mariadb/storage/innobase/log/log0crypt.cc
Trevor Gross 941f91edbc Fix encryption calls with overlapping buffers
Allocate a temporary buffer instead of using the same buffer in some
cases, and add assertions to verify the buffers do not overlap. See [1]
for reasonsing.

[1] https://github.com/MariaDB/server/pull/2438#discussion_r1137403645

Signed-off-by: Trevor Gross <tmgross@umich.edu>
2023-07-02 12:17:08 +02:00

641 lines
20 KiB
C++

/*****************************************************************************
Copyright (C) 2013, 2015, Google Inc. All Rights Reserved.
Copyright (C) 2014, 2022, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file log0crypt.cc
Innodb log encrypt/decrypt
Created 11/25/2013 Minli Zhu Google
Modified Jan Lindström jan.lindstrom@mariadb.com
MDEV-11782: Rewritten for MariaDB 10.2 by Marko Mäkelä, MariaDB Corporation.
*******************************************************/
#include <my_global.h>
#include "log0crypt.h"
#include <mysql/service_my_crypt.h>
#include "assume_aligned.h"
#include "log0crypt.h"
#include "log0recv.h" // for recv_sys
#include "mach0data.h"
/** Redo log encryption key ID */
#define LOG_DEFAULT_ENCRYPTION_KEY 1
struct crypt_info_t {
uint32_t checkpoint_no; /*!< checkpoint no; 32 bits */
uint32_t key_version; /*!< key version */
/** random string for encrypting the key */
alignas(8) byte crypt_msg[MY_AES_BLOCK_SIZE];
/** the secret key */
alignas(8) byte crypt_key[MY_AES_BLOCK_SIZE];
/** a random string for the per-block initialization vector */
alignas(4) byte crypt_nonce[4];
};
/** The crypt info */
static crypt_info_t info;
/** Initialization vector used for temporary files/tablespace */
static byte tmp_iv[MY_AES_BLOCK_SIZE];
/** Crypt info when upgrading from 10.1 */
static crypt_info_t infos[5 * 2];
/** First unused slot in infos[] */
static size_t infos_used;
/* Offsets of a log block header */
#define LOG_BLOCK_HDR_NO 0 /* block number which must be > 0 and
is allowed to wrap around at 2G; the
highest bit is set to 1 if this is the
first log block in a log flush write
segment */
#define LOG_BLOCK_FLUSH_BIT_MASK 0x80000000UL
/* mask used to get the highest bit in
the preceding field */
#define LOG_BLOCK_HDR_DATA_LEN 4 /* number of bytes of log written to
this block */
#define LOG_BLOCK_FIRST_REC_GROUP 6 /* offset of the first start of an
mtr log record group in this log block,
0 if none; if the value is the same
as LOG_BLOCK_HDR_DATA_LEN, it means
that the first rec group has not yet
been catenated to this log block, but
if it will, it will start at this
offset; an archive recovery can
start parsing the log records starting
from this offset in this log block,
if value not 0 */
#define LOG_BLOCK_HDR_SIZE 12 /* size of the log block header in
bytes */
#define LOG_BLOCK_KEY 4 /* encryption key version
before LOG_BLOCK_CHECKSUM;
after log_t::FORMAT_ENC_10_4 only */
#define LOG_BLOCK_CHECKSUM 4 /* 4 byte checksum of the log block
contents; in InnoDB versions
< 3.23.52 this did not contain the
checksum but the same value as
LOG_BLOCK_HDR_NO */
/*********************************************************************//**
Get a log block's start lsn.
@return a log block's start lsn */
static inline
lsn_t
log_block_get_start_lsn(
/*====================*/
lsn_t lsn, /*!< in: checkpoint lsn */
ulint log_block_no) /*!< in: log block number */
{
lsn_t start_lsn =
(lsn & (lsn_t)0xffffffff00000000ULL) |
(((log_block_no - 1) & (lsn_t)0x3fffffff) << 9);
return start_lsn;
}
/** Generate crypt key from crypt msg.
@param[in,out] info encryption key
@param[in] upgrade whether to use the key in MariaDB 10.1 format
@return whether the operation was successful */
static bool init_crypt_key(crypt_info_t* info, bool upgrade = false)
{
byte mysqld_key[MY_AES_MAX_KEY_LENGTH];
uint keylen = sizeof mysqld_key;
compile_time_assert(16 == sizeof info->crypt_key);
compile_time_assert(16 == MY_AES_BLOCK_SIZE);
if (uint rc = encryption_key_get(LOG_DEFAULT_ENCRYPTION_KEY,
info->key_version, mysqld_key,
&keylen)) {
ib::error()
<< "Obtaining redo log encryption key version "
<< info->key_version << " failed (" << rc
<< "). Maybe the key or the required encryption "
"key management plugin was not found.";
info->key_version = ENCRYPTION_KEY_VERSION_INVALID;
return false;
}
if (upgrade) {
while (keylen < sizeof mysqld_key) {
mysqld_key[keylen++] = 0;
}
}
uint dst_len;
int err= my_aes_crypt(MY_AES_ECB,
ENCRYPTION_FLAG_NOPAD | ENCRYPTION_FLAG_ENCRYPT,
info->crypt_msg, MY_AES_BLOCK_SIZE,
info->crypt_key, &dst_len,
mysqld_key, keylen, NULL, 0);
if (err != MY_AES_OK || dst_len != MY_AES_BLOCK_SIZE) {
ib::error() << "Getting redo log crypto key failed: err = "
<< err << ", len = " << dst_len;
info->key_version = ENCRYPTION_KEY_VERSION_INVALID;
return false;
}
return true;
}
static ulint log_block_get_hdr_no(const byte *log_block)
{
static_assert(LOG_BLOCK_HDR_NO == 0, "compatibility");
return mach_read_from_4(my_assume_aligned<4>(log_block)) &
~LOG_BLOCK_FLUSH_BIT_MASK;
}
/** Decrypt log blocks.
@param[in,out] buf log blocks to decrypt
@param[in] lsn log sequence number of the start of the buffer
@param[in] size size of the buffer, in bytes
@return whether the operation succeeded */
ATTRIBUTE_COLD bool log_decrypt(byte* buf, lsn_t lsn, ulint size)
{
ut_ad(!(size & 511));
ut_ad(!(ulint(buf) & 511));
ut_a(info.key_version);
alignas(8) byte aes_ctr_iv[MY_AES_BLOCK_SIZE];
#define LOG_CRYPT_HDR_SIZE 4
lsn &= ~lsn_t{511};
const bool has_encryption_key_rotation
= log_sys.format == log_t::FORMAT_ENC_10_4
|| log_sys.format == log_t::FORMAT_ENC_10_5;
for (const byte* const end = buf + size; buf != end;
buf += 512, lsn += 512) {
alignas(4) byte dst[512 - LOG_CRYPT_HDR_SIZE
- LOG_BLOCK_CHECKSUM];
/* The log block number is not encrypted. */
memcpy_aligned<4>(dst, buf + LOG_BLOCK_HDR_NO, 4);
memcpy_aligned<4>(aes_ctr_iv, buf + LOG_BLOCK_HDR_NO, 4);
*aes_ctr_iv &= byte(~(LOG_BLOCK_FLUSH_BIT_MASK >> 24));
static_assert(LOG_BLOCK_HDR_NO + 4 == LOG_CRYPT_HDR_SIZE,
"compatibility");
memcpy_aligned<4>(aes_ctr_iv + 4, info.crypt_nonce, 4);
mach_write_to_8(my_assume_aligned<8>(aes_ctr_iv + 8), lsn);
ut_ad(log_block_get_start_lsn(lsn,
log_block_get_hdr_no(buf))
== lsn);
byte* key_ver = &buf[512 - LOG_BLOCK_KEY - LOG_BLOCK_CHECKSUM];
const size_t dst_size = has_encryption_key_rotation
? sizeof dst - LOG_BLOCK_KEY
: sizeof dst;
if (has_encryption_key_rotation) {
const auto key_version = info.key_version;
info.key_version = mach_read_from_4(key_ver);
if (key_version == info.key_version) {
} else if (!init_crypt_key(&info)) {
return false;
#ifndef DBUG_OFF
} else {
DBUG_PRINT("ib_log", ("key_version: %x -> %x",
key_version,
info.key_version));
#endif /* !DBUG_OFF */
}
}
ut_ad(LOG_CRYPT_HDR_SIZE + dst_size
== 512 - LOG_BLOCK_CHECKSUM - LOG_BLOCK_KEY);
uint dst_len = static_cast<uint>(dst_size);
int rc = encryption_crypt(
buf + LOG_CRYPT_HDR_SIZE, dst_len,
reinterpret_cast<byte*>(dst), &dst_len,
const_cast<byte*>(info.crypt_key),
MY_AES_BLOCK_SIZE,
aes_ctr_iv, sizeof aes_ctr_iv,
ENCRYPTION_FLAG_DECRYPT | ENCRYPTION_FLAG_NOPAD,
LOG_DEFAULT_ENCRYPTION_KEY,
info.key_version);
ut_a(rc == MY_AES_OK);
ut_a(dst_len == dst_size);
memcpy(buf + LOG_CRYPT_HDR_SIZE, dst, dst_size);
}
return true;
}
/** Initialize the redo log encryption key and random parameters
when creating a new redo log.
The random parameters will be persisted in the log checkpoint pages.
@see log_crypt_write_header()
@see log_crypt_read_header()
@return whether the operation succeeded */
bool log_crypt_init()
{
info.key_version=
encryption_key_get_latest_version(LOG_DEFAULT_ENCRYPTION_KEY);
if (info.key_version == ENCRYPTION_KEY_VERSION_INVALID)
ib::error() << "log_crypt_init(): cannot get key version";
else if (my_random_bytes(tmp_iv, MY_AES_BLOCK_SIZE) != MY_AES_OK ||
my_random_bytes(info.crypt_msg, sizeof info.crypt_msg) !=
MY_AES_OK ||
my_random_bytes(info.crypt_nonce, sizeof info.crypt_nonce) !=
MY_AES_OK)
ib::error() << "log_crypt_init(): my_random_bytes() failed";
else if (init_crypt_key(&info))
goto func_exit;
info.key_version= 0;
func_exit:
return info.key_version != 0;
}
/** Read the MariaDB 10.1 checkpoint crypto (version, msg and iv) info.
@param[in] buf checkpoint buffer
@return whether the operation was successful */
ATTRIBUTE_COLD bool log_crypt_101_read_checkpoint(const byte* buf)
{
buf += 20 + 32 * 9;
const size_t n = *buf++ == 2 ? std::min(unsigned(*buf++), 5U) : 0;
for (size_t i = 0; i < n; i++) {
struct crypt_info_t& info = infos[infos_used];
unsigned checkpoint_no = mach_read_from_4(buf);
for (size_t j = 0; j < infos_used; j++) {
if (infos[j].checkpoint_no == checkpoint_no) {
/* Do not overwrite an existing slot. */
goto next_slot;
}
}
if (infos_used >= UT_ARR_SIZE(infos)) {
ut_ad("too many checkpoint pages" == 0);
goto next_slot;
}
infos_used++;
info.checkpoint_no = checkpoint_no;
info.key_version = mach_read_from_4(buf + 4);
memcpy(info.crypt_msg, buf + 8, MY_AES_BLOCK_SIZE);
memcpy(info.crypt_nonce, buf + 24, sizeof info.crypt_nonce);
if (!init_crypt_key(&info, true)) {
return false;
}
next_slot:
buf += 4 + 4 + 2 * MY_AES_BLOCK_SIZE;
}
return true;
}
/** Decrypt a MariaDB 10.1 redo log block.
@param[in,out] buf log block
@param[in] start_lsn server start LSN
@return whether the decryption was successful */
ATTRIBUTE_COLD bool log_crypt_101_read_block(byte* buf, lsn_t start_lsn)
{
const uint32_t checkpoint_no = mach_read_from_4(buf + 8);
const crypt_info_t* info = infos;
for (const crypt_info_t* const end = info + infos_used; info < end;
info++) {
if (info->key_version
&& info->key_version != ENCRYPTION_KEY_VERSION_INVALID
&& info->checkpoint_no == checkpoint_no) {
goto found;
}
}
if (infos_used == 0) {
return false;
}
/* MariaDB Server 10.1 would use the first key if it fails to
find a key for the current checkpoint. */
info = infos;
if (info->key_version == ENCRYPTION_KEY_VERSION_INVALID) {
return false;
}
found:
byte dst[512];
byte aes_ctr_iv[MY_AES_BLOCK_SIZE];
const uint src_len = 512 - LOG_BLOCK_HDR_SIZE;
uint dst_len = src_len;
ulint log_block_no = log_block_get_hdr_no(buf);
/* The log block header is not encrypted. */
memcpy(dst, buf, 512);
memcpy(aes_ctr_iv, info->crypt_nonce, 3);
mach_write_to_8(aes_ctr_iv + 3,
log_block_get_start_lsn(start_lsn, log_block_no));
memcpy(aes_ctr_iv + 11, buf, 4);
aes_ctr_iv[11] &= byte(~(LOG_BLOCK_FLUSH_BIT_MASK >> 24));
aes_ctr_iv[15] = 0;
int rc = encryption_crypt(buf + LOG_BLOCK_HDR_SIZE, src_len,
dst + LOG_BLOCK_HDR_SIZE, &dst_len,
const_cast<byte*>(info->crypt_key),
MY_AES_BLOCK_SIZE,
aes_ctr_iv, MY_AES_BLOCK_SIZE,
ENCRYPTION_FLAG_DECRYPT
| ENCRYPTION_FLAG_NOPAD,
LOG_DEFAULT_ENCRYPTION_KEY,
info->key_version);
if (rc != MY_AES_OK || dst_len != src_len) {
return false;
}
memcpy(buf, dst, sizeof dst);
return true;
}
/** MariaDB 10.2.5 encrypted redo log encryption key version (32 bits)*/
constexpr size_t LOG_CHECKPOINT_CRYPT_KEY= 32;
/** MariaDB 10.2.5 encrypted redo log random nonce (32 bits) */
constexpr size_t LOG_CHECKPOINT_CRYPT_NONCE= 36;
/** MariaDB 10.2.5 encrypted redo log random message (MY_AES_BLOCK_SIZE) */
constexpr size_t LOG_CHECKPOINT_CRYPT_MESSAGE= 40;
/** Add the encryption information to the log header buffer.
@param buf part of log header buffer */
void log_crypt_write_header(byte *buf)
{
ut_ad(info.key_version);
mach_write_to_4(my_assume_aligned<4>(buf), LOG_DEFAULT_ENCRYPTION_KEY);
mach_write_to_4(my_assume_aligned<4>(buf + 4), info.key_version);
memcpy_aligned<8>(buf + 8, info.crypt_msg, MY_AES_BLOCK_SIZE);
static_assert(MY_AES_BLOCK_SIZE == 16, "compatibility");
memcpy_aligned<4>(buf + 24, info.crypt_nonce, sizeof info.crypt_nonce);
}
/** Read the encryption information from a log header buffer.
@param buf part of log header buffer
@return whether the operation was successful */
bool log_crypt_read_header(const byte *buf)
{
MEM_UNDEFINED(&info.checkpoint_no, sizeof info.checkpoint_no);
MEM_NOACCESS(&info.checkpoint_no, sizeof info.checkpoint_no);
if (mach_read_from_4(my_assume_aligned<4>(buf)) !=
LOG_DEFAULT_ENCRYPTION_KEY)
return false;
info.key_version= mach_read_from_4(my_assume_aligned<4>(buf + 4));
memcpy_aligned<8>(info.crypt_msg, buf + 8, MY_AES_BLOCK_SIZE);
memcpy_aligned<4>(info.crypt_nonce, buf + 24, sizeof info.crypt_nonce);
return init_crypt_key(&info);
}
/** Read the checkpoint crypto (version, msg and iv) info.
@param[in] buf checkpoint buffer
@return whether the operation was successful */
ATTRIBUTE_COLD bool log_crypt_read_checkpoint_buf(const byte* buf)
{
info.checkpoint_no = mach_read_from_4(buf + 4);
info.key_version = mach_read_from_4(buf + LOG_CHECKPOINT_CRYPT_KEY);
#if MY_AES_BLOCK_SIZE != 16
# error "MY_AES_BLOCK_SIZE != 16; redo log checkpoint format affected"
#endif
compile_time_assert(16 == sizeof info.crypt_msg);
compile_time_assert(16 == MY_AES_BLOCK_SIZE);
compile_time_assert(LOG_CHECKPOINT_CRYPT_MESSAGE
- LOG_CHECKPOINT_CRYPT_NONCE
== sizeof info.crypt_nonce);
memcpy(info.crypt_msg, buf + LOG_CHECKPOINT_CRYPT_MESSAGE,
MY_AES_BLOCK_SIZE);
memcpy(info.crypt_nonce, buf + LOG_CHECKPOINT_CRYPT_NONCE,
sizeof info.crypt_nonce);
return init_crypt_key(&info);
}
/** Encrypt or decrypt a temporary file block.
@param[in] src block to encrypt or decrypt
@param[in] size length of both src and dst blocks in bytes
@param[out] dst destination block
@param[in] offs offset to block
@param[in] encrypt true=encrypt; false=decrypt
@return whether the operation succeeded */
bool log_tmp_block_encrypt(
const byte* src,
ulint size,
byte* dst,
uint64_t offs,
bool encrypt)
{
uint dst_len = static_cast<uint>(size);
uint64_t iv[MY_AES_BLOCK_SIZE / sizeof(uint64_t)];
iv[0] = offs;
memcpy(iv + 1, tmp_iv, sizeof iv - sizeof *iv);
int rc = encryption_crypt(
src, uint(size), dst, &dst_len,
const_cast<byte*>(info.crypt_key), MY_AES_BLOCK_SIZE,
reinterpret_cast<byte*>(iv), uint(sizeof iv),
encrypt
? ENCRYPTION_FLAG_ENCRYPT|ENCRYPTION_FLAG_NOPAD
: ENCRYPTION_FLAG_DECRYPT|ENCRYPTION_FLAG_NOPAD,
LOG_DEFAULT_ENCRYPTION_KEY, info.key_version);
if (rc != MY_AES_OK) {
ib::error() << (encrypt ? "Encryption" : "Decryption")
<< " failed for temporary file: " << rc;
}
return rc == MY_AES_OK;
}
/** Decrypt part of a log record.
@param iv initialization vector
@param buf buffer for the decrypted data
@param data the encrypted data
@param len length of the data, in bytes
@return buf */
byte *log_decrypt_buf(const byte *iv, byte *buf, const byte *data, uint len)
{
ut_a(MY_AES_OK == encryption_crypt(data, len, buf, &len,
info.crypt_key, MY_AES_BLOCK_SIZE,
iv, MY_AES_BLOCK_SIZE,
ENCRYPTION_FLAG_DECRYPT |
ENCRYPTION_FLAG_NOPAD,
LOG_DEFAULT_ENCRYPTION_KEY,
info.key_version));
return buf;
}
#include "mtr0log.h"
/** Encrypt a log snippet
@param iv initialization vector
@param tmp temporary buffer
@param buf buffer to be replaced with encrypted contents
@param end pointer past the end of buf
@return encrypted data bytes that follow */
static size_t log_encrypt_buf(byte iv[MY_AES_BLOCK_SIZE],
byte *&tmp, byte *buf, const byte *const end)
{
for (byte *l= buf; l != end; )
{
const byte b= *l++;
size_t rlen= b & 0xf;
if (!rlen)
{
const size_t lenlen= mlog_decode_varint_length(*l);
const uint32_t addlen= mlog_decode_varint(l);
ut_ad(addlen != MLOG_DECODE_ERROR);
rlen= addlen + 15 - lenlen;
l+= lenlen;
}
if (b < 0x80)
{
/* Add the page identifier to the initialization vector. */
size_t idlen= mlog_decode_varint_length(*l);
ut_ad(idlen <= 5);
ut_ad(idlen < rlen);
mach_write_to_4(my_assume_aligned<4>(iv + 8), mlog_decode_varint(l));
l+= idlen;
rlen-= idlen;
idlen= mlog_decode_varint_length(*l);
ut_ad(idlen <= 5);
ut_ad(idlen <= rlen);
mach_write_to_4(my_assume_aligned<4>(iv + 12), mlog_decode_varint(l));
l+= idlen;
rlen-= idlen;
}
uint len;
if (l + rlen > end)
{
if (size_t len= end - l)
{
/* Only WRITE or EXTENDED records may comprise multiple segments. */
static_assert((EXTENDED | 0x10) == WRITE, "compatibility");
ut_ad((b & 0x60) == EXTENDED);
ut_ad(l < end);
memcpy(tmp, l, len);
tmp+= len;
rlen-= len;
}
return rlen;
}
if (!rlen)
continue; /* FREE_PAGE and INIT_PAGE have no payload. */
len= static_cast<uint>(rlen);
ut_a(MY_AES_OK == encryption_crypt(l, len, tmp, &len,
info.crypt_key, MY_AES_BLOCK_SIZE,
iv, MY_AES_BLOCK_SIZE,
ENCRYPTION_FLAG_ENCRYPT |
ENCRYPTION_FLAG_NOPAD,
LOG_DEFAULT_ENCRYPTION_KEY,
info.key_version));
ut_ad(len == rlen);
memcpy(l, tmp, rlen);
l+= rlen;
}
return 0;
}
/** Encrypt the log */
ATTRIBUTE_NOINLINE void mtr_t::encrypt()
{
ut_ad(log_sys.format == log_t::FORMAT_ENC_10_8);
ut_ad(m_log.size());
alignas(8) byte iv[MY_AES_BLOCK_SIZE];
m_commit_lsn= log_sys.get_lsn();
ut_ad(m_commit_lsn);
byte *tmp= static_cast<byte*>(alloca(srv_page_size)), *t= tmp;
byte *dst= static_cast<byte*>(alloca(srv_page_size));
mach_write_to_8(iv, m_commit_lsn);
mtr_buf_t::block_t *start= nullptr;
size_t size= 0, start_size= 0;
m_crc= 0;
m_log.for_each_block([&](mtr_buf_t::block_t *b)
{
ut_ad(t - tmp + size <= srv_page_size);
byte *buf= b->begin();
if (!start)
{
parse:
ut_ad(t == tmp);
size= log_encrypt_buf(iv, t, buf, b->end());
if (!size)
{
ut_ad(t == tmp);
start_size= 0;
}
else
{
start= b;
start_size= t - tmp;
}
m_crc= my_crc32c(m_crc, buf, b->end() - buf - start_size);
}
else if (size > b->used())
{
::memcpy(t, buf, b->used());
t+= b->used();
size-= b->used();
}
else
{
::memcpy(t, buf, size);
t+= size;
buf+= size;
uint len= static_cast<uint>(t - tmp);
ut_a(MY_AES_OK == encryption_crypt(tmp, len, dst, &len,
info.crypt_key, MY_AES_BLOCK_SIZE,
iv, MY_AES_BLOCK_SIZE,
ENCRYPTION_FLAG_ENCRYPT |
ENCRYPTION_FLAG_NOPAD,
LOG_DEFAULT_ENCRYPTION_KEY,
info.key_version));
ut_ad(tmp + len == t);
m_crc= my_crc32c(m_crc, dst, len);
/* Copy the encrypted data back to the log snippets. */
::memcpy(start->end() - start_size, dst, start_size);
t= dst + start_size;
for (ilist<mtr_buf_t::block_t>::iterator i(start); &*++i != b;)
{
const size_t l{i->used()};
::memcpy(i->begin(), t, l);
t+= l;
}
::memcpy(b->begin(), t, size);
ut_ad(t + size == dst + len);
t= tmp;
start= nullptr;
goto parse;
}
return true;
});
ut_ad(t == tmp);
ut_ad(!start);
ut_ad(!size);
}