
}
|
|
|
|
/* Scan through the files in the directory */
|
|
struct fileinfo *file_info = dir_info->dir_entry;
|
|
for (size_t ii = 0; ii < dir_info->number_of_files; ii++, file_info++) {
|
|
/* Find .frm files that are not temp files (those that contain '#sql') */
|
|
const char *ext = strrchr(file_info->name, '.');
|
|
if (ext != nullptr && strstr(file_info->name, tmp_file_prefix) == nullptr &&
|
|
strcmp(ext, ".frm") == 0) {
|
|
std::string tablename =
|
|
std::string(file_info->name, ext - file_info->name);
|
|
|
|
/* Check to see if the .frm file is from RocksDB */
|
|
if (!check_frm_file(fullpath, dbname, tablename, has_errors)) {
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Remove any databases who have no more tables listed */
|
|
if (m_list.count(dbname) == 1 && m_list[dbname].size() == 0) {
|
|
m_list.erase(dbname);
|
|
}
|
|
|
|
/* Release the directory entry */
|
|
my_dirend(dir_info);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
Scan the datadir for all databases (subdirectories) and get a list of .frm
|
|
files they contain
|
|
*/
|
|
bool Rdb_validate_tbls::compare_to_actual_tables(const std::string &datadir,
|
|
bool *has_errors) {
|
|
bool result = true;
|
|
struct st_my_dir *dir_info;
|
|
struct fileinfo *file_info;
|
|
|
|
dir_info = my_dir(datadir.c_str(), MYF(MY_DONT_SORT | MY_WANT_STAT));
|
|
if (dir_info == nullptr) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_warning("RocksDB: could not open datadir: %s", datadir.c_str());
|
|
return false;
|
|
}
|
|
|
|
file_info = dir_info->dir_entry;
|
|
for (size_t ii = 0; ii < dir_info->number_of_files; ii++, file_info++) {
|
|
/* Ignore files/dirs starting with '.' */
|
|
if (file_info->name[0] == '.') continue;
|
|
|
|
/* Ignore all non-directory files */
|
|
if (!MY_S_ISDIR(file_info->mystat->st_mode)) continue;
|
|
|
|
/* Scan all the .frm files in the directory */
|
|
if (!scan_for_frms(datadir, file_info->name, has_errors)) {
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Release the directory info */
|
|
my_dirend(dir_info);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
Validate that all auto increment values in the data dictionary are on a
|
|
supported version.
|
|
*/
|
|
bool Rdb_ddl_manager::validate_auto_incr() {
|
|
std::unique_ptr<rocksdb::Iterator> it(m_dict->new_iterator());
|
|
|
|
uchar auto_incr_entry[Rdb_key_def::INDEX_NUMBER_SIZE];
|
|
rdb_netbuf_store_index(auto_incr_entry, Rdb_key_def::AUTO_INC);
|
|
const rocksdb::Slice auto_incr_entry_slice(
|
|
reinterpret_cast<char *>(auto_incr_entry),
|
|
Rdb_key_def::INDEX_NUMBER_SIZE);
|
|
for (it->Seek(auto_incr_entry_slice); it->Valid(); it->Next()) {
|
|
const rocksdb::Slice key = it->key();
|
|
const rocksdb::Slice val = it->value();
|
|
GL_INDEX_ID gl_index_id;
|
|
|
|
if (key.size() >= Rdb_key_def::INDEX_NUMBER_SIZE &&
|
|
memcmp(key.data(), auto_incr_entry, Rdb_key_def::INDEX_NUMBER_SIZE)) {
|
|
break;
|
|
}
|
|
|
|
if (key.size() != Rdb_key_def::INDEX_NUMBER_SIZE * 3) {
|
|
return false;
|
|
}
|
|
|
|
if (val.size() <= Rdb_key_def::VERSION_SIZE) {
|
|
return false;
|
|
}
|
|
|
|
// Check if we have orphaned entries for whatever reason by cross
|
|
// referencing ddl entries.
|
|
auto ptr = reinterpret_cast<const uchar *>(key.data());
|
|
ptr += Rdb_key_def::INDEX_NUMBER_SIZE;
|
|
rdb_netbuf_read_gl_index(&ptr, &gl_index_id);
|
|
if (!m_dict->get_index_info(gl_index_id, nullptr)) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_warning(
|
|
"RocksDB: AUTOINC mismatch - "
|
|
"Index number (%u, %u) found in AUTOINC "
|
|
"but does not exist as a DDL entry",
|
|
gl_index_id.cf_id, gl_index_id.index_id);
|
|
return false;
|
|
}
|
|
|
|
ptr = reinterpret_cast<const uchar *>(val.data());
|
|
const int version = rdb_netbuf_read_uint16(&ptr);
|
|
if (version > Rdb_key_def::AUTO_INCREMENT_VERSION) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_warning(
|
|
"RocksDB: AUTOINC mismatch - "
|
|
"Index number (%u, %u) found in AUTOINC "
|
|
"is on unsupported version %d",
|
|
gl_index_id.cf_id, gl_index_id.index_id, version);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!it->status().ok()) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
Validate that all the tables in the RocksDB database dictionary match the .frm
|
|
files in the datadir
|
|
*/
|
|
bool Rdb_ddl_manager::validate_schemas(void) {
|
|
bool has_errors = false;
|
|
const std::string datadir = std::string(mysql_real_data_home);
|
|
Rdb_validate_tbls table_list;
|
|
|
|
/* Get the list of tables from the database dictionary */
|
|
if (scan_for_tables(&table_list) != 0) {
|
|
return false;
|
|
}
|
|
|
|
/* Compare that to the list of actual .frm files */
|
|
if (!table_list.compare_to_actual_tables(datadir, &has_errors)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
Any tables left in the tables list are ones that are registered in RocksDB
|
|
but don't have .frm files.
|
|
*/
|
|
for (const auto &db : table_list.m_list) {
|
|
for (const auto &table : db.second) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_warning(
|
|
"RocksDB: Schema mismatch - "
|
|
"Table %s.%s is registered in RocksDB "
|
|
"but does not have a .frm file",
|
|
db.first.c_str(), table.first.c_str());
|
|
has_errors = true;
|
|
}
|
|
}
|
|
|
|
return !has_errors;
|
|
}
|
|
|
|
bool Rdb_ddl_manager::init(Rdb_dict_manager *const dict_arg,
|
|
Rdb_cf_manager *const cf_manager,
|
|
const uint32_t validate_tables) {
|
|
m_dict = dict_arg;
|
|
mysql_rwlock_init(0, &m_rwlock);
|
|
|
|
/* Read the data dictionary and populate the hash */
|
|
uchar ddl_entry[Rdb_key_def::INDEX_NUMBER_SIZE];
|
|
rdb_netbuf_store_index(ddl_entry, Rdb_key_def::DDL_ENTRY_INDEX_START_NUMBER);
|
|
const rocksdb::Slice ddl_entry_slice((char *)ddl_entry,
|
|
Rdb_key_def::INDEX_NUMBER_SIZE);
|
|
|
|
/* Reading data dictionary should always skip bloom filter */
|
|
rocksdb::Iterator *it = m_dict->new_iterator();
|
|
int i = 0;
|
|
|
|
uint max_index_id_in_dict = 0;
|
|
m_dict->get_max_index_id(&max_index_id_in_dict);
|
|
|
|
for (it->Seek(ddl_entry_slice); it->Valid(); it->Next()) {
|
|
const uchar *ptr;
|
|
const uchar *ptr_end;
|
|
const rocksdb::Slice key = it->key();
|
|
const rocksdb::Slice val = it->value();
|
|
|
|
if (key.size() >= Rdb_key_def::INDEX_NUMBER_SIZE &&
|
|
memcmp(key.data(), ddl_entry, Rdb_key_def::INDEX_NUMBER_SIZE)) {
|
|
break;
|
|
}
|
|
|
|
if (key.size() <= Rdb_key_def::INDEX_NUMBER_SIZE) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_error("RocksDB: Table_store: key has length %d (corruption?)",
|
|
(int)key.size());
|
|
return true;
|
|
}
|
|
|
|
Rdb_tbl_def *const tdef =
|
|
new Rdb_tbl_def(key, Rdb_key_def::INDEX_NUMBER_SIZE);
|
|
|
|
// Now, read the DDLs.
|
|
const int real_val_size = val.size() - Rdb_key_def::VERSION_SIZE;
|
|
if (real_val_size % Rdb_key_def::PACKED_SIZE * 2 > 0) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_error("RocksDB: Table_store: invalid keylist for table %s",
|
|
tdef->full_tablename().c_str());
|
|
return true;
|
|
}
|
|
tdef->m_key_count = real_val_size / (Rdb_key_def::PACKED_SIZE * 2);
|
|
tdef->m_key_descr_arr = new std::shared_ptr<Rdb_key_def>[tdef->m_key_count];
|
|
|
|
ptr = reinterpret_cast<const uchar *>(val.data());
|
|
const int version = rdb_netbuf_read_uint16(&ptr);
|
|
if (version != Rdb_key_def::DDL_ENTRY_INDEX_VERSION) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_error(
|
|
"RocksDB: DDL ENTRY Version was not expected."
|
|
"Expected: %d, Actual: %d",
|
|
Rdb_key_def::DDL_ENTRY_INDEX_VERSION, version);
|
|
return true;
|
|
}
|
|
ptr_end = ptr + real_val_size;
|
|
for (uint keyno = 0; ptr < ptr_end; keyno++) {
|
|
GL_INDEX_ID gl_index_id;
|
|
rdb_netbuf_read_gl_index(&ptr, &gl_index_id);
|
|
uint flags = 0;
|
|
struct Rdb_index_info index_info;
|
|
if (!m_dict->get_index_info(gl_index_id, &index_info)) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_error(
|
|
"RocksDB: Could not get index information "
|
|
"for Index Number (%u,%u), table %s",
|
|
gl_index_id.cf_id, gl_index_id.index_id,
|
|
tdef->full_tablename().c_str());
|
|
return true;
|
|
}
|
|
if (max_index_id_in_dict < gl_index_id.index_id) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_error(
|
|
"RocksDB: Found max index id %u from data dictionary "
|
|
"but also found larger index id %u from dictionary. "
|
|
"This should never happen and possibly a bug.",
|
|
max_index_id_in_dict, gl_index_id.index_id);
|
|
return true;
|
|
}
|
|
if (!m_dict->get_cf_flags(gl_index_id.cf_id, &flags)) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_error(
|
|
"RocksDB: Could not get Column Family Flags "
|
|
"for CF Number %d, table %s",
|
|
gl_index_id.cf_id, tdef->full_tablename().c_str());
|
|
return true;
|
|
}
|
|
|
|
if ((flags & Rdb_key_def::AUTO_CF_FLAG) != 0) {
|
|
// The per-index cf option is deprecated. Make sure we don't have the
|
|
// flag set in any existing database. NO_LINT_DEBUG
|
|
// NO_LINT_DEBUG
|
|
sql_print_error(
|
|
"RocksDB: The defunct AUTO_CF_FLAG is enabled for CF "
|
|
"number %d, table %s",
|
|
gl_index_id.cf_id, tdef->full_tablename().c_str());
|
|
}
|
|
|
|
rocksdb::ColumnFamilyHandle *const cfh =
|
|
cf_manager->get_cf(gl_index_id.cf_id);
|
|
DBUG_ASSERT(cfh != nullptr);
|
|
|
|
uint32 ttl_rec_offset =
|
|
Rdb_key_def::has_index_flag(index_info.m_index_flags,
|
|
Rdb_key_def::TTL_FLAG)
|
|
? Rdb_key_def::calculate_index_flag_offset(
|
|
index_info.m_index_flags, Rdb_key_def::TTL_FLAG)
|
|
: UINT_MAX;
|
|
|
|
/*
|
|
We can't fully initialize Rdb_key_def object here, because full
|
|
initialization requires that there is an open TABLE* where we could
|
|
look at Field* objects and set max_length and other attributes
|
|
*/
|
|
tdef->m_key_descr_arr[keyno] = std::make_shared<Rdb_key_def>(
|
|
gl_index_id.index_id, keyno, cfh, index_info.m_index_dict_version,
|
|
index_info.m_index_type, index_info.m_kv_version,
|
|
flags & Rdb_key_def::REVERSE_CF_FLAG,
|
|
flags & Rdb_key_def::PER_PARTITION_CF_FLAG, "",
|
|
m_dict->get_stats(gl_index_id), index_info.m_index_flags,
|
|
ttl_rec_offset, index_info.m_ttl_duration);
|
|
}
|
|
put(tdef);
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
If validate_tables is greater than 0 run the validation. Only fail the
|
|
initialzation if the setting is 1. If the setting is 2 we continue.
|
|
*/
|
|
if (validate_tables > 0) {
|
|
std::string msg;
|
|
if (!validate_schemas()) {
|
|
msg =
|
|
"RocksDB: Problems validating data dictionary "
|
|
"against .frm files, exiting";
|
|
} else if (!validate_auto_incr()) {
|
|
msg =
|
|
"RocksDB: Problems validating auto increment values in "
|
|
"data dictionary, exiting";
|
|
}
|
|
if (validate_tables == 1 && !msg.empty()) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_error("%s", msg.c_str());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// index ids used by applications should not conflict with
|
|
// data dictionary index ids
|
|
if (max_index_id_in_dict < Rdb_key_def::END_DICT_INDEX_ID) {
|
|
max_index_id_in_dict = Rdb_key_def::END_DICT_INDEX_ID;
|
|
}
|
|
|
|
m_sequence.init(max_index_id_in_dict + 1);
|
|
|
|
if (!it->status().ok()) {
|
|
rdb_log_status_error(it->status(), "Table_store load error");
|
|
return true;
|
|
}
|
|
delete it;
|
|
// NO_LINT_DEBUG
|
|
sql_print_information("RocksDB: Table_store: loaded DDL data for %d tables",
|
|
i);
|
|
return false;
|
|
}
|
|
|
|
Rdb_tbl_def *Rdb_ddl_manager::find(const std::string &table_name,
|
|
const bool lock) {
|
|
if (lock) {
|
|
mysql_rwlock_rdlock(&m_rwlock);
|
|
}
|
|
|
|
Rdb_tbl_def *rec = nullptr;
|
|
const auto it = m_ddl_map.find(table_name);
|
|
if (it != m_ddl_map.end()) {
|
|
rec = it->second;
|
|
}
|
|
|
|
if (lock) {
|
|
mysql_rwlock_unlock(&m_rwlock);
|
|
}
|
|
|
|
return rec;
|
|
}
|
|
|
|
// this is a safe version of the find() function below. It acquires a read
|
|
// lock on m_rwlock to make sure the Rdb_key_def is not discarded while we
|
|
// are finding it. Copying it into 'ret' increments the count making sure
|
|
// that the object will not be discarded until we are finished with it.
|
|
std::shared_ptr<const Rdb_key_def> Rdb_ddl_manager::safe_find(
|
|
GL_INDEX_ID gl_index_id) {
|
|
std::shared_ptr<const Rdb_key_def> ret(nullptr);
|
|
|
|
mysql_rwlock_rdlock(&m_rwlock);
|
|
|
|
auto it = m_index_num_to_keydef.find(gl_index_id);
|
|
if (it != m_index_num_to_keydef.end()) {
|
|
const auto table_def = find(it->second.first, false);
|
|
if (table_def && it->second.second < table_def->m_key_count) {
|
|
const auto &kd = table_def->m_key_descr_arr[it->second.second];
|
|
if (kd->max_storage_fmt_length() != 0) {
|
|
ret = kd;
|
|
}
|
|
}
|
|
} else {
|
|
auto it = m_index_num_to_uncommitted_keydef.find(gl_index_id);
|
|
if (it != m_index_num_to_uncommitted_keydef.end()) {
|
|
const auto &kd = it->second;
|
|
if (kd->max_storage_fmt_length() != 0) {
|
|
ret = kd;
|
|
}
|
|
}
|
|
}
|
|
|
|
mysql_rwlock_unlock(&m_rwlock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
// this method assumes at least read-only lock on m_rwlock
|
|
const std::shared_ptr<Rdb_key_def> &Rdb_ddl_manager::find(
|
|
GL_INDEX_ID gl_index_id) {
|
|
auto it = m_index_num_to_keydef.find(gl_index_id);
|
|
if (it != m_index_num_to_keydef.end()) {
|
|
auto table_def = find(it->second.first, false);
|
|
if (table_def) {
|
|
if (it->second.second < table_def->m_key_count) {
|
|
return table_def->m_key_descr_arr[it->second.second];
|
|
}
|
|
}
|
|
} else {
|
|
auto it = m_index_num_to_uncommitted_keydef.find(gl_index_id);
|
|
if (it != m_index_num_to_uncommitted_keydef.end()) {
|
|
return it->second;
|
|
}
|
|
}
|
|
|
|
static std::shared_ptr<Rdb_key_def> empty = nullptr;
|
|
|
|
return empty;
|
|
}
|
|
|
|
// this method returns the name of the table based on an index id. It acquires
|
|
// a read lock on m_rwlock.
|
|
const std::string Rdb_ddl_manager::safe_get_table_name(
|
|
const GL_INDEX_ID &gl_index_id) {
|
|
std::string ret;
|
|
mysql_rwlock_rdlock(&m_rwlock);
|
|
auto it = m_index_num_to_keydef.find(gl_index_id);
|
|
if (it != m_index_num_to_keydef.end()) {
|
|
ret = it->second.first;
|
|
}
|
|
mysql_rwlock_unlock(&m_rwlock);
|
|
return ret;
|
|
}
|
|
|
|
void Rdb_ddl_manager::set_stats(
|
|
const std::unordered_map<GL_INDEX_ID, Rdb_index_stats> &stats) {
|
|
mysql_rwlock_wrlock(&m_rwlock);
|
|
for (auto src : stats) {
|
|
const auto &keydef = find(src.second.m_gl_index_id);
|
|
if (keydef) {
|
|
keydef->m_stats = src.second;
|
|
m_stats2store[keydef->m_stats.m_gl_index_id] = keydef->m_stats;
|
|
}
|
|
}
|
|
mysql_rwlock_unlock(&m_rwlock);
|
|
}
|
|
|
|
void Rdb_ddl_manager::adjust_stats(
|
|
const std::vector<Rdb_index_stats> &new_data,
|
|
const std::vector<Rdb_index_stats> &deleted_data) {
|
|
mysql_rwlock_wrlock(&m_rwlock);
|
|
int i = 0;
|
|
for (const auto &data : {new_data, deleted_data}) {
|
|
for (const auto &src : data) {
|
|
const auto &keydef = find(src.m_gl_index_id);
|
|
if (keydef) {
|
|
keydef->m_stats.m_distinct_keys_per_prefix.resize(
|
|
keydef->get_key_parts());
|
|
keydef->m_stats.merge(src, i == 0, keydef->max_storage_fmt_length());
|
|
m_stats2store[keydef->m_stats.m_gl_index_id] = keydef->m_stats;
|
|
}
|
|
}
|
|
i++;
|
|
}
|
|
const bool should_save_stats = !m_stats2store.empty();
|
|
mysql_rwlock_unlock(&m_rwlock);
|
|
if (should_save_stats) {
|
|
// Queue an async persist_stats(false) call to the background thread.
|
|
rdb_queue_save_stats_request();
|
|
}
|
|
}
|
|
|
|
void Rdb_ddl_manager::persist_stats(const bool sync) {
|
|
mysql_rwlock_wrlock(&m_rwlock);
|
|
const auto local_stats2store = std::move(m_stats2store);
|
|
m_stats2store.clear();
|
|
mysql_rwlock_unlock(&m_rwlock);
|
|
|
|
// Persist stats
|
|
const std::unique_ptr<rocksdb::WriteBatch> wb = m_dict->begin();
|
|
std::vector<Rdb_index_stats> stats;
|
|
std::transform(local_stats2store.begin(), local_stats2store.end(),
|
|
std::back_inserter(stats),
|
|
[](const std::pair<GL_INDEX_ID, Rdb_index_stats> &s) {
|
|
return s.second;
|
|
});
|
|
m_dict->add_stats(wb.get(), stats);
|
|
m_dict->commit(wb.get(), sync);
|
|
}
|
|
|
|
/*
|
|
Put table definition of `tbl` into the mapping, and also write it to the
|
|
on-disk data dictionary.
|
|
*/
|
|
|
|
int Rdb_ddl_manager::put_and_write(Rdb_tbl_def *const tbl,
|
|
rocksdb::WriteBatch *const batch) {
|
|
Rdb_buf_writer<FN_LEN * 2 + Rdb_key_def::INDEX_NUMBER_SIZE> buf_writer;
|
|
|
|
buf_writer.write_index(Rdb_key_def::DDL_ENTRY_INDEX_START_NUMBER);
|
|
|
|
const std::string &dbname_tablename = tbl->full_tablename();
|
|
buf_writer.write(dbname_tablename.c_str(), dbname_tablename.size());
|
|
|
|
int res;
|
|
if ((res = tbl->put_dict(m_dict, batch, buf_writer.to_slice()))) {
|
|
return res;
|
|
}
|
|
if ((res = put(tbl))) {
|
|
return res;
|
|
}
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
/* Return 0 - ok, other value - error */
|
|
/* TODO:
|
|
This function modifies m_ddl_map and m_index_num_to_keydef.
|
|
However, these changes need to be reversed if dict_manager.commit fails
|
|
See the discussion here: https://reviews.facebook.net/D35925#inline-259167
|
|
Tracked by https://github.com/facebook/mysql-5.6/issues/33
|
|
*/
|
|
int Rdb_ddl_manager::put(Rdb_tbl_def *const tbl, const bool lock) {
|
|
Rdb_tbl_def *rec;
|
|
const std::string &dbname_tablename = tbl->full_tablename();
|
|
|
|
if (lock) mysql_rwlock_wrlock(&m_rwlock);
|
|
|
|
// We have to do this find because 'tbl' is not yet in the list. We need
|
|
// to find the one we are replacing ('rec')
|
|
rec = find(dbname_tablename, false);
|
|
if (rec) {
|
|
// Free the old record.
|
|
delete rec;
|
|
m_ddl_map.erase(dbname_tablename);
|
|
}
|
|
m_ddl_map.emplace(dbname_tablename, tbl);
|
|
|
|
for (uint keyno = 0; keyno < tbl->m_key_count; keyno++) {
|
|
m_index_num_to_keydef[tbl->m_key_descr_arr[keyno]->get_gl_index_id()] =
|
|
std::make_pair(dbname_tablename, keyno);
|
|
}
|
|
tbl->check_and_set_read_free_rpl_table();
|
|
|
|
if (lock) mysql_rwlock_unlock(&m_rwlock);
|
|
return 0;
|
|
}
|
|
|
|
void Rdb_ddl_manager::remove(Rdb_tbl_def *const tbl,
|
|
rocksdb::WriteBatch *const batch,
|
|
const bool lock) {
|
|
if (lock) mysql_rwlock_wrlock(&m_rwlock);
|
|
|
|
Rdb_buf_writer<FN_LEN * 2 + Rdb_key_def::INDEX_NUMBER_SIZE> key_writer;
|
|
key_writer.write_index(Rdb_key_def::DDL_ENTRY_INDEX_START_NUMBER);
|
|
const std::string &dbname_tablename = tbl->full_tablename();
|
|
key_writer.write(dbname_tablename.c_str(), dbname_tablename.size());
|
|
|
|
m_dict->delete_key(batch, key_writer.to_slice());
|
|
|
|
const auto it = m_ddl_map.find(dbname_tablename);
|
|
if (it != m_ddl_map.end()) {
|
|
// Free Rdb_tbl_def
|
|
delete it->second;
|
|
|
|
m_ddl_map.erase(it);
|
|
}
|
|
|
|
if (lock) mysql_rwlock_unlock(&m_rwlock);
|
|
}
|
|
|
|
bool Rdb_ddl_manager::rename(const std::string &from, const std::string &to,
|
|
rocksdb::WriteBatch *const batch) {
|
|
Rdb_tbl_def *rec;
|
|
Rdb_tbl_def *new_rec;
|
|
bool res = true;
|
|
Rdb_buf_writer<FN_LEN * 2 + Rdb_key_def::INDEX_NUMBER_SIZE> new_buf_writer;
|
|
|
|
mysql_rwlock_wrlock(&m_rwlock);
|
|
if (!(rec = find(from, false))) {
|
|
mysql_rwlock_unlock(&m_rwlock);
|
|
return true;
|
|
}
|
|
|
|
new_rec = new Rdb_tbl_def(to);
|
|
|
|
new_rec->m_key_count = rec->m_key_count;
|
|
new_rec->m_auto_incr_val =
|
|
rec->m_auto_incr_val.load(std::memory_order_relaxed);
|
|
new_rec->m_key_descr_arr = rec->m_key_descr_arr;
|
|
|
|
new_rec->m_hidden_pk_val =
|
|
rec->m_hidden_pk_val.load(std::memory_order_relaxed);
|
|
|
|
// so that it's not free'd when deleting the old rec
|
|
rec->m_key_descr_arr = nullptr;
|
|
|
|
// Create a new key
|
|
new_buf_writer.write_index(Rdb_key_def::DDL_ENTRY_INDEX_START_NUMBER);
|
|
|
|
const std::string &dbname_tablename = new_rec->full_tablename();
|
|
new_buf_writer.write(dbname_tablename.c_str(), dbname_tablename.size());
|
|
|
|
// Create a key to add
|
|
if (!new_rec->put_dict(m_dict, batch, new_buf_writer.to_slice())) {
|
|
remove(rec, batch, false);
|
|
put(new_rec, false);
|
|
res = false; // ok
|
|
}
|
|
|
|
mysql_rwlock_unlock(&m_rwlock);
|
|
return res;
|
|
}
|
|
|
|
void Rdb_ddl_manager::cleanup() {
|
|
for (const auto &kv : m_ddl_map) {
|
|
delete kv.second;
|
|
}
|
|
m_ddl_map.clear();
|
|
|
|
mysql_rwlock_destroy(&m_rwlock);
|
|
m_sequence.cleanup();
|
|
}
|
|
|
|
int Rdb_ddl_manager::scan_for_tables(Rdb_tables_scanner *const tables_scanner) {
|
|
int ret;
|
|
Rdb_tbl_def *rec;
|
|
|
|
DBUG_ASSERT(tables_scanner != nullptr);
|
|
|
|
mysql_rwlock_rdlock(&m_rwlock);
|
|
|
|
ret = 0;
|
|
|
|
for (const auto &kv : m_ddl_map) {
|
|
rec = kv.second;
|
|
ret = tables_scanner->add_table(rec);
|
|
if (ret) break;
|
|
}
|
|
|
|
mysql_rwlock_unlock(&m_rwlock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
Rdb_binlog_manager class implementation
|
|
*/
|
|
|
|
bool Rdb_binlog_manager::init(Rdb_dict_manager *const dict_arg) {
|
|
DBUG_ASSERT(dict_arg != nullptr);
|
|
m_dict = dict_arg;
|
|
|
|
m_key_writer.reset();
|
|
m_key_writer.write_index(Rdb_key_def::BINLOG_INFO_INDEX_NUMBER);
|
|
m_key_slice = m_key_writer.to_slice();
|
|
return false;
|
|
}
|
|
|
|
void Rdb_binlog_manager::cleanup() {}
|
|
|
|
/**
|
|
Set binlog name, pos and optionally gtid into WriteBatch.
|
|
This function should be called as part of transaction commit,
|
|
since binlog info is set only at transaction commit.
|
|
Actual write into RocksDB is not done here, so checking if
|
|
write succeeded or not is not possible here.
|
|
@param binlog_name Binlog name
|
|
@param binlog_pos Binlog pos
|
|
@param batch WriteBatch
|
|
*/
|
|
void Rdb_binlog_manager::update(const char *const binlog_name,
|
|
const my_off_t binlog_pos,
|
|
rocksdb::WriteBatchBase *const batch) {
|
|
if (binlog_name && binlog_pos) {
|
|
// max binlog length (512) + binlog pos (4) + binlog gtid (57) < 1024
|
|
const size_t RDB_MAX_BINLOG_INFO_LEN = 1024;
|
|
Rdb_buf_writer<RDB_MAX_BINLOG_INFO_LEN> value_writer;
|
|
|
|
// store version
|
|
value_writer.write_uint16(Rdb_key_def::BINLOG_INFO_INDEX_NUMBER_VERSION);
|
|
|
|
// store binlog file name length
|
|
DBUG_ASSERT(strlen(binlog_name) <= FN_REFLEN);
|
|
const uint16_t binlog_name_len = strlen(binlog_name);
|
|
value_writer.write_uint16(binlog_name_len);
|
|
|
|
// store binlog file name
|
|
value_writer.write(binlog_name, binlog_name_len);
|
|
|
|
// store binlog pos
|
|
value_writer.write_uint32(binlog_pos);
|
|
|
|
#ifdef MARIADB_MERGE_2019
|
|
// store binlog gtid length.
|
|
// If gtid was not set, store 0 instead
|
|
const uint16_t binlog_max_gtid_len =
|
|
binlog_max_gtid ? strlen(binlog_max_gtid) : 0;
|
|
value_writer.write_uint16(binlog_max_gtid_len);
|
|
|
|
if (binlog_max_gtid_len > 0) {
|
|
// store binlog gtid
|
|
value_writer.write(binlog_max_gtid, binlog_max_gtid_len);
|
|
}
|
|
#endif
|
|
|
|
m_dict->put_key(batch, m_key_slice, value_writer.to_slice());
|
|
}
|
|
}
|
|
|
|
/**
|
|
Read binlog committed entry stored in RocksDB, then unpack
|
|
@param[OUT] binlog_name Binlog name
|
|
@param[OUT] binlog_pos Binlog pos
|
|
@param[OUT] binlog_gtid Binlog GTID
|
|
@return
|
|
true is binlog info was found (valid behavior)
|
|
false otherwise
|
|
*/
|
|
bool Rdb_binlog_manager::read(char *const binlog_name,
|
|
my_off_t *const binlog_pos,
|
|
char *const binlog_gtid) const {
|
|
bool ret = false;
|
|
if (binlog_name) {
|
|
std::string value;
|
|
rocksdb::Status status = m_dict->get_value(m_key_slice, &value);
|
|
if (status.ok()) {
|
|
if (!unpack_value((const uchar *)value.c_str(), value.size(), binlog_name, binlog_pos,
|
|
binlog_gtid)) {
|
|
ret = true;
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
Unpack value then split into binlog_name, binlog_pos (and binlog_gtid)
|
|
@param[IN] value Binlog state info fetched from RocksDB
|
|
@param[OUT] binlog_name Binlog name
|
|
@param[OUT] binlog_pos Binlog pos
|
|
@param[OUT] binlog_gtid Binlog GTID
|
|
@return true on error
|
|
*/
|
|
bool Rdb_binlog_manager::unpack_value(const uchar *const value,
|
|
size_t value_size_arg,
|
|
char *const binlog_name,
|
|
my_off_t *const binlog_pos,
|
|
char *const binlog_gtid) const {
|
|
uint pack_len = 0;
|
|
intmax_t value_size= value_size_arg;
|
|
|
|
DBUG_ASSERT(binlog_pos != nullptr);
|
|
|
|
if ((value_size -= Rdb_key_def::VERSION_SIZE) < 0)
|
|
return true;
|
|
// read version
|
|
const uint16_t version = rdb_netbuf_to_uint16(value);
|
|
|
|
pack_len += Rdb_key_def::VERSION_SIZE;
|
|
if (version != Rdb_key_def::BINLOG_INFO_INDEX_NUMBER_VERSION) return true;
|
|
|
|
if ((value_size -= sizeof(uint16)) < 0)
|
|
return true;
|
|
|
|
// read binlog file name length
|
|
const uint16_t binlog_name_len = rdb_netbuf_to_uint16(value + pack_len);
|
|
pack_len += sizeof(uint16);
|
|
|
|
if (binlog_name_len >= (FN_REFLEN+1))
|
|
return true;
|
|
|
|
if ((value_size -= binlog_name_len) < 0)
|
|
return true;
|
|
|
|
if (binlog_name_len) {
|
|
// read and set binlog name
|
|
memcpy(binlog_name, value + pack_len, binlog_name_len);
|
|
binlog_name[binlog_name_len] = '\0';
|
|
pack_len += binlog_name_len;
|
|
|
|
if ((value_size -= sizeof(uint32)) < 0)
|
|
return true;
|
|
// read and set binlog pos
|
|
*binlog_pos = rdb_netbuf_to_uint32(value + pack_len);
|
|
pack_len += sizeof(uint32);
|
|
|
|
if ((value_size -= sizeof(uint16)) < 0)
|
|
return true;
|
|
// read gtid length
|
|
const uint16_t binlog_gtid_len = rdb_netbuf_to_uint16(value + pack_len);
|
|
pack_len += sizeof(uint16);
|
|
|
|
if (binlog_gtid_len >= GTID_BUF_LEN)
|
|
return true;
|
|
if ((value_size -= binlog_gtid_len) < 0)
|
|
return true;
|
|
|
|
if (binlog_gtid && binlog_gtid_len > 0) {
|
|
// read and set gtid
|
|
memcpy(binlog_gtid, value + pack_len, binlog_gtid_len);
|
|
binlog_gtid[binlog_gtid_len] = '\0';
|
|
pack_len += binlog_gtid_len;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
Inserts a row into mysql.slave_gtid_info table. Doing this inside
|
|
storage engine is more efficient than inserting/updating through MySQL.
|
|
|
|
@param[IN] id Primary key of the table.
|
|
@param[IN] db Database name. This is column 2 of the table.
|
|
@param[IN] gtid Gtid in human readable form. This is column 3 of the table.
|
|
@param[IN] write_batch Handle to storage engine writer.
|
|
*/
|
|
void Rdb_binlog_manager::update_slave_gtid_info(
|
|
const uint id, const char *const db, const char *const gtid,
|
|
rocksdb::WriteBatchBase *const write_batch) {
|
|
if (id && db && gtid) {
|
|
// Make sure that if the slave_gtid_info table exists we have a
|
|
// pointer to it via m_slave_gtid_info_tbl.
|
|
if (!m_slave_gtid_info_tbl.load()) {
|
|
m_slave_gtid_info_tbl.store(
|
|
rdb_get_ddl_manager()->find("mysql.slave_gtid_info"));
|
|
}
|
|
if (!m_slave_gtid_info_tbl.load()) {
|
|
// slave_gtid_info table is not present. Simply return.
|
|
return;
|
|
}
|
|
DBUG_ASSERT(m_slave_gtid_info_tbl.load()->m_key_count == 1);
|
|
|
|
const std::shared_ptr<const Rdb_key_def> &kd =
|
|
m_slave_gtid_info_tbl.load()->m_key_descr_arr[0];
|
|
String value;
|
|
|
|
// Build key
|
|
Rdb_buf_writer<Rdb_key_def::INDEX_NUMBER_SIZE + 4> key_writer;
|
|
key_writer.write_index(kd->get_index_number());
|
|
key_writer.write_uint32(id);
|
|
|
|
// Build value
|
|
Rdb_buf_writer<128> value_writer;
|
|
DBUG_ASSERT(gtid);
|
|
const uint db_len = strlen(db);
|
|
const uint gtid_len = strlen(gtid);
|
|
// 1 byte used for flags. Empty here.
|
|
value_writer.write_byte(0);
|
|
|
|
// Write column 1.
|
|
DBUG_ASSERT(strlen(db) <= 64);
|
|
value_writer.write_byte(db_len);
|
|
value_writer.write(db, db_len);
|
|
|
|
// Write column 2.
|
|
DBUG_ASSERT(gtid_len <= 56);
|
|
value_writer.write_byte(gtid_len);
|
|
value_writer.write(gtid, gtid_len);
|
|
|
|
write_batch->Put(kd->get_cf(), key_writer.to_slice(),
|
|
value_writer.to_slice());
|
|
}
|
|
}
|
|
|
|
bool Rdb_dict_manager::init(rocksdb::TransactionDB *const rdb_dict,
|
|
Rdb_cf_manager *const cf_manager) {
|
|
DBUG_ASSERT(rdb_dict != nullptr);
|
|
DBUG_ASSERT(cf_manager != nullptr);
|
|
|
|
mysql_mutex_init(0, &m_mutex, MY_MUTEX_INIT_FAST);
|
|
|
|
m_db = rdb_dict;
|
|
|
|
m_system_cfh = cf_manager->get_or_create_cf(m_db, DEFAULT_SYSTEM_CF_NAME);
|
|
rocksdb::ColumnFamilyHandle *default_cfh =
|
|
cf_manager->get_cf(DEFAULT_CF_NAME);
|
|
|
|
// System CF and default CF should be initialized
|
|
if (m_system_cfh == nullptr || default_cfh == nullptr) {
|
|
return HA_EXIT_FAILURE;
|
|
}
|
|
|
|
rdb_netbuf_store_index(m_key_buf_max_index_id, Rdb_key_def::MAX_INDEX_ID);
|
|
|
|
m_key_slice_max_index_id =
|
|
rocksdb::Slice(reinterpret_cast<char *>(m_key_buf_max_index_id),
|
|
Rdb_key_def::INDEX_NUMBER_SIZE);
|
|
|
|
resume_drop_indexes();
|
|
rollback_ongoing_index_creation();
|
|
|
|
// Initialize system CF and default CF flags
|
|
const std::unique_ptr<rocksdb::WriteBatch> wb = begin();
|
|
rocksdb::WriteBatch *const batch = wb.get();
|
|
|
|
add_cf_flags(batch, m_system_cfh->GetID(), 0);
|
|
add_cf_flags(batch, default_cfh->GetID(), 0);
|
|
commit(batch);
|
|
|
|
return HA_EXIT_SUCCESS;
|
|
}
|
|
|
|
std::unique_ptr<rocksdb::WriteBatch> Rdb_dict_manager::begin() const {
|
|
return std::unique_ptr<rocksdb::WriteBatch>(new rocksdb::WriteBatch);
|
|
}
|
|
|
|
void Rdb_dict_manager::put_key(rocksdb::WriteBatchBase *const batch,
|
|
const rocksdb::Slice &key,
|
|
const rocksdb::Slice &value) const {
|
|
batch->Put(m_system_cfh, key, value);
|
|
}
|
|
|
|
rocksdb::Status Rdb_dict_manager::get_value(const rocksdb::Slice &key,
|
|
std::string *const value) const {
|
|
rocksdb::ReadOptions options;
|
|
options.total_order_seek = true;
|
|
return m_db->Get(options, m_system_cfh, key, value);
|
|
}
|
|
|
|
void Rdb_dict_manager::delete_key(rocksdb::WriteBatchBase *batch,
|
|
const rocksdb::Slice &key) const {
|
|
batch->Delete(m_system_cfh, key);
|
|
}
|
|
|
|
rocksdb::Iterator *Rdb_dict_manager::new_iterator() const {
|
|
/* Reading data dictionary should always skip bloom filter */
|
|
rocksdb::ReadOptions read_options;
|
|
read_options.total_order_seek = true;
|
|
return m_db->NewIterator(read_options, m_system_cfh);
|
|
}
|
|
|
|
int Rdb_dict_manager::commit(rocksdb::WriteBatch *const batch,
|
|
const bool sync) const {
|
|
if (!batch) return HA_ERR_ROCKSDB_COMMIT_FAILED;
|
|
int res = HA_EXIT_SUCCESS;
|
|
rocksdb::WriteOptions options;
|
|
options.sync = sync;
|
|
rocksdb::TransactionDBWriteOptimizations optimize;
|
|
optimize.skip_concurrency_control = true;
|
|
rocksdb::Status s = m_db->Write(options, optimize, batch);
|
|
res = !s.ok(); // we return true when something failed
|
|
if (res) {
|
|
rdb_handle_io_error(s, RDB_IO_ERROR_DICT_COMMIT);
|
|
}
|
|
batch->Clear();
|
|
return res;
|
|
}
|
|
|
|
void Rdb_dict_manager::dump_index_id(uchar *const netbuf,
|
|
Rdb_key_def::DATA_DICT_TYPE dict_type,
|
|
const GL_INDEX_ID &gl_index_id) {
|
|
rdb_netbuf_store_uint32(netbuf, dict_type);
|
|
rdb_netbuf_store_uint32(netbuf + Rdb_key_def::INDEX_NUMBER_SIZE,
|
|
gl_index_id.cf_id);
|
|
rdb_netbuf_store_uint32(netbuf + 2 * Rdb_key_def::INDEX_NUMBER_SIZE,
|
|
gl_index_id.index_id);
|
|
}
|
|
|
|
void Rdb_dict_manager::delete_with_prefix(
|
|
rocksdb::WriteBatch *const batch, Rdb_key_def::DATA_DICT_TYPE dict_type,
|
|
const GL_INDEX_ID &gl_index_id) const {
|
|
Rdb_buf_writer<Rdb_key_def::INDEX_NUMBER_SIZE * 3> key_writer;
|
|
dump_index_id(&key_writer, dict_type, gl_index_id);
|
|
|
|
delete_key(batch, key_writer.to_slice());
|
|
}
|
|
|
|
void Rdb_dict_manager::add_or_update_index_cf_mapping(
|
|
rocksdb::WriteBatch *batch, struct Rdb_index_info *const index_info) const {
|
|
Rdb_buf_writer<Rdb_key_def::INDEX_NUMBER_SIZE * 3> key_writer;
|
|
dump_index_id(&key_writer, Rdb_key_def::INDEX_INFO,
|
|
index_info->m_gl_index_id);
|
|
|
|
Rdb_buf_writer<256> value_writer;
|
|
|
|
value_writer.write_uint16(Rdb_key_def::INDEX_INFO_VERSION_LATEST);
|
|
value_writer.write_byte(index_info->m_index_type);
|
|
value_writer.write_uint16(index_info->m_kv_version);
|
|
value_writer.write_uint32(index_info->m_index_flags);
|
|
value_writer.write_uint64(index_info->m_ttl_duration);
|
|
|
|
batch->Put(m_system_cfh, key_writer.to_slice(), value_writer.to_slice());
|
|
}
|
|
|
|
void Rdb_dict_manager::add_cf_flags(rocksdb::WriteBatch *const batch,
|
|
const uint32_t cf_id,
|
|
const uint32_t cf_flags) const {
|
|
DBUG_ASSERT(batch != nullptr);
|
|
|
|
Rdb_buf_writer<Rdb_key_def::INDEX_NUMBER_SIZE * 2> key_writer;
|
|
key_writer.write_uint32(Rdb_key_def::CF_DEFINITION);
|
|
key_writer.write_uint32(cf_id);
|
|
|
|
Rdb_buf_writer<Rdb_key_def::VERSION_SIZE + Rdb_key_def::INDEX_NUMBER_SIZE>
|
|
value_writer;
|
|
value_writer.write_uint16(Rdb_key_def::CF_DEFINITION_VERSION);
|
|
value_writer.write_uint32(cf_flags);
|
|
|
|
batch->Put(m_system_cfh, key_writer.to_slice(), value_writer.to_slice());
|
|
}
|
|
|
|
void Rdb_dict_manager::delete_index_info(rocksdb::WriteBatch *batch,
|
|
const GL_INDEX_ID &gl_index_id) const {
|
|
delete_with_prefix(batch, Rdb_key_def::INDEX_INFO, gl_index_id);
|
|
delete_with_prefix(batch, Rdb_key_def::INDEX_STATISTICS, gl_index_id);
|
|
delete_with_prefix(batch, Rdb_key_def::AUTO_INC, gl_index_id);
|
|
}
|
|
|
|
bool Rdb_dict_manager::get_index_info(
|
|
const GL_INDEX_ID &gl_index_id,
|
|
struct Rdb_index_info *const index_info) const {
|
|
if (index_info) {
|
|
index_info->m_gl_index_id = gl_index_id;
|
|
}
|
|
|
|
bool found = false;
|
|
bool error = false;
|
|
std::string value;
|
|
Rdb_buf_writer<Rdb_key_def::INDEX_NUMBER_SIZE * 3> key_writer;
|
|
dump_index_id(&key_writer, Rdb_key_def::INDEX_INFO, gl_index_id);
|
|
|
|
const rocksdb::Status &status = get_value(key_writer.to_slice(), &value);
|
|
if (status.ok()) {
|
|
if (!index_info) {
|
|
return true;
|
|
}
|
|
|
|
const uchar *const val = (const uchar *)value.c_str();
|
|
const uchar *ptr = val;
|
|
index_info->m_index_dict_version = rdb_netbuf_to_uint16(val);
|
|
ptr += RDB_SIZEOF_INDEX_INFO_VERSION;
|
|
|
|
switch (index_info->m_index_dict_version) {
|
|
case Rdb_key_def::INDEX_INFO_VERSION_FIELD_FLAGS:
|
|
/* Sanity check to prevent reading bogus TTL record. */
|
|
if (value.size() != RDB_SIZEOF_INDEX_INFO_VERSION +
|
|
RDB_SIZEOF_INDEX_TYPE + RDB_SIZEOF_KV_VERSION +
|
|
RDB_SIZEOF_INDEX_FLAGS +
|
|
ROCKSDB_SIZEOF_TTL_RECORD) {
|
|
error = true;
|
|
break;
|
|
}
|
|
index_info->m_index_type = rdb_netbuf_to_byte(ptr);
|
|
ptr += RDB_SIZEOF_INDEX_TYPE;
|
|
index_info->m_kv_version = rdb_netbuf_to_uint16(ptr);
|
|
ptr += RDB_SIZEOF_KV_VERSION;
|
|
index_info->m_index_flags = rdb_netbuf_to_uint32(ptr);
|
|
ptr += RDB_SIZEOF_INDEX_FLAGS;
|
|
index_info->m_ttl_duration = rdb_netbuf_to_uint64(ptr);
|
|
found = true;
|
|
break;
|
|
|
|
case Rdb_key_def::INDEX_INFO_VERSION_TTL:
|
|
/* Sanity check to prevent reading bogus into TTL record. */
|
|
if (value.size() != RDB_SIZEOF_INDEX_INFO_VERSION +
|
|
RDB_SIZEOF_INDEX_TYPE + RDB_SIZEOF_KV_VERSION +
|
|
ROCKSDB_SIZEOF_TTL_RECORD) {
|
|
error = true;
|
|
break;
|
|
}
|
|
index_info->m_index_type = rdb_netbuf_to_byte(ptr);
|
|
ptr += RDB_SIZEOF_INDEX_TYPE;
|
|
index_info->m_kv_version = rdb_netbuf_to_uint16(ptr);
|
|
ptr += RDB_SIZEOF_KV_VERSION;
|
|
index_info->m_ttl_duration = rdb_netbuf_to_uint64(ptr);
|
|
if ((index_info->m_kv_version ==
|
|
Rdb_key_def::PRIMARY_FORMAT_VERSION_TTL) &&
|
|
index_info->m_ttl_duration > 0) {
|
|
index_info->m_index_flags = Rdb_key_def::TTL_FLAG;
|
|
}
|
|
found = true;
|
|
break;
|
|
|
|
case Rdb_key_def::INDEX_INFO_VERSION_VERIFY_KV_FORMAT:
|
|
case Rdb_key_def::INDEX_INFO_VERSION_GLOBAL_ID:
|
|
index_info->m_index_type = rdb_netbuf_to_byte(ptr);
|
|
ptr += RDB_SIZEOF_INDEX_TYPE;
|
|
index_info->m_kv_version = rdb_netbuf_to_uint16(ptr);
|
|
found = true;
|
|
break;
|
|
|
|
default:
|
|
error = true;
|
|
break;
|
|
}
|
|
|
|
switch (index_info->m_index_type) {
|
|
case Rdb_key_def::INDEX_TYPE_PRIMARY:
|
|
case Rdb_key_def::INDEX_TYPE_HIDDEN_PRIMARY: {
|
|
error = index_info->m_kv_version >
|
|
Rdb_key_def::PRIMARY_FORMAT_VERSION_LATEST;
|
|
break;
|
|
}
|
|
case Rdb_key_def::INDEX_TYPE_SECONDARY:
|
|
error = index_info->m_kv_version >
|
|
Rdb_key_def::SECONDARY_FORMAT_VERSION_LATEST;
|
|
break;
|
|
default:
|
|
error = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (error) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_error(
|
|
"RocksDB: Found invalid key version number (%u, %u, %u, %llu) "
|
|
"from data dictionary. This should never happen "
|
|
"and it may be a bug.",
|
|
index_info->m_index_dict_version, index_info->m_index_type,
|
|
index_info->m_kv_version, index_info->m_ttl_duration);
|
|
abort();
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
bool Rdb_dict_manager::get_cf_flags(const uint32_t cf_id,
|
|
uint32_t *const cf_flags) const {
|
|
DBUG_ASSERT(cf_flags != nullptr);
|
|
|
|
bool found = false;
|
|
std::string value;
|
|
Rdb_buf_writer<Rdb_key_def::INDEX_NUMBER_SIZE * 2> key_writer;
|
|
|
|
key_writer.write_uint32(Rdb_key_def::CF_DEFINITION);
|
|
key_writer.write_uint32(cf_id);
|
|
|
|
const rocksdb::Status status = get_value(key_writer.to_slice(), &value);
|
|
|
|
if (status.ok()) {
|
|
const uchar *val = (const uchar *)value.c_str();
|
|
DBUG_ASSERT(val);
|
|
|
|
const uint16_t version = rdb_netbuf_to_uint16(val);
|
|
|
|
if (version == Rdb_key_def::CF_DEFINITION_VERSION) {
|
|
*cf_flags = rdb_netbuf_to_uint32(val + Rdb_key_def::VERSION_SIZE);
|
|
found = true;
|
|
}
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
Returning index ids that were marked as deleted (via DROP TABLE) but
|
|
still not removed by drop_index_thread yet, or indexes that are marked as
|
|
ongoing creation.
|
|
*/
|
|
void Rdb_dict_manager::get_ongoing_index_operation(
|
|
std::unordered_set<GL_INDEX_ID> *gl_index_ids,
|
|
Rdb_key_def::DATA_DICT_TYPE dd_type) const {
|
|
DBUG_ASSERT(dd_type == Rdb_key_def::DDL_DROP_INDEX_ONGOING ||
|
|
dd_type == Rdb_key_def::DDL_CREATE_INDEX_ONGOING);
|
|
|
|
Rdb_buf_writer<Rdb_key_def::INDEX_NUMBER_SIZE> index_writer;
|
|
index_writer.write_uint32(dd_type);
|
|
const rocksdb::Slice index_slice = index_writer.to_slice();
|
|
|
|
rocksdb::Iterator *it = new_iterator();
|
|
for (it->Seek(index_slice); it->Valid(); it->Next()) {
|
|
rocksdb::Slice key = it->key();
|
|
const uchar *const ptr = (const uchar *)key.data();
|
|
|
|
/*
|
|
Ongoing drop/create index operations require key to be of the form:
|
|
dd_type + cf_id + index_id (== INDEX_NUMBER_SIZE * 3)
|
|
|
|
This may need to be changed in the future if we want to process a new
|
|
ddl_type with different format.
|
|
*/
|
|
if (key.size() != Rdb_key_def::INDEX_NUMBER_SIZE * 3 ||
|
|
rdb_netbuf_to_uint32(ptr) != dd_type) {
|
|
break;
|
|
}
|
|
|
|
// We don't check version right now since currently we always store only
|
|
// Rdb_key_def::DDL_DROP_INDEX_ONGOING_VERSION = 1 as a value.
|
|
// If increasing version number, we need to add version check logic here.
|
|
GL_INDEX_ID gl_index_id;
|
|
gl_index_id.cf_id =
|
|
rdb_netbuf_to_uint32(ptr + Rdb_key_def::INDEX_NUMBER_SIZE);
|
|
gl_index_id.index_id =
|
|
rdb_netbuf_to_uint32(ptr + 2 * Rdb_key_def::INDEX_NUMBER_SIZE);
|
|
gl_index_ids->insert(gl_index_id);
|
|
}
|
|
delete it;
|
|
}
|
|
|
|
/*
|
|
Returning true if index_id is create/delete ongoing (undergoing creation or
|
|
marked as deleted via DROP TABLE but drop_index_thread has not wiped yet)
|
|
or not.
|
|
*/
|
|
bool Rdb_dict_manager::is_index_operation_ongoing(
|
|
const GL_INDEX_ID &gl_index_id, Rdb_key_def::DATA_DICT_TYPE dd_type) const {
|
|
DBUG_ASSERT(dd_type == Rdb_key_def::DDL_DROP_INDEX_ONGOING ||
|
|
dd_type == Rdb_key_def::DDL_CREATE_INDEX_ONGOING);
|
|
|
|
bool found = false;
|
|
std::string value;
|
|
Rdb_buf_writer<Rdb_key_def::INDEX_NUMBER_SIZE * 3> key_writer;
|
|
dump_index_id(&key_writer, dd_type, gl_index_id);
|
|
|
|
const rocksdb::Status status = get_value(key_writer.to_slice(), &value);
|
|
if (status.ok()) {
|
|
found = true;
|
|
}
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
Adding index_id to data dictionary so that the index id is removed
|
|
by drop_index_thread, or to track online index creation.
|
|
*/
|
|
void Rdb_dict_manager::start_ongoing_index_operation(
|
|
rocksdb::WriteBatch *const batch, const GL_INDEX_ID &gl_index_id,
|
|
Rdb_key_def::DATA_DICT_TYPE dd_type) const {
|
|
DBUG_ASSERT(dd_type == Rdb_key_def::DDL_DROP_INDEX_ONGOING ||
|
|
dd_type == Rdb_key_def::DDL_CREATE_INDEX_ONGOING);
|
|
|
|
Rdb_buf_writer<Rdb_key_def::INDEX_NUMBER_SIZE * 3> key_writer;
|
|
Rdb_buf_writer<Rdb_key_def::VERSION_SIZE> value_writer;
|
|
|
|
dump_index_id(&key_writer, dd_type, gl_index_id);
|
|
|
|
// version as needed
|
|
if (dd_type == Rdb_key_def::DDL_DROP_INDEX_ONGOING) {
|
|
value_writer.write_uint16(Rdb_key_def::DDL_DROP_INDEX_ONGOING_VERSION);
|
|
} else {
|
|
value_writer.write_uint16(Rdb_key_def::DDL_CREATE_INDEX_ONGOING_VERSION);
|
|
}
|
|
|
|
batch->Put(m_system_cfh, key_writer.to_slice(), value_writer.to_slice());
|
|
}
|
|
|
|
/*
|
|
Removing index_id from data dictionary to confirm drop_index_thread
|
|
completed dropping entire key/values of the index_id
|
|
*/
|
|
void Rdb_dict_manager::end_ongoing_index_operation(
|
|
rocksdb::WriteBatch *const batch, const GL_INDEX_ID &gl_index_id,
|
|
Rdb_key_def::DATA_DICT_TYPE dd_type) const {
|
|
DBUG_ASSERT(dd_type == Rdb_key_def::DDL_DROP_INDEX_ONGOING ||
|
|
dd_type == Rdb_key_def::DDL_CREATE_INDEX_ONGOING);
|
|
|
|
delete_with_prefix(batch, dd_type, gl_index_id);
|
|
}
|
|
|
|
/*
|
|
Returning true if there is no target index ids to be removed
|
|
by drop_index_thread
|
|
*/
|
|
bool Rdb_dict_manager::is_drop_index_empty() const {
|
|
std::unordered_set<GL_INDEX_ID> gl_index_ids;
|
|
get_ongoing_drop_indexes(&gl_index_ids);
|
|
return gl_index_ids.empty();
|
|
}
|
|
|
|
/*
|
|
This function is supposed to be called by DROP TABLE. Logging messages
|
|
that dropping indexes started, and adding data dictionary so that
|
|
all associated indexes to be removed
|
|
*/
|
|
void Rdb_dict_manager::add_drop_table(
|
|
std::shared_ptr<Rdb_key_def> *const key_descr, const uint32 n_keys,
|
|
rocksdb::WriteBatch *const batch) const {
|
|
std::unordered_set<GL_INDEX_ID> dropped_index_ids;
|
|
for (uint32 i = 0; i < n_keys; i++) {
|
|
dropped_index_ids.insert(key_descr[i]->get_gl_index_id());
|
|
}
|
|
|
|
add_drop_index(dropped_index_ids, batch);
|
|
}
|
|
|
|
/*
|
|
Called during inplace index drop operations. Logging messages
|
|
that dropping indexes started, and adding data dictionary so that
|
|
all associated indexes to be removed
|
|
*/
|
|
void Rdb_dict_manager::add_drop_index(
|
|
const std::unordered_set<GL_INDEX_ID> &gl_index_ids,
|
|
rocksdb::WriteBatch *const batch) const {
|
|
for (const auto &gl_index_id : gl_index_ids) {
|
|
log_start_drop_index(gl_index_id, "Begin");
|
|
start_drop_index(batch, gl_index_id);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Called during inplace index creation operations. Logging messages
|
|
that adding indexes started, and updates data dictionary with all associated
|
|
indexes to be added.
|
|
*/
|
|
void Rdb_dict_manager::add_create_index(
|
|
const std::unordered_set<GL_INDEX_ID> &gl_index_ids,
|
|
rocksdb::WriteBatch *const batch) const {
|
|
for (const auto &gl_index_id : gl_index_ids) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_verbose_info("RocksDB: Begin index creation (%u,%u)",
|
|
gl_index_id.cf_id, gl_index_id.index_id);
|
|
start_create_index(batch, gl_index_id);
|
|
}
|
|
}
|
|
|
|
/*
|
|
This function is supposed to be called by drop_index_thread, when it
|
|
finished dropping any index, or at the completion of online index creation.
|
|
*/
|
|
void Rdb_dict_manager::finish_indexes_operation(
|
|
const std::unordered_set<GL_INDEX_ID> &gl_index_ids,
|
|
Rdb_key_def::DATA_DICT_TYPE dd_type) const {
|
|
DBUG_ASSERT(dd_type == Rdb_key_def::DDL_DROP_INDEX_ONGOING ||
|
|
dd_type == Rdb_key_def::DDL_CREATE_INDEX_ONGOING);
|
|
|
|
const std::unique_ptr<rocksdb::WriteBatch> wb = begin();
|
|
rocksdb::WriteBatch *const batch = wb.get();
|
|
|
|
std::unordered_set<GL_INDEX_ID> incomplete_create_indexes;
|
|
get_ongoing_create_indexes(&incomplete_create_indexes);
|
|
|
|
for (const auto &gl_index_id : gl_index_ids) {
|
|
if (is_index_operation_ongoing(gl_index_id, dd_type)) {
|
|
end_ongoing_index_operation(batch, gl_index_id, dd_type);
|
|
|
|
/*
|
|
Remove the corresponding incomplete create indexes from data
|
|
dictionary as well
|
|
*/
|
|
if (dd_type == Rdb_key_def::DDL_DROP_INDEX_ONGOING) {
|
|
if (incomplete_create_indexes.count(gl_index_id)) {
|
|
end_ongoing_index_operation(batch, gl_index_id,
|
|
Rdb_key_def::DDL_CREATE_INDEX_ONGOING);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dd_type == Rdb_key_def::DDL_DROP_INDEX_ONGOING) {
|
|
delete_index_info(batch, gl_index_id);
|
|
}
|
|
}
|
|
commit(batch);
|
|
}
|
|
|
|
/*
|
|
This function is supposed to be called when initializing
|
|
Rdb_dict_manager (at startup). If there is any index ids that are
|
|
drop ongoing, printing out messages for diagnostics purposes.
|
|
*/
|
|
void Rdb_dict_manager::resume_drop_indexes() const {
|
|
std::unordered_set<GL_INDEX_ID> gl_index_ids;
|
|
get_ongoing_drop_indexes(&gl_index_ids);
|
|
|
|
uint max_index_id_in_dict = 0;
|
|
get_max_index_id(&max_index_id_in_dict);
|
|
|
|
for (const auto &gl_index_id : gl_index_ids) {
|
|
log_start_drop_index(gl_index_id, "Resume");
|
|
if (max_index_id_in_dict < gl_index_id.index_id) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_error(
|
|
"RocksDB: Found max index id %u from data dictionary "
|
|
"but also found dropped index id (%u,%u) from drop_index "
|
|
"dictionary. This should never happen and is possibly a "
|
|
"bug.",
|
|
max_index_id_in_dict, gl_index_id.cf_id, gl_index_id.index_id);
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Rdb_dict_manager::rollback_ongoing_index_creation() const {
|
|
const std::unique_ptr<rocksdb::WriteBatch> wb = begin();
|
|
rocksdb::WriteBatch *const batch = wb.get();
|
|
|
|
std::unordered_set<GL_INDEX_ID> gl_index_ids;
|
|
get_ongoing_create_indexes(&gl_index_ids);
|
|
|
|
for (const auto &gl_index_id : gl_index_ids) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_verbose_info("RocksDB: Removing incomplete create index (%u,%u)",
|
|
gl_index_id.cf_id, gl_index_id.index_id);
|
|
|
|
start_drop_index(batch, gl_index_id);
|
|
}
|
|
|
|
commit(batch);
|
|
}
|
|
|
|
void Rdb_dict_manager::log_start_drop_table(
|
|
const std::shared_ptr<Rdb_key_def> *const key_descr, const uint32 n_keys,
|
|
const char *const log_action) const {
|
|
for (uint32 i = 0; i < n_keys; i++) {
|
|
log_start_drop_index(key_descr[i]->get_gl_index_id(), log_action);
|
|
}
|
|
}
|
|
|
|
void Rdb_dict_manager::log_start_drop_index(GL_INDEX_ID gl_index_id,
|
|
const char *log_action) const {
|
|
struct Rdb_index_info index_info;
|
|
if (!get_index_info(gl_index_id, &index_info)) {
|
|
/*
|
|
If we don't find the index info, it could be that it's because it was a
|
|
partially created index that isn't in the data dictionary yet that needs
|
|
to be rolled back.
|
|
*/
|
|
std::unordered_set<GL_INDEX_ID> incomplete_create_indexes;
|
|
get_ongoing_create_indexes(&incomplete_create_indexes);
|
|
|
|
if (!incomplete_create_indexes.count(gl_index_id)) {
|
|
/* If it's not a partially created index, something is very wrong. */
|
|
// NO_LINT_DEBUG
|
|
sql_print_error(
|
|
"RocksDB: Failed to get column family info "
|
|
"from index id (%u,%u). MyRocks data dictionary may "
|
|
"get corrupted.",
|
|
gl_index_id.cf_id, gl_index_id.index_id);
|
|
if (rocksdb_ignore_datadic_errors)
|
|
{
|
|
sql_print_error("RocksDB: rocksdb_ignore_datadic_errors=1, "
|
|
"trying to continue");
|
|
return;
|
|
}
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Rdb_dict_manager::get_max_index_id(uint32_t *const index_id) const {
|
|
bool found = false;
|
|
std::string value;
|
|
|
|
const rocksdb::Status status = get_value(m_key_slice_max_index_id, &value);
|
|
if (status.ok()) {
|
|
const uchar *const val = (const uchar *)value.c_str();
|
|
const uint16_t version = rdb_netbuf_to_uint16(val);
|
|
if (version == Rdb_key_def::MAX_INDEX_ID_VERSION) {
|
|
*index_id = rdb_netbuf_to_uint32(val + Rdb_key_def::VERSION_SIZE);
|
|
found = true;
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
bool Rdb_dict_manager::update_max_index_id(rocksdb::WriteBatch *const batch,
|
|
const uint32_t index_id) const {
|
|
DBUG_ASSERT(batch != nullptr);
|
|
|
|
uint32_t old_index_id = -1;
|
|
if (get_max_index_id(&old_index_id)) {
|
|
if (old_index_id > index_id) {
|
|
// NO_LINT_DEBUG
|
|
sql_print_error(
|
|
"RocksDB: Found max index id %u from data dictionary "
|
|
"but trying to update to older value %u. This should "
|
|
"never happen and possibly a bug.",
|
|
old_index_id, index_id);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
Rdb_buf_writer<Rdb_key_def::VERSION_SIZE + Rdb_key_def::INDEX_NUMBER_SIZE>
|
|
value_writer;
|
|
value_writer.write_uint16(Rdb_key_def::MAX_INDEX_ID_VERSION);
|
|
value_writer.write_uint32(index_id);
|
|
|
|
batch->Put(m_system_cfh, m_key_slice_max_index_id, value_writer.to_slice());
|
|
return false;
|
|
}
|
|
|
|
void Rdb_dict_manager::add_stats(
|
|
rocksdb::WriteBatch *const batch,
|
|
const std::vector<Rdb_index_stats> &stats) const {
|
|
DBUG_ASSERT(batch != nullptr);
|
|
|
|
for (const auto &it : stats) {
|
|
Rdb_buf_writer<Rdb_key_def::INDEX_NUMBER_SIZE * 3> key_writer;
|
|
dump_index_id(&key_writer, Rdb_key_def::INDEX_STATISTICS, it.m_gl_index_id);
|
|
|
|
// IndexStats::materialize takes complete care of serialization including
|
|
// storing the version
|
|
const auto value =
|
|
Rdb_index_stats::materialize(std::vector<Rdb_index_stats>{it});
|
|
|
|
batch->Put(m_system_cfh, key_writer.to_slice(), value);
|
|
}
|
|
}
|
|
|
|
Rdb_index_stats Rdb_dict_manager::get_stats(GL_INDEX_ID gl_index_id) const {
|
|
Rdb_buf_writer<Rdb_key_def::INDEX_NUMBER_SIZE * 3> key_writer;
|
|
dump_index_id(&key_writer, Rdb_key_def::INDEX_STATISTICS, gl_index_id);
|
|
|
|
std::string value;
|
|
const rocksdb::Status status = get_value(key_writer.to_slice(), &value);
|
|
if (status.ok()) {
|
|
std::vector<Rdb_index_stats> v;
|
|
// unmaterialize checks if the version matches
|
|
if (Rdb_index_stats::unmaterialize(value, &v) == 0 && v.size() == 1) {
|
|
return v[0];
|
|
}
|
|
}
|
|
|
|
return Rdb_index_stats();
|
|
}
|
|
|
|
rocksdb::Status Rdb_dict_manager::put_auto_incr_val(
|
|
rocksdb::WriteBatchBase *batch, const GL_INDEX_ID &gl_index_id,
|
|
ulonglong val, bool overwrite) const {
|
|
Rdb_buf_writer<Rdb_key_def::INDEX_NUMBER_SIZE * 3> key_writer;
|
|
dump_index_id(&key_writer, Rdb_key_def::AUTO_INC, gl_index_id);
|
|
|
|
// Value is constructed by storing the version and the value.
|
|
Rdb_buf_writer<RDB_SIZEOF_AUTO_INCREMENT_VERSION +
|
|
ROCKSDB_SIZEOF_AUTOINC_VALUE>
|
|
value_writer;
|
|
value_writer.write_uint16(Rdb_key_def::AUTO_INCREMENT_VERSION);
|
|
value_writer.write_uint64(val);
|
|
|
|
if (overwrite) {
|
|
return batch->Put(m_system_cfh, key_writer.to_slice(),
|
|
value_writer.to_slice());
|
|
}
|
|
return batch->Merge(m_system_cfh, key_writer.to_slice(),
|
|
value_writer.to_slice());
|
|
}
|
|
|
|
bool Rdb_dict_manager::get_auto_incr_val(const GL_INDEX_ID &gl_index_id,
|
|
ulonglong *new_val) const {
|
|
Rdb_buf_writer<Rdb_key_def::INDEX_NUMBER_SIZE * 3> key_writer;
|
|
dump_index_id(&key_writer, Rdb_key_def::AUTO_INC, gl_index_id);
|
|
|
|
std::string value;
|
|
const rocksdb::Status status = get_value(key_writer.to_slice(), &value);
|
|
|
|
if (status.ok()) {
|
|
const uchar *const val = reinterpret_cast<const uchar *>(value.data());
|
|
|
|
if (rdb_netbuf_to_uint16(val) <= Rdb_key_def::AUTO_INCREMENT_VERSION) {
|
|
*new_val = rdb_netbuf_to_uint64(val + RDB_SIZEOF_AUTO_INCREMENT_VERSION);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
uint Rdb_seq_generator::get_and_update_next_number(
|
|
Rdb_dict_manager *const dict) {
|
|
DBUG_ASSERT(dict != nullptr);
|
|
|
|
uint res;
|
|
RDB_MUTEX_LOCK_CHECK(m_mutex);
|
|
|
|
res = m_next_number++;
|
|
|
|
const std::unique_ptr<rocksdb::WriteBatch> wb = dict->begin();
|
|
rocksdb::WriteBatch *const batch = wb.get();
|
|
|
|
DBUG_ASSERT(batch != nullptr);
|
|
dict->update_max_index_id(batch, res);
|
|
dict->commit(batch);
|
|
|
|
RDB_MUTEX_UNLOCK_CHECK(m_mutex);
|
|
|
|
return res;
|
|
}
|
|
|
|
} // namespace myrocks
|