mirror of
				https://github.com/MariaDB/server.git
				synced 2025-11-04 12:56:14 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			7289 lines
		
	
	
	
		
			242 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			7289 lines
		
	
	
	
		
			242 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
   Copyright (c) 2010, 2020, MariaDB
 | 
						|
 | 
						|
   This program is free software; you can redistribute it and/or modify
 | 
						|
   it under the terms of the GNU General Public License as published by
 | 
						|
   the Free Software Foundation; version 2 of the License.
 | 
						|
 | 
						|
   This program is distributed in the hope that it will be useful,
 | 
						|
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
   GNU General Public License for more details.
 | 
						|
 | 
						|
   You should have received a copy of the GNU General Public License
 | 
						|
   along with this program; if not, write to the Free Software
 | 
						|
   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
 | 
						|
 | 
						|
/**
 | 
						|
  @file
 | 
						|
 | 
						|
  @brief
 | 
						|
    Semi-join subquery optimizations code
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
#ifdef USE_PRAGMA_IMPLEMENTATION
 | 
						|
#pragma implementation				// gcc: Class implementation
 | 
						|
#endif
 | 
						|
 | 
						|
#include "mariadb.h"
 | 
						|
#include "sql_base.h"
 | 
						|
#include "sql_const.h"
 | 
						|
#include "sql_select.h"
 | 
						|
#include "filesort.h"
 | 
						|
#include "opt_subselect.h"
 | 
						|
#include "sql_test.h"
 | 
						|
#include <my_bit.h>
 | 
						|
#include "opt_trace.h"
 | 
						|
 | 
						|
/*
 | 
						|
  This file contains optimizations for semi-join subqueries.
 | 
						|
  
 | 
						|
  Contents
 | 
						|
  --------
 | 
						|
  1. What is a semi-join subquery
 | 
						|
  2. General idea about semi-join execution
 | 
						|
  2.1 Correlated vs uncorrelated semi-joins
 | 
						|
  2.2 Mergeable vs non-mergeable semi-joins
 | 
						|
  3. Code-level view of semi-join processing
 | 
						|
  3.1 Conversion
 | 
						|
  3.1.1 Merged semi-join TABLE_LIST object
 | 
						|
  3.1.2 Non-merged semi-join data structure
 | 
						|
  3.2 Semi-joins and query optimization
 | 
						|
  3.2.1 Non-merged semi-joins and join optimization
 | 
						|
  3.2.2 Merged semi-joins and join optimization
 | 
						|
  3.3 Semi-joins and query execution
 | 
						|
 | 
						|
  1. What is a semi-join subquery
 | 
						|
  -------------------------------
 | 
						|
  We use this definition of semi-join:
 | 
						|
 | 
						|
    outer_tbl SEMI JOIN inner_tbl ON cond = {set of outer_tbl.row such that
 | 
						|
                                             exist inner_tbl.row, for which 
 | 
						|
                                             cond(outer_tbl.row,inner_tbl.row)
 | 
						|
                                             is satisfied}
 | 
						|
  
 | 
						|
  That is, semi-join operation is similar to inner join operation, with
 | 
						|
  exception that we don't care how many matches a row from outer_tbl has in
 | 
						|
  inner_tbl.
 | 
						|
 | 
						|
  In SQL terms: a semi-join subquery is an IN subquery that is an AND-part of
 | 
						|
  the WHERE/ON clause.
 | 
						|
 | 
						|
  2. General idea about semi-join execution
 | 
						|
  -----------------------------------------
 | 
						|
  We can execute semi-join in a way similar to inner join, with exception that
 | 
						|
  we need to somehow ensure that we do not generate record combinations that
 | 
						|
  differ only in rows of inner tables.
 | 
						|
  There is a number of different ways to achieve this property, implemented by
 | 
						|
  a number of semi-join execution strategies.
 | 
						|
  Some strategies can handle any semi-joins, other can be applied only to
 | 
						|
  semi-joins that have certain properties that are described below:
 | 
						|
 | 
						|
  2.1 Correlated vs uncorrelated semi-joins
 | 
						|
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
  Uncorrelated semi-joins are special in the respect that they allow to
 | 
						|
   - execute the subquery (possible as it's uncorrelated)
 | 
						|
   - somehow make sure that generated set does not have duplicates
 | 
						|
   - perform an inner join with outer tables.
 | 
						|
  
 | 
						|
  or, rephrasing in SQL form:
 | 
						|
 | 
						|
  SELECT ... FROM ot WHERE ot.col IN (SELECT it.col FROM it WHERE uncorr_cond)
 | 
						|
    ->
 | 
						|
  SELECT ... FROM ot JOIN (SELECT DISTINCT it.col FROM it WHERE uncorr_cond)
 | 
						|
 | 
						|
  2.2 Mergeable vs non-mergeable semi-joins
 | 
						|
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
  Semi-join operation has some degree of commutability with inner join
 | 
						|
  operation: we can join subquery's tables with ouside table(s) and eliminate
 | 
						|
  duplicate record combination after that:
 | 
						|
 | 
						|
    ot1 JOIN ot2 SEMI_JOIN{it1,it2} (it1 JOIN it2) ON sjcond(ot2,it*) ->
 | 
						|
              |
 | 
						|
              +-------------------------------+
 | 
						|
                                              v
 | 
						|
    ot1 SEMI_JOIN{it1,it2} (it1 JOIN it2 JOIN ot2) ON sjcond(ot2,it*)
 | 
						|
 
 | 
						|
  In order for this to work, subquery's top-level operation must be join, and
 | 
						|
  grouping or ordering with limit (grouping or ordering with limit are not
 | 
						|
  commutative with duplicate removal). In other words, the conversion is
 | 
						|
  possible when the subquery doesn't have GROUP BY clause, any aggregate
 | 
						|
  functions*, or ORDER BY ... LIMIT clause.
 | 
						|
 | 
						|
  Definitions:
 | 
						|
  - Subquery whose top-level operation is a join is called *mergeable semi-join*
 | 
						|
  - All other kinds of semi-join subqueries are considered non-mergeable.
 | 
						|
 | 
						|
  *- this requirement is actually too strong, but its exceptions are too
 | 
						|
  complicated to be considered here.
 | 
						|
 | 
						|
  3. Code-level view of semi-join processing
 | 
						|
  ------------------------------------------
 | 
						|
  
 | 
						|
  3.1 Conversion and pre-optimization data structures
 | 
						|
  ---------------------------------------------------
 | 
						|
  * When doing JOIN::prepare for the subquery, we detect that it can be
 | 
						|
    converted into a semi-join and register it in parent_join->sj_subselects
 | 
						|
 | 
						|
  * At the start of parent_join->optimize(), the predicate is converted into 
 | 
						|
    a semi-join node. A semi-join node is a TABLE_LIST object that is linked
 | 
						|
    somewhere in parent_join->join_list (either it is just present there, or
 | 
						|
    it is a descendant of some of its members).
 | 
						|
  
 | 
						|
  There are two kinds of semi-joins:
 | 
						|
  - Merged semi-joins
 | 
						|
  - Non-merged semi-joins
 | 
						|
   
 | 
						|
  3.1.1 Merged semi-join TABLE_LIST object
 | 
						|
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
  Merged semi-join object is a TABLE_LIST that contains a sub-join of 
 | 
						|
  subquery tables and the semi-join ON expression (in this respect it is 
 | 
						|
  very similar to nested outer join representation)
 | 
						|
  Merged semi-join represents this SQL:
 | 
						|
 | 
						|
    ... SEMI JOIN (inner_tbl1 JOIN ... JOIN inner_tbl_n) ON sj_on_expr
 | 
						|
  
 | 
						|
  Semi-join objects of this kind have TABLE_LIST::sj_subq_pred set.
 | 
						|
 
 | 
						|
  3.1.2 Non-merged semi-join data structure
 | 
						|
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
  Non-merged semi-join object is a leaf TABLE_LIST object that has a subquery
 | 
						|
  that produces rows. It is similar to a base table and represents this SQL:
 | 
						|
    
 | 
						|
    ... SEMI_JOIN (SELECT non_mergeable_select) ON sj_on_expr
 | 
						|
  
 | 
						|
  Subquery items that were converted into semi-joins are removed from the WHERE
 | 
						|
  clause. (They do remain in PS-saved WHERE clause, and they replace themselves
 | 
						|
  with Item_int(1) on subsequent re-executions).
 | 
						|
 | 
						|
  3.2 Semi-joins and join optimization
 | 
						|
  ------------------------------------
 | 
						|
  
 | 
						|
  3.2.1 Non-merged semi-joins and join optimization
 | 
						|
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
  For join optimization purposes, non-merged semi-join nests are similar to
 | 
						|
  base tables. Each such nest is represented by one one JOIN_TAB, which has 
 | 
						|
  two possible access strategies:
 | 
						|
   - full table scan (representing SJ-Materialization-Scan strategy)
 | 
						|
   - eq_ref-like table lookup (representing SJ-Materialization-Lookup)
 | 
						|
 | 
						|
  Unlike regular base tables, non-merged semi-joins have:
 | 
						|
   - non-zero JOIN_TAB::startup_cost, and
 | 
						|
   - join_tab->table->is_filled_at_execution()==TRUE, which means one
 | 
						|
     cannot do const table detection, range analysis or other dataset-dependent
 | 
						|
     optimizations.
 | 
						|
     Instead, get_delayed_table_estimates() will run optimization for the
 | 
						|
     subquery and produce an E(materialized table size).
 | 
						|
  
 | 
						|
  3.2.2 Merged semi-joins and join optimization
 | 
						|
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
   - optimize_semijoin_nests() does pre-optimization 
 | 
						|
   - during join optimization, the join has one JOIN_TAB (or is it POSITION?) 
 | 
						|
     array, and suffix-based detection is used, see optimize_semi_joins()
 | 
						|
   - after join optimization is done, get_best_combination() switches 
 | 
						|
     the data-structure to prefix-based, multiple JOIN_TAB ranges format.
 | 
						|
 | 
						|
  3.3 Semi-joins and query execution
 | 
						|
  ----------------------------------
 | 
						|
  * Join executor has hooks for all semi-join strategies.
 | 
						|
    TODO elaborate.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
/*
 | 
						|
EqualityPropagationAndSjmNests
 | 
						|
******************************
 | 
						|
 | 
						|
Equalities are used for:
 | 
						|
P1. Equality propagation 
 | 
						|
P2. Equality substitution [for a certain join order]
 | 
						|
 | 
						|
The equality propagation is not affected by SJM nests. In fact, it is done 
 | 
						|
before we determine the execution plan, i.e. before we even know we will use
 | 
						|
SJM-nests for execution.
 | 
						|
 | 
						|
The equality substitution is affected. 
 | 
						|
 | 
						|
Substitution without SJMs
 | 
						|
=========================
 | 
						|
When one doesn't have SJM nests, tables have a strict join order:
 | 
						|
 | 
						|
  ---------------------------------> 
 | 
						|
    t1 -- t2 -- t3 -- t4 --- t5 
 | 
						|
 | 
						|
 | 
						|
       ?  ^
 | 
						|
           \
 | 
						|
            --(part-of-WHERE)
 | 
						|
 | 
						|
 | 
						|
parts WHERE/ON and ref. expressions are attached at some point along the axis.
 | 
						|
Expression is allowed to refer to a table column if the table is to the left of
 | 
						|
the attachment point. For any given expression, we have a goal: 
 | 
						|
 | 
						|
  "Move leftmost allowed attachment point as much as possible to the left"
 | 
						|
 | 
						|
Substitution with SJMs - task setting
 | 
						|
=====================================
 | 
						|
 | 
						|
When SJM nests are present, there is no global strict table ordering anymore:
 | 
						|
 | 
						|
   
 | 
						|
  ---------------------------------> 
 | 
						|
 | 
						|
    ot1 -- ot2 --- sjm -- ot4 --- ot5 
 | 
						|
                   |
 | 
						|
                   |                Main execution
 | 
						|
   - - - - - - - - - - - - - - - - - - - - - - - -                 
 | 
						|
                   |                 Materialization
 | 
						|
      it1 -- it2 --/    
 | 
						|
 | 
						|
 | 
						|
Besides that, we must take into account that
 | 
						|
 - values for outer table columns, otN.col, are inaccessible at
 | 
						|
   materialization step                                           (SJM-RULE)
 | 
						|
 - values for inner table columns, itN.col, are inaccessible at Main execution
 | 
						|
   step, except for SJ-Materialization-Scan and columns that are in the 
 | 
						|
   subquery's select list.                                        (SJM-RULE)
 | 
						|
 | 
						|
Substitution with SJMs - solution
 | 
						|
=================================
 | 
						|
 | 
						|
First, we introduce global strict table ordering like this:
 | 
						|
 | 
						|
  ot1 - ot2 --\                    /--- ot3 -- ot5 
 | 
						|
               \--- it1 --- it2 --/
 | 
						|
 | 
						|
Now, let's see how to meet (SJM-RULE).
 | 
						|
 | 
						|
SJ-Materialization is only applicable for uncorrelated subqueries. From this, it
 | 
						|
follows that any multiple equality will either
 | 
						|
1. include only columns of outer tables, or
 | 
						|
2. include only columns of inner tables, or
 | 
						|
3. include columns of inner and outer tables, joined together through one 
 | 
						|
   of IN-equalities.
 | 
						|
 | 
						|
Cases #1 and #2 can be handled in the same way as with regular inner joins.
 | 
						|
 | 
						|
Case #3 requires special handling, so that we don't construct violations of
 | 
						|
(SJM-RULE). Let's consider possible ways to build violations.
 | 
						|
 | 
						|
Equality propagation starts with the clause in this form
 | 
						|
 | 
						|
   top_query_where AND subquery_where AND in_equalities
 | 
						|
 | 
						|
First, it builds multi-equalities. It can also build a mixed multi-equality
 | 
						|
 | 
						|
  multiple-equal(ot1.col, ot2.col, ... it1.col, itN.col) 
 | 
						|
 | 
						|
Multi-equalities are pushed down the OR-clauses in top_query_where and in
 | 
						|
subquery_where, so it's possible that clauses like this one are built:
 | 
						|
 | 
						|
   subquery_cond OR (multiple-equal(it1.col, ot1.col,...) AND ...)
 | 
						|
   ^^^^^^^^^^^^^                                 \
 | 
						|
         |                                        this must be evaluated
 | 
						|
         \- can only be evaluated                 at the main phase.
 | 
						|
            at the materialization phase
 | 
						|
 | 
						|
Finally, equality substitution is started. It does two operations:
 | 
						|
 | 
						|
 | 
						|
1. Field reference substitution 
 | 
						|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
 | 
						|
(In the code, this is Item_field::replace_equal_field)
 | 
						|
 | 
						|
This is a process of replacing each reference to "tblX.col" 
 | 
						|
with the first element of the multi-equality.          (REF-SUBST-ORIG)
 | 
						|
 | 
						|
This behaviour can cause problems with Semi-join nests. Suppose, we have a
 | 
						|
condition: 
 | 
						|
 | 
						|
  func(it1.col, it2.col)
 | 
						|
 | 
						|
and a multi-equality(ot1.col, it1.col). Then, reference to "it1.col" will be 
 | 
						|
replaced with "ot1.col", constructing a condition
 | 
						|
   
 | 
						|
   func(ot1.col, it2.col)
 | 
						|
 | 
						|
which will be a violation of (SJM-RULE).
 | 
						|
 | 
						|
In order to avoid this, (REF-SUBST-ORIG) is amended as follows: 
 | 
						|
 | 
						|
- references to tables "itX.col" that are inner wrt some SJM nest, are
 | 
						|
  replaced with references to the first inner table from the same SJM nest.
 | 
						|
 | 
						|
- references to top-level tables "otX.col" are replaced with references to
 | 
						|
  the first element of the multi-equality, no matter if that first element is
 | 
						|
  a column of a top-level table or of table from some SJM nest.
 | 
						|
                                                              (REF-SUBST-SJM)
 | 
						|
 | 
						|
  The case where the first element is a table from an SJM nest $SJM is ok, 
 | 
						|
  because it can be proven that $SJM uses SJ-Materialization-Scan, and 
 | 
						|
  "unpacks" correct column values to the first element during the main
 | 
						|
  execution phase.
 | 
						|
 | 
						|
2. Item_equal elimination
 | 
						|
~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
(In the code: eliminate_item_equal) This is a process of taking 
 | 
						|
 | 
						|
  multiple-equal(a,b,c,d,e)
 | 
						|
 | 
						|
and replacing it with an equivalent expression which is an AND of pair-wise 
 | 
						|
equalities:
 | 
						|
 | 
						|
  a=b AND a=c AND ...
 | 
						|
 | 
						|
The equalities are picked such that for any given join prefix (t1,t2...) the
 | 
						|
subset of equalities that can be evaluated gives the most restrictive
 | 
						|
filtering. 
 | 
						|
 | 
						|
Without SJM nests, it is sufficient to compare every multi-equality member
 | 
						|
with the first one:
 | 
						|
 | 
						|
  elem1=elem2 AND elem1=elem3 AND elem1=elem4 ... 
 | 
						|
 | 
						|
When SJM nests are present, we should take care not to construct equalities
 | 
						|
that violate the (SJM-RULE). This is achieved by generating separate sets of
 | 
						|
equalites for top-level tables and for inner tables. That is, for the join
 | 
						|
order 
 | 
						|
 | 
						|
  ot1 - ot2 --\                    /--- ot3 -- ot5 
 | 
						|
               \--- it1 --- it2 --/
 | 
						|
 | 
						|
we will generate
 | 
						|
   ot1.col=ot2.col
 | 
						|
   ot1.col=ot3.col
 | 
						|
   ot1.col=ot5.col
 | 
						|
   it2.col=it1.col
 | 
						|
 | 
						|
 | 
						|
2.1 The problem with Item_equals and ORs
 | 
						|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
As has been mentioned above, multiple equalities are pushed down into OR
 | 
						|
clauses, possibly building clauses like this:
 | 
						|
 | 
						|
   func(it.col2) OR multiple-equal(it1.col1, it1.col2, ot1.col)      (1)
 | 
						|
 | 
						|
where the first part of the clause has references to inner tables, while the
 | 
						|
second has references to the top-level tables, which is a violation of
 | 
						|
(SJM-RULE).
 | 
						|
 | 
						|
AND-clauses of this kind do not create problems, because make_cond_for_table()
 | 
						|
will take them apart. OR-clauses will not be split. It is possible to
 | 
						|
split-out the part that's dependent on the inner table:
 | 
						|
 | 
						|
   func(it.col2) OR it1.col1=it1.col2
 | 
						|
 | 
						|
but this is a less-restrictive condition than condition (1). Current execution
 | 
						|
scheme will still try to generate the "remainder" condition:
 | 
						|
 | 
						|
   func(it.col2) OR it1.col1=ot1.col
 | 
						|
 | 
						|
which is a violation of (SJM-RULE).
 | 
						|
 | 
						|
QQ: "ot1.col=it1.col" is checked at the upper level. Why was it not removed
 | 
						|
here?
 | 
						|
AA: because has a proper subset of conditions that are found on this level.
 | 
						|
    consider a join order of  ot, sjm(it)
 | 
						|
    and a condition
 | 
						|
      ot.col=it.col AND ( ot.col=it.col='foo' OR it.col2='bar')
 | 
						|
 | 
						|
    we will produce: 
 | 
						|
       table ot:  nothing
 | 
						|
       table it:  ot.col=it.col AND (ot.col='foo' OR it.col2='bar')
 | 
						|
                                     ^^^^        ^^^^^^^^^^^^^^^^       
 | 
						|
                                      |          \ the problem is that 
 | 
						|
                                      |            this part condition didnt
 | 
						|
                                      |            receive a substitution
 | 
						|
                                      |
 | 
						|
                                      +--- it was correct to subst, 'ot' is 
 | 
						|
                                           the left-most.
 | 
						|
 | 
						|
 | 
						|
Does it make sense to push "inner=outer" down into ORs?
 | 
						|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
 | 
						|
Yes. Consider the query:
 | 
						|
 | 
						|
  select * from ot 
 | 
						|
  where ot.col in (select it.col from it where (it.col='foo' OR it.col='bar'))
 | 
						|
 | 
						|
here, it may be useful to infer that 
 | 
						|
 | 
						|
   (ot.col='foo' OR ot.col='bar')       (CASE-FOR-SUBST)
 | 
						|
 | 
						|
and attach that condition to the table 'ot'.
 | 
						|
 | 
						|
Possible solutions for Item_equals and ORs
 | 
						|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
 | 
						|
Solution #1
 | 
						|
~~~~~~~~~~~
 | 
						|
Let make_cond_for_table() chop analyze the OR clauses it has produced and
 | 
						|
discard them if they violate (SJM-RULE). This solution would allow to handle
 | 
						|
cases like (CASE-FOR-SUBST) at the expense of making semantics of
 | 
						|
make_cond_for_table() complicated.
 | 
						|
 | 
						|
Solution #2
 | 
						|
~~~~~~~~~~~
 | 
						|
Before the equality propagation phase, none of the OR clauses violate the
 | 
						|
(SJM-RULE). This way, if we remember which tables the original equality
 | 
						|
referred to, we can only generate equalities that refer to the outer (or inner)
 | 
						|
tables. Note that this will disallow handling of cases like (CASE-FOR-SUBST).
 | 
						|
 | 
						|
Currently, solution #2 is implemented.
 | 
						|
*/
 | 
						|
 | 
						|
LEX_CSTRING weedout_key= {STRING_WITH_LEN("weedout_key")};
 | 
						|
 | 
						|
static
 | 
						|
bool subquery_types_allow_materialization(THD *thd, Item_in_subselect *in_subs);
 | 
						|
static bool replace_where_subcondition(JOIN *, Item **, Item *, Item *, bool);
 | 
						|
static int subq_sj_candidate_cmp(Item_in_subselect* el1, Item_in_subselect* el2,
 | 
						|
                                 void *arg);
 | 
						|
static void reset_equality_number_for_subq_conds(Item * cond);
 | 
						|
static bool convert_subq_to_sj(JOIN *parent_join, Item_in_subselect *subq_pred);
 | 
						|
static bool convert_subq_to_jtbm(JOIN *parent_join, 
 | 
						|
                                 Item_in_subselect *subq_pred, bool *remove);
 | 
						|
static TABLE_LIST *alloc_join_nest(THD *thd);
 | 
						|
static uint get_tmp_table_rec_length(Ref_ptr_array p_list, uint elements);
 | 
						|
bool find_eq_ref_candidate(TABLE *table, table_map sj_inner_tables);
 | 
						|
static SJ_MATERIALIZATION_INFO *
 | 
						|
at_sjmat_pos(const JOIN *join, table_map remaining_tables, const JOIN_TAB *tab,
 | 
						|
             uint idx, bool *loose_scan);
 | 
						|
static Item *create_subq_in_equalities(THD *thd, SJ_MATERIALIZATION_INFO *sjm, 
 | 
						|
                                Item_in_subselect *subq_pred);
 | 
						|
static bool remove_sj_conds(THD *thd, Item **tree);
 | 
						|
static bool is_cond_sj_in_equality(Item *item);
 | 
						|
static bool sj_table_is_included(JOIN *join, JOIN_TAB *join_tab);
 | 
						|
static Item *remove_additional_cond(Item* conds);
 | 
						|
static void remove_subq_pushed_predicates(JOIN *join, Item **where);
 | 
						|
 | 
						|
enum_nested_loop_state 
 | 
						|
end_sj_materialize(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Check if Materialization strategy is allowed for given subquery predicate.
 | 
						|
 | 
						|
  @param thd           Thread handle
 | 
						|
  @param in_subs       The subquery predicate
 | 
						|
  @param child_select  The select inside predicate (the function will
 | 
						|
                       check it is the only one)
 | 
						|
 | 
						|
  @return TRUE  - Materialization is applicable 
 | 
						|
          FALSE - Otherwise
 | 
						|
*/
 | 
						|
 | 
						|
bool is_materialization_applicable(THD *thd, Item_in_subselect *in_subs,
 | 
						|
                                   st_select_lex *child_select)
 | 
						|
{
 | 
						|
  st_select_lex_unit* parent_unit= child_select->master_unit();
 | 
						|
  /*
 | 
						|
    Check if the subquery predicate can be executed via materialization.
 | 
						|
    The required conditions are:
 | 
						|
    0. The materialization optimizer switch was set.
 | 
						|
    1. Subquery is a single SELECT (not a UNION).
 | 
						|
       TODO: this is a limitation that can be fixed
 | 
						|
    2. Subquery is not a table-less query. In this case there is no
 | 
						|
       point in materializing.
 | 
						|
    2A The upper query is not a table-less SELECT ... FROM DUAL. We
 | 
						|
       can't do materialization for SELECT .. FROM DUAL because it
 | 
						|
       does not call setup_subquery_materialization(). We could make 
 | 
						|
       SELECT ... FROM DUAL call that function but that doesn't seem
 | 
						|
       to be the case that is worth handling.
 | 
						|
    3. Either the subquery predicate is a top-level predicate, or at
 | 
						|
       least one partial match strategy is enabled. If no partial match
 | 
						|
       strategy is enabled, then materialization cannot be used for
 | 
						|
       non-top-level queries because it cannot handle NULLs correctly.
 | 
						|
    4. Subquery is non-correlated
 | 
						|
       TODO:
 | 
						|
       This condition is too restrictive (limitation). It can be extended to:
 | 
						|
       (Subquery is non-correlated ||
 | 
						|
        Subquery is correlated to any query outer to IN predicate ||
 | 
						|
        (Subquery is correlated to the immediate outer query &&
 | 
						|
         Subquery !contains {GROUP BY, ORDER BY [LIMIT],
 | 
						|
         aggregate functions}) && subquery predicate is not under "NOT IN"))
 | 
						|
    5. Subquery does not contain recursive references
 | 
						|
 | 
						|
  A note about prepared statements: we want the if-branch to be taken on
 | 
						|
  PREPARE and each EXECUTE. The rewrites are only done once, but we need 
 | 
						|
  select_lex->sj_subselects list to be populated for every EXECUTE. 
 | 
						|
 | 
						|
  */
 | 
						|
  if (optimizer_flag(thd, OPTIMIZER_SWITCH_MATERIALIZATION) &&      // 0
 | 
						|
        !child_select->is_part_of_union() &&                          // 1
 | 
						|
        parent_unit->first_select()->leaf_tables.elements &&          // 2
 | 
						|
        child_select->outer_select() &&
 | 
						|
        child_select->outer_select()->table_list.first &&             // 2A
 | 
						|
        subquery_types_allow_materialization(thd, in_subs) &&
 | 
						|
        (in_subs->is_top_level_item() ||                               //3
 | 
						|
         optimizer_flag(thd,
 | 
						|
                        OPTIMIZER_SWITCH_PARTIAL_MATCH_ROWID_MERGE) || //3
 | 
						|
         optimizer_flag(thd,
 | 
						|
                        OPTIMIZER_SWITCH_PARTIAL_MATCH_TABLE_SCAN)) && //3
 | 
						|
        !in_subs->is_correlated &&                                     //4
 | 
						|
        !in_subs->with_recursive_reference)                            //5
 | 
						|
   {
 | 
						|
     return TRUE;
 | 
						|
   }
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Check if we need JOIN::prepare()-phase subquery rewrites and if yes, do them
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
     check_and_do_in_subquery_rewrites()
 | 
						|
       join  Subquery's join
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Check if we need to do
 | 
						|
     - subquery -> mergeable semi-join rewrite
 | 
						|
     - if the subquery can be handled with materialization
 | 
						|
     - 'substitution' rewrite for table-less subqueries like "(select 1)"
 | 
						|
     - IN->EXISTS rewrite
 | 
						|
    and, depending on the rewrite, either do it, or record it to be done at a
 | 
						|
    later phase.
 | 
						|
 | 
						|
  RETURN
 | 
						|
    0      - OK
 | 
						|
    Other  - Some sort of query error
 | 
						|
*/
 | 
						|
 | 
						|
int check_and_do_in_subquery_rewrites(JOIN *join)
 | 
						|
{
 | 
						|
  THD *thd=join->thd;
 | 
						|
  st_select_lex *select_lex= join->select_lex;
 | 
						|
  st_select_lex_unit* parent_unit= select_lex->master_unit();
 | 
						|
  DBUG_ENTER("check_and_do_in_subquery_rewrites");
 | 
						|
 | 
						|
  /*
 | 
						|
    IN/ALL/ANY rewrites are not applicable for so called fake select
 | 
						|
    (this select exists only to filter results of union if it is needed).
 | 
						|
  */
 | 
						|
  if (select_lex == select_lex->master_unit()->fake_select_lex)
 | 
						|
    DBUG_RETURN(0);
 | 
						|
 | 
						|
  /*
 | 
						|
    If 
 | 
						|
      1) this join is inside a subquery (of any type except FROM-clause 
 | 
						|
         subquery) and
 | 
						|
      2) we aren't just normalizing a VIEW
 | 
						|
 | 
						|
    Then perform early unconditional subquery transformations:
 | 
						|
     - Convert subquery predicate into semi-join, or
 | 
						|
     - Mark the subquery for execution using materialization, or
 | 
						|
     - Perform IN->EXISTS transformation, or
 | 
						|
     - Perform more/less ALL/ANY -> MIN/MAX rewrite
 | 
						|
     - Substitute trivial scalar-context subquery with its value
 | 
						|
 | 
						|
    TODO: for PS, make the whole block execute only on the first execution
 | 
						|
  */
 | 
						|
  Item_subselect *subselect;
 | 
						|
  if (!thd->lex->is_view_context_analysis() &&          // (1)
 | 
						|
      (subselect= parent_unit->item))                   // (2)
 | 
						|
  {
 | 
						|
    Item_in_subselect *in_subs= NULL;
 | 
						|
    Item_allany_subselect *allany_subs= NULL;
 | 
						|
    Item_subselect::subs_type substype= subselect->substype();
 | 
						|
    switch (substype) {
 | 
						|
    case Item_subselect::IN_SUBS:
 | 
						|
      in_subs= subselect->get_IN_subquery();
 | 
						|
      break;
 | 
						|
    case Item_subselect::ALL_SUBS:
 | 
						|
    case Item_subselect::ANY_SUBS:
 | 
						|
      DBUG_ASSERT(subselect->get_IN_subquery());
 | 
						|
      allany_subs= (Item_allany_subselect *)subselect;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
      Try removing "ORDER BY" or even "ORDER BY ... LIMIT" from certain kinds
 | 
						|
      of subqueries. The removal might enable further transformations.
 | 
						|
    */
 | 
						|
    if (substype == Item_subselect::IN_SUBS ||
 | 
						|
        substype == Item_subselect::EXISTS_SUBS ||
 | 
						|
        substype == Item_subselect::ANY_SUBS ||
 | 
						|
        substype == Item_subselect::ALL_SUBS)
 | 
						|
    {
 | 
						|
      // (1) - ORDER BY without LIMIT can be removed from IN/EXISTS subqueries
 | 
						|
      // (2) - for EXISTS, can also remove "ORDER BY ... LIMIT n",
 | 
						|
      //       but cannot remove "ORDER BY ... LIMIT n OFFSET m"
 | 
						|
      if (!select_lex->limit_params.select_limit ||                  // (1)
 | 
						|
          (substype == Item_subselect::EXISTS_SUBS &&                // (2)
 | 
						|
           !select_lex->limit_params.offset_limit))                  // (2)
 | 
						|
      {
 | 
						|
        select_lex->join->order= 0;
 | 
						|
        select_lex->join->skip_sort_order= 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Resolve expressions and perform semantic analysis for IN query */
 | 
						|
    if (in_subs != NULL)
 | 
						|
      /*
 | 
						|
        TODO: Add the condition below to this if statement when we have proper
 | 
						|
        support for is_correlated handling for materialized semijoins.
 | 
						|
        If we were to add this condition now, the fix_fields() call in
 | 
						|
        convert_subq_to_sj() would force the flag is_correlated to be set
 | 
						|
        erroneously for prepared queries.
 | 
						|
 | 
						|
        thd->stmt_arena->state != Query_arena::PREPARED)
 | 
						|
      */
 | 
						|
    {
 | 
						|
      SELECT_LEX *current= thd->lex->current_select;
 | 
						|
      thd->lex->current_select= current->return_after_parsing();
 | 
						|
      THD_WHERE save_where= thd->where;
 | 
						|
      thd->where= THD_WHERE::IN_ALL_ANY_SUBQUERY;
 | 
						|
 | 
						|
      Item **left= in_subs->left_exp_ptr();
 | 
						|
      bool failure= (*left)->fix_fields_if_needed(thd, left);
 | 
						|
      thd->lex->current_select= current;
 | 
						|
      thd->where= save_where;
 | 
						|
      if (failure)
 | 
						|
        DBUG_RETURN(-1); /* purecov: deadcode */
 | 
						|
 | 
						|
      // fix_field above can rewrite left expression
 | 
						|
      uint ncols= (*left)->cols();
 | 
						|
      /*
 | 
						|
        Check if the left and right expressions have the same # of
 | 
						|
        columns, i.e. we don't have a case like 
 | 
						|
          (oe1, oe2) IN (SELECT ie1, ie2, ie3 ...)
 | 
						|
 | 
						|
        TODO why do we have this duplicated in IN->EXISTS transformers?
 | 
						|
        psergey-todo: fix these: grep for duplicated_subselect_card_check
 | 
						|
      */
 | 
						|
      if (select_lex->item_list.elements != ncols)
 | 
						|
      {
 | 
						|
        my_error(ER_OPERAND_COLUMNS, MYF(0), ncols);
 | 
						|
        DBUG_RETURN(-1);
 | 
						|
      }
 | 
						|
 | 
						|
      uint cols_num= in_subs->left_exp()->cols();
 | 
						|
      for (uint i= 0; i < cols_num; i++)
 | 
						|
      {
 | 
						|
        if (select_lex->ref_pointer_array[i]->
 | 
						|
           check_cols(in_subs->left_exp()->element_index(i)->cols()))
 | 
						|
             DBUG_RETURN(-1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    /* Check if any table is not supporting comparable rowids */
 | 
						|
    {
 | 
						|
      List_iterator_fast<TABLE_LIST> li(select_lex->outer_select()->leaf_tables);
 | 
						|
      TABLE_LIST *tbl;
 | 
						|
      while ((tbl = li++))
 | 
						|
      {
 | 
						|
        TABLE *table= tbl->table;
 | 
						|
        if (table && table->file->ha_table_flags() & HA_NON_COMPARABLE_ROWID)
 | 
						|
          join->not_usable_rowid_map|= table->map;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    DBUG_PRINT("info", ("Checking if subq can be converted to semi-join"));
 | 
						|
    /*
 | 
						|
      Check if we're in subquery that is a candidate for flattening into a
 | 
						|
      semi-join (which is done in flatten_subqueries()). The
 | 
						|
      requirements are:
 | 
						|
        1. Subquery predicate is an IN/=ANY subq predicate
 | 
						|
        2. Subquery is a single SELECT (not a UNION)
 | 
						|
        3. Subquery does not have GROUP BY or ORDER BY
 | 
						|
        4. Subquery does not use aggregate functions or HAVING
 | 
						|
        5. Subquery predicate is at the AND-top-level of ON/WHERE clause
 | 
						|
        6. We are not in a subquery of a single table UPDATE/DELETE that 
 | 
						|
             doesn't have a JOIN (TODO: We should handle this at some
 | 
						|
             point by switching to multi-table UPDATE/DELETE)
 | 
						|
        7. We're not in a table-less subquery like "SELECT 1"
 | 
						|
        8. No execution method was already chosen (by a prepared statement)
 | 
						|
        9. Parent select is not a table-less select
 | 
						|
        10. Neither parent nor child select have STRAIGHT_JOIN option.
 | 
						|
        11. It is first optimisation (the subquery could be moved from ON
 | 
						|
            clause during first optimisation and then be considered for SJ
 | 
						|
            on the second when it is too late)
 | 
						|
        12. All tables supports comparable rowids.
 | 
						|
            This is needed for DuplicateWeedout strategy to work (which
 | 
						|
            is the catch-all semi-join strategy so it must be applicable).
 | 
						|
    */
 | 
						|
    if (optimizer_flag(thd, OPTIMIZER_SWITCH_SEMIJOIN) &&
 | 
						|
        in_subs &&                                                    // 1
 | 
						|
        !select_lex->is_part_of_union() &&                            // 2
 | 
						|
        !select_lex->group_list.elements && !join->order &&           // 3
 | 
						|
        !join->having && !select_lex->with_sum_func &&                // 4
 | 
						|
        in_subs->emb_on_expr_nest &&                                  // 5
 | 
						|
        select_lex->outer_select()->join &&                           // 6
 | 
						|
        parent_unit->first_select()->leaf_tables.elements &&          // 7
 | 
						|
        !in_subs->has_strategy() &&                                   // 8
 | 
						|
        select_lex->outer_select()->table_list.first &&               // 9
 | 
						|
        !((join->select_options |                                     // 10
 | 
						|
           select_lex->outer_select()->join->select_options)          // 10
 | 
						|
          & SELECT_STRAIGHT_JOIN) &&                                  // 10
 | 
						|
        select_lex->first_cond_optimization &&                        // 11
 | 
						|
        join->not_usable_rowid_map == 0)                              // 12
 | 
						|
    {
 | 
						|
      DBUG_PRINT("info", ("Subquery is semi-join conversion candidate"));
 | 
						|
 | 
						|
      (void)subquery_types_allow_materialization(thd, in_subs);
 | 
						|
 | 
						|
      in_subs->is_flattenable_semijoin= TRUE;
 | 
						|
 | 
						|
      /* Register the subquery for further processing in flatten_subqueries() */
 | 
						|
      if (!in_subs->is_registered_semijoin)
 | 
						|
      {
 | 
						|
        Query_arena *arena, backup;
 | 
						|
        arena= thd->activate_stmt_arena_if_needed(&backup);
 | 
						|
        select_lex->outer_select()->sj_subselects.push_back(in_subs,
 | 
						|
                                                            thd->mem_root);
 | 
						|
        if (arena)
 | 
						|
          thd->restore_active_arena(arena, &backup);
 | 
						|
        in_subs->is_registered_semijoin= TRUE;
 | 
						|
      }
 | 
						|
 | 
						|
      /*
 | 
						|
        Print the transformation into trace. Do it when we've just set
 | 
						|
        is_registered_semijoin=TRUE above, and also do it when we've already
 | 
						|
        had it set.
 | 
						|
      */
 | 
						|
      if (in_subs->is_registered_semijoin)
 | 
						|
      {
 | 
						|
        OPT_TRACE_TRANSFORM(thd, trace_wrapper, trace_transform,
 | 
						|
                            select_lex->select_number,
 | 
						|
                            "IN (SELECT)", "semijoin");
 | 
						|
        trace_transform.add("chosen", true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      DBUG_PRINT("info", ("Subquery can't be converted to merged semi-join"));
 | 
						|
      /* Test if the user has set a legal combination of optimizer switches. */
 | 
						|
      DBUG_ASSERT(optimizer_flag(thd, OPTIMIZER_SWITCH_IN_TO_EXISTS |
 | 
						|
                                      OPTIMIZER_SWITCH_MATERIALIZATION));
 | 
						|
      /*
 | 
						|
        Transform each subquery predicate according to its overloaded
 | 
						|
        transformer.
 | 
						|
      */
 | 
						|
      if (subselect->select_transformer(join))
 | 
						|
        DBUG_RETURN(-1);
 | 
						|
 | 
						|
      /*
 | 
						|
        If the subquery predicate is IN/=ANY, analyse and set all possible
 | 
						|
        subquery execution strategies based on optimizer switches and syntactic
 | 
						|
        properties.
 | 
						|
      */
 | 
						|
      if (in_subs && !in_subs->has_strategy())
 | 
						|
      {
 | 
						|
        if (is_materialization_applicable(thd, in_subs, select_lex))
 | 
						|
        {
 | 
						|
          in_subs->add_strategy(SUBS_MATERIALIZATION);
 | 
						|
 | 
						|
          /*
 | 
						|
            If the subquery is an AND-part of WHERE register for being processed
 | 
						|
            with jtbm strategy
 | 
						|
          */
 | 
						|
          if (in_subs->emb_on_expr_nest == NO_JOIN_NEST &&
 | 
						|
              optimizer_flag(thd, OPTIMIZER_SWITCH_SEMIJOIN))
 | 
						|
          {
 | 
						|
            in_subs->is_flattenable_semijoin= FALSE;
 | 
						|
            if (!in_subs->is_registered_semijoin)
 | 
						|
	    {
 | 
						|
              Query_arena *arena, backup;
 | 
						|
              arena= thd->activate_stmt_arena_if_needed(&backup);
 | 
						|
              select_lex->outer_select()->sj_subselects.push_back(in_subs,
 | 
						|
                                                                  thd->mem_root);
 | 
						|
              if (arena)
 | 
						|
                thd->restore_active_arena(arena, &backup);
 | 
						|
              in_subs->is_registered_semijoin= TRUE;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
          IN-TO-EXISTS is the only universal strategy. Choose it if the user
 | 
						|
          allowed it via an optimizer switch, or if materialization is not
 | 
						|
          possible.
 | 
						|
        */
 | 
						|
        if (optimizer_flag(thd, OPTIMIZER_SWITCH_IN_TO_EXISTS) ||
 | 
						|
            !in_subs->has_strategy())
 | 
						|
          in_subs->add_strategy(SUBS_IN_TO_EXISTS);
 | 
						|
      }
 | 
						|
 | 
						|
      /* Check if max/min optimization applicable */
 | 
						|
      if (allany_subs && !allany_subs->is_set_strategy())
 | 
						|
      {
 | 
						|
        uchar strategy= (allany_subs->is_maxmin_applicable(join) ?
 | 
						|
                         (SUBS_MAXMIN_INJECTED | SUBS_MAXMIN_ENGINE) :
 | 
						|
                         SUBS_IN_TO_EXISTS);
 | 
						|
        allany_subs->add_strategy(strategy);
 | 
						|
      }
 | 
						|
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  @brief Check if subquery's compared types allow materialization.
 | 
						|
 | 
						|
  @param in_subs Subquery predicate, updated as follows:
 | 
						|
    types_allow_materialization TRUE if subquery materialization is allowed.
 | 
						|
    sjm_scan_allowed            If types_allow_materialization is TRUE,
 | 
						|
                                indicates whether it is possible to use subquery
 | 
						|
                                materialization and scan the materialized table.
 | 
						|
 | 
						|
  @retval TRUE   If subquery types allow materialization.
 | 
						|
  @retval FALSE  Otherwise.
 | 
						|
 | 
						|
  @details
 | 
						|
    This is a temporary fix for BUG#36752.
 | 
						|
    
 | 
						|
    There are two subquery materialization strategies:
 | 
						|
 | 
						|
    1. Materialize and do index lookups in the materialized table. See 
 | 
						|
       BUG#36752 for description of restrictions we need to put on the
 | 
						|
       compared expressions.
 | 
						|
 | 
						|
    2. Materialize and then do a full scan of the materialized table. At the
 | 
						|
       moment, this strategy's applicability criteria are even stricter than
 | 
						|
       in #1.
 | 
						|
 | 
						|
       This is so because of the following: consider an uncorrelated subquery
 | 
						|
       
 | 
						|
       ...WHERE (ot1.col1, ot2.col2 ...) IN (SELECT ie1,ie2,... FROM it1 ...)
 | 
						|
 | 
						|
       and a join order that could be used to do sjm-materialization: 
 | 
						|
          
 | 
						|
          SJM-Scan(it1, it1), ot1, ot2
 | 
						|
       
 | 
						|
       IN-equalities will be parts of conditions attached to the outer tables:
 | 
						|
 | 
						|
         ot1:  ot1.col1 = ie1 AND ... (C1)
 | 
						|
         ot2:  ot1.col2 = ie2 AND ... (C2)
 | 
						|
       
 | 
						|
       besides those there may be additional references to ie1 and ie2
 | 
						|
       generated by equality propagation. The problem with evaluating C1 and
 | 
						|
       C2 is that ie{1,2} refer to subquery tables' columns, while we only have 
 | 
						|
       current value of materialization temptable. Our solution is to 
 | 
						|
        * require that all ie{N} are table column references. This allows 
 | 
						|
          to copy the values of materialization temptable columns to the
 | 
						|
          original table's columns (see setup_sj_materialization for more
 | 
						|
          details)
 | 
						|
        * require that compared columns have exactly the same type. This is
 | 
						|
          a temporary measure to avoid BUG#36752-type problems.
 | 
						|
 | 
						|
    JOIN_TAB::keyuse_is_valid_for_access_in_chosen_plan expects that for Semi Join Materialization
 | 
						|
    Scan all the items in the select list of the IN Subquery are of the type Item::FIELD_ITEM.
 | 
						|
*/
 | 
						|
 | 
						|
static 
 | 
						|
bool subquery_types_allow_materialization(THD* thd, Item_in_subselect *in_subs)
 | 
						|
{
 | 
						|
  Item *left_exp= in_subs->left_exp();
 | 
						|
  DBUG_ENTER("subquery_types_allow_materialization");
 | 
						|
 | 
						|
  DBUG_ASSERT(left_exp->fixed());
 | 
						|
 | 
						|
  List_iterator<Item> it(in_subs->unit->first_select()->item_list);
 | 
						|
  uint elements= in_subs->unit->first_select()->item_list.elements;
 | 
						|
  const char* cause= NULL;
 | 
						|
 | 
						|
  in_subs->types_allow_materialization= FALSE;  // Assign default values
 | 
						|
  in_subs->sjm_scan_allowed= FALSE;
 | 
						|
 | 
						|
  OPT_TRACE_TRANSFORM(thd, trace_wrapper, trace_transform,
 | 
						|
                     in_subs->get_select_lex()->select_number,
 | 
						|
                      "IN (SELECT)", "materialization");
 | 
						|
 | 
						|
  /*
 | 
						|
    The checks here must be kept in sync with the one in
 | 
						|
    Item_func_in::in_predicate_to_in_subs_transformer().
 | 
						|
  */
 | 
						|
 | 
						|
  bool all_are_fields= TRUE;
 | 
						|
  uint32 total_key_length = 0;
 | 
						|
  bool converted_from_in_predicate= in_subs->converted_from_in_predicate;
 | 
						|
  for (uint i= 0; i < elements; i++)
 | 
						|
  {
 | 
						|
    Item *outer= left_exp->element_index(i);
 | 
						|
    Item *inner= it++;
 | 
						|
    all_are_fields &= (outer->real_item()->type() == Item::FIELD_ITEM && 
 | 
						|
                       inner->real_item()->type() == Item::FIELD_ITEM);
 | 
						|
    total_key_length += inner->max_length;
 | 
						|
    if (!inner->
 | 
						|
         type_handler()->
 | 
						|
         subquery_type_allows_materialization(inner,
 | 
						|
                                              outer,
 | 
						|
                                              converted_from_in_predicate))
 | 
						|
    {
 | 
						|
      trace_transform.add("possible", false);
 | 
						|
      trace_transform.add("cause", "types mismatch");
 | 
						|
      DBUG_RETURN(FALSE);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
     Make sure that create_tmp_table will not fail due to too long keys.
 | 
						|
     See MDEV-7122. This check is performed inside create_tmp_table also and
 | 
						|
     we must do it so that we know the table has keys created.
 | 
						|
     Make sure that the length of the key for the temp_table is atleast
 | 
						|
     greater than 0.
 | 
						|
  */
 | 
						|
  if (!total_key_length)
 | 
						|
    cause= "zero length key for materialized table";
 | 
						|
  else if (total_key_length > tmp_table_max_key_length())
 | 
						|
    cause= "length of key greater than allowed key length for materialized tables";
 | 
						|
  else if (elements > tmp_table_max_key_parts())
 | 
						|
    cause= "#keyparts greater than allowed key parts for materialized tables";
 | 
						|
  else
 | 
						|
  {
 | 
						|
    in_subs->types_allow_materialization= TRUE;
 | 
						|
    in_subs->sjm_scan_allowed= all_are_fields;
 | 
						|
    trace_transform.add("sjm_scan_allowed", all_are_fields)
 | 
						|
                   .add("possible", true);
 | 
						|
    DBUG_PRINT("info",("subquery_types_allow_materialization: ok, allowed"));
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
  }
 | 
						|
  trace_transform.add("possible", false).add("cause", cause);
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  Apply max min optimization of all/any subselect
 | 
						|
*/
 | 
						|
 | 
						|
bool JOIN::transform_max_min_subquery()
 | 
						|
{
 | 
						|
  DBUG_ENTER("JOIN::transform_max_min_subquery");
 | 
						|
  Item_subselect *subselect= unit->item;
 | 
						|
  if (!subselect || (subselect->substype() != Item_subselect::ALL_SUBS &&
 | 
						|
                     subselect->substype() != Item_subselect::ANY_SUBS))
 | 
						|
    DBUG_RETURN(0);
 | 
						|
  DBUG_RETURN(((Item_allany_subselect *) subselect)->
 | 
						|
              transform_into_max_min(this));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Finalize IN->EXISTS conversion in case we couldn't use materialization.
 | 
						|
 | 
						|
  DESCRIPTION  Invoke the IN->EXISTS converter
 | 
						|
    Replace the Item_in_subselect with its wrapper Item_in_optimizer in WHERE.
 | 
						|
 | 
						|
  RETURN 
 | 
						|
    FALSE - Ok
 | 
						|
    TRUE  - Fatal error
 | 
						|
*/
 | 
						|
 | 
						|
bool make_in_exists_conversion(THD *thd, JOIN *join, Item_in_subselect *item)
 | 
						|
{
 | 
						|
  DBUG_ENTER("make_in_exists_conversion");
 | 
						|
  JOIN *child_join= item->unit->first_select()->join;
 | 
						|
  bool res;
 | 
						|
 | 
						|
  /* 
 | 
						|
    We're going to finalize IN->EXISTS conversion. 
 | 
						|
    Normally, IN->EXISTS conversion takes place inside the 
 | 
						|
    Item_subselect::fix_fields() call, where item_subselect->fixed()==FALSE (as
 | 
						|
    fix_fields() haven't finished yet) and item_subselect->changed==FALSE (as 
 | 
						|
    the conversion haven't been finalized)
 | 
						|
 | 
						|
    At the end of Item_subselect::fix_fields() we had to set fixed=TRUE,
 | 
						|
    changed=TRUE (the only other option would have been to return error).
 | 
						|
 | 
						|
    So, now we have to set these back for the duration of select_transformer()
 | 
						|
    call.
 | 
						|
  */
 | 
						|
  item->changed= 0;
 | 
						|
  item->base_flags|= item_base_t::FIXED;
 | 
						|
 | 
						|
  SELECT_LEX *save_select_lex= thd->lex->current_select;
 | 
						|
  thd->lex->current_select= item->unit->first_select();
 | 
						|
 | 
						|
  res= item->select_transformer(child_join);
 | 
						|
 | 
						|
  thd->lex->current_select= save_select_lex;
 | 
						|
 | 
						|
  if (res)
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
 | 
						|
  item->changed= 1;
 | 
						|
  DBUG_ASSERT(item->fixed());
 | 
						|
 | 
						|
  Item *substitute= item->substitution;
 | 
						|
  bool do_fix_fields= !item->substitution->fixed();
 | 
						|
  /*
 | 
						|
    The Item_subselect has already been wrapped with Item_in_optimizer, so we
 | 
						|
    should search for item->optimizer, not 'item'.
 | 
						|
  */
 | 
						|
  Item *replace_me= item->optimizer;
 | 
						|
  DBUG_ASSERT(replace_me==substitute);
 | 
						|
 | 
						|
  Item **tree= (item->emb_on_expr_nest == NO_JOIN_NEST)?
 | 
						|
                 &join->conds : &(item->emb_on_expr_nest->on_expr);
 | 
						|
  if (replace_where_subcondition(join, tree, replace_me, substitute, 
 | 
						|
                                 do_fix_fields))
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
  item->substitution= NULL;
 | 
						|
   
 | 
						|
    /*
 | 
						|
      If this is a prepared statement, repeat the above operation for
 | 
						|
      prep_where (or prep_on_expr). 
 | 
						|
    */
 | 
						|
  if (!thd->stmt_arena->is_conventional())
 | 
						|
  {
 | 
						|
    tree= (item->emb_on_expr_nest == (TABLE_LIST*)NO_JOIN_NEST)?
 | 
						|
           &join->select_lex->prep_where : 
 | 
						|
           &(item->emb_on_expr_nest->prep_on_expr);
 | 
						|
 | 
						|
    if (replace_where_subcondition(join, tree, replace_me, substitute, 
 | 
						|
                                   FALSE))
 | 
						|
      DBUG_RETURN(TRUE);
 | 
						|
  }
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool check_for_outer_joins(List<TABLE_LIST> *join_list)
 | 
						|
{
 | 
						|
  TABLE_LIST *table;
 | 
						|
  NESTED_JOIN *nested_join;
 | 
						|
  List_iterator<TABLE_LIST> li(*join_list);
 | 
						|
  while ((table= li++))
 | 
						|
  {
 | 
						|
    if ((nested_join= table->nested_join))
 | 
						|
    {
 | 
						|
      if (check_for_outer_joins(&nested_join->join_list))
 | 
						|
        return TRUE;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (table->outer_join)
 | 
						|
      return TRUE;
 | 
						|
  }
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void find_and_block_conversion_to_sj(Item *to_find,
 | 
						|
				     List_iterator_fast<Item_in_subselect> &li)
 | 
						|
{
 | 
						|
  if (to_find->type() == Item::FUNC_ITEM &&
 | 
						|
     ((Item_func*)to_find)->functype() == Item_func::IN_OPTIMIZER_FUNC)
 | 
						|
    to_find= ((Item_in_optimizer*)to_find)->get_wrapped_in_subselect_item();
 | 
						|
 | 
						|
  if (to_find->type() != Item::SUBSELECT_ITEM ||
 | 
						|
      ((Item_subselect *) to_find)->substype() != Item_subselect::IN_SUBS)
 | 
						|
    return;
 | 
						|
  Item_in_subselect *in_subq;
 | 
						|
  li.rewind();
 | 
						|
  while ((in_subq= li++))
 | 
						|
  {
 | 
						|
    if (in_subq == to_find)
 | 
						|
    {
 | 
						|
      in_subq->block_conversion_to_sj();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Convert semi-join subquery predicates into semi-join join nests
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    convert_join_subqueries_to_semijoins()
 | 
						|
 
 | 
						|
  DESCRIPTION
 | 
						|
 | 
						|
    Convert candidate subquery predicates into semi-join join nests. This 
 | 
						|
    transformation is performed once in query lifetime and is irreversible.
 | 
						|
    
 | 
						|
    Conversion of one subquery predicate
 | 
						|
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
    We start with a join that has a semi-join subquery:
 | 
						|
 | 
						|
      SELECT ...
 | 
						|
      FROM ot, ...
 | 
						|
      WHERE oe IN (SELECT ie FROM it1 ... itN WHERE subq_where) AND outer_where
 | 
						|
 | 
						|
    and convert it into a semi-join nest:
 | 
						|
 | 
						|
      SELECT ...
 | 
						|
      FROM ot SEMI JOIN (it1 ... itN), ...
 | 
						|
      WHERE outer_where AND subq_where AND oe=ie
 | 
						|
 | 
						|
    that is, in order to do the conversion, we need to 
 | 
						|
 | 
						|
     * Create the "SEMI JOIN (it1 .. itN)" part and add it into the parent
 | 
						|
       query's FROM structure.
 | 
						|
     * Add "AND subq_where AND oe=ie" into parent query's WHERE (or ON if
 | 
						|
       the subquery predicate was in an ON expression)
 | 
						|
     * Remove the subquery predicate from the parent query's WHERE
 | 
						|
 | 
						|
    Considerations when converting many predicates
 | 
						|
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
    A join may have at most MAX_TABLES tables. This may prevent us from
 | 
						|
    flattening all subqueries when the total number of tables in parent and
 | 
						|
    child selects exceeds MAX_TABLES.
 | 
						|
    We deal with this problem by flattening children's subqueries first and
 | 
						|
    then using a heuristic rule to determine each subquery predicate's
 | 
						|
    "priority".
 | 
						|
 | 
						|
  RETURN 
 | 
						|
    FALSE  OK
 | 
						|
    TRUE   Error
 | 
						|
*/
 | 
						|
 | 
						|
bool convert_join_subqueries_to_semijoins(JOIN *join)
 | 
						|
{
 | 
						|
  Query_arena *arena, backup;
 | 
						|
  Item_in_subselect *in_subq;
 | 
						|
  THD *thd= join->thd;
 | 
						|
  DBUG_ENTER("convert_join_subqueries_to_semijoins");
 | 
						|
 | 
						|
  if (join->select_lex->sj_subselects.is_empty())
 | 
						|
    DBUG_RETURN(FALSE);
 | 
						|
 | 
						|
  List_iterator_fast<Item_in_subselect> li(join->select_lex->sj_subselects);
 | 
						|
 | 
						|
  while ((in_subq= li++))
 | 
						|
  {
 | 
						|
    SELECT_LEX *subq_sel= in_subq->get_select_lex();
 | 
						|
    if (subq_sel->handle_derived(thd->lex, DT_MERGE))
 | 
						|
      DBUG_RETURN(TRUE);
 | 
						|
    if (subq_sel->join->transform_in_predicates_into_in_subq(thd))
 | 
						|
      DBUG_RETURN(TRUE);
 | 
						|
    subq_sel->update_used_tables();
 | 
						|
  }
 | 
						|
 | 
						|
  /* 
 | 
						|
    Check all candidates to semi-join conversion that occur
 | 
						|
    in ON expressions of outer join. Set the flag blocking
 | 
						|
    this conversion for them.
 | 
						|
  */
 | 
						|
  TABLE_LIST *tbl;
 | 
						|
  List_iterator<TABLE_LIST> ti(join->select_lex->leaf_tables);
 | 
						|
  while ((tbl= ti++))
 | 
						|
  {
 | 
						|
    TABLE_LIST *embedded;
 | 
						|
    TABLE_LIST *embedding= tbl;
 | 
						|
    do
 | 
						|
    {
 | 
						|
      embedded= embedding;
 | 
						|
      bool block_conversion_to_sj= false;
 | 
						|
      if (embedded->on_expr)
 | 
						|
      {
 | 
						|
        /*
 | 
						|
          Conversion of an IN subquery predicate into semi-join
 | 
						|
          is blocked now if the predicate occurs:
 | 
						|
          - in the ON expression of an outer join
 | 
						|
          - in the ON expression of an inner join embedded directly
 | 
						|
            or indirectly in the inner nest of an outer join
 | 
						|
	*/
 | 
						|
        for (TABLE_LIST *tl= embedded; tl; tl= tl->embedding)
 | 
						|
	{
 | 
						|
          if (tl->outer_join)
 | 
						|
	  {
 | 
						|
            block_conversion_to_sj= true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (block_conversion_to_sj)
 | 
						|
      {
 | 
						|
	Item *cond= embedded->on_expr;
 | 
						|
        if (!cond)
 | 
						|
          ;
 | 
						|
        else if (cond->type() != Item::COND_ITEM)
 | 
						|
          find_and_block_conversion_to_sj(cond, li);
 | 
						|
        else if (((Item_cond*) cond)->functype() ==
 | 
						|
	         Item_func::COND_AND_FUNC)
 | 
						|
	{
 | 
						|
          Item *item;
 | 
						|
          List_iterator<Item> it(*(((Item_cond*) cond)->argument_list()));
 | 
						|
          while ((item= it++))
 | 
						|
	  {
 | 
						|
	    find_and_block_conversion_to_sj(item, li);
 | 
						|
          }
 | 
						|
	}
 | 
						|
      }
 | 
						|
      embedding= embedded->embedding;
 | 
						|
    }
 | 
						|
    while (embedding &&
 | 
						|
           embedding->nested_join->join_list.head() == embedded);
 | 
						|
  }
 | 
						|
 | 
						|
  /* 
 | 
						|
    Block conversion to semi-joins for those candidates that
 | 
						|
    are encountered in the WHERE condition of the multi-table view
 | 
						|
    with CHECK OPTION if this view is used in UPDATE/DELETE.
 | 
						|
    (This limitation can be, probably, easily lifted.) 
 | 
						|
  */  
 | 
						|
  li.rewind();
 | 
						|
  while ((in_subq= li++))
 | 
						|
  {
 | 
						|
    if (in_subq->emb_on_expr_nest != NO_JOIN_NEST &&
 | 
						|
        in_subq->emb_on_expr_nest->effective_with_check)
 | 
						|
    {
 | 
						|
      in_subq->block_conversion_to_sj();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (join->select_options & SELECT_STRAIGHT_JOIN)
 | 
						|
  {
 | 
						|
    /* Block conversion to semijoins for all candidates */ 
 | 
						|
    li.rewind();
 | 
						|
    while ((in_subq= li++))
 | 
						|
    {
 | 
						|
      in_subq->block_conversion_to_sj();
 | 
						|
    }
 | 
						|
  }
 | 
						|
      
 | 
						|
  li.rewind();
 | 
						|
  /* First, convert child join's subqueries. We proceed bottom-up here */
 | 
						|
  while ((in_subq= li++)) 
 | 
						|
  {
 | 
						|
    st_select_lex *child_select= in_subq->get_select_lex();
 | 
						|
    JOIN *child_join= child_select->join;
 | 
						|
    child_join->outer_tables = child_join->table_count;
 | 
						|
 | 
						|
    /*
 | 
						|
      child_select->where contains only the WHERE predicate of the
 | 
						|
      subquery itself here. We may be selecting from a VIEW, which has its
 | 
						|
      own predicate. The combined predicates are available in child_join->conds,
 | 
						|
      which was built by setup_conds() doing prepare_where() for all views.
 | 
						|
    */
 | 
						|
    child_select->where= child_join->conds;
 | 
						|
 | 
						|
    if (convert_join_subqueries_to_semijoins(child_join))
 | 
						|
      DBUG_RETURN(TRUE);
 | 
						|
 | 
						|
 | 
						|
    in_subq->sj_convert_priority= 
 | 
						|
      MY_TEST(in_subq->do_not_convert_to_sj) * MAX_TABLES * 2 +
 | 
						|
      in_subq->is_correlated * MAX_TABLES + child_join->outer_tables;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Temporary measure: disable semi-joins when they are together with outer
 | 
						|
  // joins.
 | 
						|
#if 0  
 | 
						|
  if (check_for_outer_joins(join->join_list))
 | 
						|
  {
 | 
						|
    in_subq= join->select_lex->sj_subselects.head();
 | 
						|
    arena= thd->activate_stmt_arena_if_needed(&backup);
 | 
						|
    goto skip_conversion;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  //dump_TABLE_LIST_struct(select_lex, select_lex->leaf_tables);
 | 
						|
  /* 
 | 
						|
    2. Pick which subqueries to convert:
 | 
						|
      sort the subquery array
 | 
						|
      - prefer correlated subqueries over uncorrelated;
 | 
						|
      - prefer subqueries that have greater number of outer tables;
 | 
						|
  */
 | 
						|
  bubble_sort<Item_in_subselect>(&join->select_lex->sj_subselects,
 | 
						|
				 subq_sj_candidate_cmp, NULL);
 | 
						|
  // #tables-in-parent-query + #tables-in-subquery < MAX_TABLES
 | 
						|
  /* Replace all subqueries to be flattened with Item_int(1) */
 | 
						|
  arena= thd->activate_stmt_arena_if_needed(&backup);
 | 
						|
 
 | 
						|
  li.rewind();
 | 
						|
  while ((in_subq= li++))
 | 
						|
  {
 | 
						|
    bool remove_item= TRUE;
 | 
						|
 | 
						|
    /* Stop processing if we've reached a subquery that's attached to the ON clause */
 | 
						|
    if (in_subq->do_not_convert_to_sj)
 | 
						|
    {
 | 
						|
      OPT_TRACE_TRANSFORM(thd, trace_wrapper, trace_transform,
 | 
						|
                          in_subq->get_select_lex()->select_number,
 | 
						|
                          "IN (SELECT)", "semijoin");
 | 
						|
      trace_transform.add("converted_to_semi_join", false)
 | 
						|
                     .add("cause", "subquery attached to the ON clause");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (in_subq->is_flattenable_semijoin) 
 | 
						|
    {
 | 
						|
      OPT_TRACE_TRANSFORM(thd, trace_wrapper, trace_transform,
 | 
						|
                          in_subq->get_select_lex()->select_number,
 | 
						|
                          "IN (SELECT)", "semijoin");
 | 
						|
      if (join->table_count + 
 | 
						|
          in_subq->unit->first_select()->join->table_count >= MAX_TABLES)
 | 
						|
      {
 | 
						|
        trace_transform.add("converted_to_semi_join", false);
 | 
						|
        trace_transform.add("cause",
 | 
						|
                            "table in parent join now exceeds MAX_TABLES");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (convert_subq_to_sj(join, in_subq))
 | 
						|
        goto restore_arena_and_fail;
 | 
						|
      trace_transform.add("converted_to_semi_join", true);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      if (join->table_count + 1 >= MAX_TABLES)
 | 
						|
        break;
 | 
						|
      if (convert_subq_to_jtbm(join, in_subq, &remove_item))
 | 
						|
        goto restore_arena_and_fail;
 | 
						|
    }
 | 
						|
    if (remove_item)
 | 
						|
    {
 | 
						|
      Item **tree= (in_subq->emb_on_expr_nest == NO_JOIN_NEST)?
 | 
						|
                     &join->conds : &(in_subq->emb_on_expr_nest->on_expr);
 | 
						|
      Item *replace_me= in_subq->original_item();
 | 
						|
      if (replace_where_subcondition(join, tree, replace_me,
 | 
						|
                                     new (thd->mem_root) Item_int(thd, 1),
 | 
						|
                                     FALSE))
 | 
						|
        goto restore_arena_and_fail;
 | 
						|
    }
 | 
						|
  }
 | 
						|
//skip_conversion:
 | 
						|
  /* 
 | 
						|
    3. Finalize (perform IN->EXISTS rewrite) the subqueries that we didn't
 | 
						|
    convert:
 | 
						|
  */
 | 
						|
  while (in_subq)
 | 
						|
  {
 | 
						|
    JOIN *child_join= in_subq->unit->first_select()->join;
 | 
						|
    in_subq->changed= 0;
 | 
						|
    in_subq->base_flags|= item_base_t::FIXED;
 | 
						|
 | 
						|
    SELECT_LEX *save_select_lex= thd->lex->current_select;
 | 
						|
    thd->lex->current_select= in_subq->unit->first_select();
 | 
						|
 | 
						|
    bool res= in_subq->select_transformer(child_join);
 | 
						|
 | 
						|
    thd->lex->current_select= save_select_lex;
 | 
						|
 | 
						|
    if (res)
 | 
						|
      DBUG_RETURN(TRUE);
 | 
						|
 | 
						|
    in_subq->changed= 1;
 | 
						|
    DBUG_ASSERT(in_subq->fixed());
 | 
						|
 | 
						|
    Item *substitute= in_subq->substitution;
 | 
						|
    bool do_fix_fields= !in_subq->substitution->fixed();
 | 
						|
    Item **tree= (in_subq->emb_on_expr_nest == NO_JOIN_NEST)?
 | 
						|
                   &join->conds : &(in_subq->emb_on_expr_nest->on_expr);
 | 
						|
    Item *replace_me= in_subq->original_item();
 | 
						|
    if (replace_where_subcondition(join, tree, replace_me, substitute, 
 | 
						|
                                   do_fix_fields))
 | 
						|
      DBUG_RETURN(TRUE);
 | 
						|
    in_subq->substitution= NULL;
 | 
						|
    /*
 | 
						|
      If this is a prepared statement, repeat the above operation for
 | 
						|
      prep_where (or prep_on_expr). Subquery-to-semijoin conversion is 
 | 
						|
      done once for prepared statement.
 | 
						|
    */
 | 
						|
    if (!thd->stmt_arena->is_conventional())
 | 
						|
    {
 | 
						|
      tree= (in_subq->emb_on_expr_nest == NO_JOIN_NEST)?
 | 
						|
             &join->select_lex->prep_where : 
 | 
						|
             &(in_subq->emb_on_expr_nest->prep_on_expr);
 | 
						|
      /* 
 | 
						|
        prep_on_expr/ prep_where may be NULL in some cases. 
 | 
						|
        If that is the case, do nothing - simplify_joins() will copy 
 | 
						|
        ON/WHERE expression into prep_on_expr/prep_where.
 | 
						|
      */
 | 
						|
      if (*tree && replace_where_subcondition(join, tree, replace_me, substitute, 
 | 
						|
                                     FALSE))
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
    }
 | 
						|
    /*
 | 
						|
      Revert to the IN->EXISTS strategy in the rare case when the subquery could
 | 
						|
      not be flattened.
 | 
						|
    */
 | 
						|
    in_subq->reset_strategy(SUBS_IN_TO_EXISTS);
 | 
						|
    if (is_materialization_applicable(thd, in_subq, 
 | 
						|
                                      in_subq->unit->first_select()))
 | 
						|
    {
 | 
						|
      in_subq->add_strategy(SUBS_MATERIALIZATION);
 | 
						|
    }
 | 
						|
 | 
						|
    in_subq= li++;
 | 
						|
  }
 | 
						|
 | 
						|
  if (arena)
 | 
						|
    thd->restore_active_arena(arena, &backup);
 | 
						|
  join->select_lex->sj_subselects.empty();
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
 | 
						|
restore_arena_and_fail:
 | 
						|
  if (arena)
 | 
						|
    thd->restore_active_arena(arena, &backup);
 | 
						|
  DBUG_RETURN(TRUE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Get #output_rows and scan_time estimates for a "delayed" table.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_delayed_table_estimates()
 | 
						|
      table         IN    Table to get estimates for
 | 
						|
      out_rows      OUT   E(#rows in the table)
 | 
						|
      scan_time     OUT   E(scan_time).
 | 
						|
      startup_cost  OUT   cost to populate the table.
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Get #output_rows and scan_time estimates for a "delayed" table. By
 | 
						|
    "delayed" here we mean that the table is filled at the start of query
 | 
						|
    execution. This means that the optimizer can't use table statistics to 
 | 
						|
    get #rows estimate for it, it has to call this function instead.
 | 
						|
 | 
						|
    This function is expected to make different actions depending on the nature
 | 
						|
    of the table. At the moment there is only one kind of delayed tables,
 | 
						|
    non-flattenable semi-joins.
 | 
						|
*/
 | 
						|
 | 
						|
void get_delayed_table_estimates(TABLE *table,
 | 
						|
                                 ha_rows *out_rows, 
 | 
						|
                                 double *scan_time,
 | 
						|
                                 double *startup_cost)
 | 
						|
{
 | 
						|
  Item_in_subselect *item= table->pos_in_table_list->jtbm_subselect;
 | 
						|
  Table_function_json_table *table_function=
 | 
						|
                               table->pos_in_table_list->table_function;
 | 
						|
 | 
						|
  if (table_function)
 | 
						|
  {
 | 
						|
    table_function->get_estimates(out_rows, scan_time, startup_cost);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  DBUG_ASSERT(item->engine->engine_type() ==
 | 
						|
              subselect_engine::HASH_SJ_ENGINE);
 | 
						|
 | 
						|
  subselect_hash_sj_engine *hash_sj_engine=
 | 
						|
    ((subselect_hash_sj_engine*)item->engine);
 | 
						|
 | 
						|
  *out_rows= (ha_rows)item->jtbm_record_count;
 | 
						|
  *startup_cost= item->jtbm_read_time;
 | 
						|
 | 
						|
  /* Calculate cost of scanning the temptable */
 | 
						|
  double data_size= COST_MULT(item->jtbm_record_count,
 | 
						|
                              hash_sj_engine->tmp_table->s->reclength);
 | 
						|
  /* Do like in handler::scan_time() */
 | 
						|
  *scan_time= ((data_size/table->file->stats.block_size+2) *
 | 
						|
               table->file->avg_io_cost());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
   @brief Replaces an expression destructively inside the expression tree of
 | 
						|
   the WHERE clase.
 | 
						|
 | 
						|
   @note We substitute AND/OR structure because it was copied by
 | 
						|
   copy_andor_structure and some changes could be done in the copy but
 | 
						|
   should be left permanent, also there could be several layers of AND over
 | 
						|
   AND and OR over OR because ::fix_field() possibly is not called.
 | 
						|
 | 
						|
   @param join The top-level query.
 | 
						|
   @param old_cond The expression to be replaced.
 | 
						|
   @param new_cond The expression to be substituted.
 | 
						|
   @param do_fix_fields If true, Item::fix_fields(THD*, Item**) is called for
 | 
						|
   the new expression.
 | 
						|
   @return <code>true</code> if there was an error, <code>false</code> if
 | 
						|
   successful.
 | 
						|
*/
 | 
						|
 | 
						|
static bool replace_where_subcondition(JOIN *join, Item **expr, 
 | 
						|
                                       Item *old_cond, Item *new_cond,
 | 
						|
                                       bool do_fix_fields)
 | 
						|
{
 | 
						|
  if (*expr == old_cond)
 | 
						|
  {
 | 
						|
    *expr= new_cond;
 | 
						|
    if (do_fix_fields)
 | 
						|
      new_cond->fix_fields(join->thd, expr);
 | 
						|
    return FALSE;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if ((*expr)->type() == Item::COND_ITEM) 
 | 
						|
  {
 | 
						|
    List_iterator<Item> li(*((Item_cond*)(*expr))->argument_list());
 | 
						|
    Item *item;
 | 
						|
    while ((item= li++))
 | 
						|
    {
 | 
						|
      if (item == old_cond)
 | 
						|
      {
 | 
						|
        li.replace(new_cond);
 | 
						|
        if (do_fix_fields)
 | 
						|
          new_cond->fix_fields(join->thd, li.ref());
 | 
						|
        return FALSE;
 | 
						|
      }
 | 
						|
      else if (item->type() == Item::COND_ITEM)
 | 
						|
      {
 | 
						|
        replace_where_subcondition(join, li.ref(),
 | 
						|
                                   old_cond, new_cond,
 | 
						|
                                   do_fix_fields);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  /* 
 | 
						|
    We can come to here when 
 | 
						|
     - we're doing replace operations on both on_expr and prep_on_expr
 | 
						|
     - on_expr is the same as prep_on_expr, or they share a sub-tree 
 | 
						|
       (so, when we do replace in on_expr, we replace in prep_on_expr, too,
 | 
						|
        and when we try doing a replace in prep_on_expr, the item we wanted 
 | 
						|
        to replace there has already been replaced)
 | 
						|
  */
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
static int subq_sj_candidate_cmp(Item_in_subselect* el1, Item_in_subselect* el2,
 | 
						|
                                 void *arg)
 | 
						|
{
 | 
						|
  return (el1->sj_convert_priority > el2->sj_convert_priority) ? -1 : 
 | 
						|
         ( (el1->sj_convert_priority == el2->sj_convert_priority)? 0 : 1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
    @brief
 | 
						|
    reset the value of the field in_eqaulity_no for all Item_func_eq
 | 
						|
    items in the where clause of the subquery.
 | 
						|
 | 
						|
    Look for in_equality_no description in Item_func_eq class
 | 
						|
 | 
						|
    DESCRIPTION
 | 
						|
    Lets have an example:
 | 
						|
    SELECT t1.a FROM t1 WHERE t1.a IN
 | 
						|
      (SELECT t2.a FROM t2 where t2.b IN
 | 
						|
          (select t3.b from t3 where t3.c=27 ))
 | 
						|
 | 
						|
    So for such a query we have the parent, child and
 | 
						|
    grandchild select.
 | 
						|
 | 
						|
    So for the equality t2.b = t3.b we set the value for in_equality_no to
 | 
						|
    0 according to its description. Wewe do the same for t1.a = t2.a.
 | 
						|
    But when we look at the child select (with the grandchild select merged),
 | 
						|
    the query would be
 | 
						|
 | 
						|
    SELECT t1.a FROM t1 WHERE t1.a IN
 | 
						|
      (SELECT t2.a FROM t2 where t2.b = t3.b and t3.c=27)
 | 
						|
 | 
						|
    and then when the child select is merged into the parent select the query
 | 
						|
    would look like
 | 
						|
 | 
						|
    SELECT t1.a FROM t1, semi-join-nest(t2,t3)
 | 
						|
            WHERE t1.a =t2.a and t2.b = t3.b and t3.c=27
 | 
						|
 | 
						|
    Still we would have in_equality_no set for t2.b = t3.b
 | 
						|
    though it does not take part in the semi-join equality for the parent select,
 | 
						|
    so we should reset its value to UINT_MAX.
 | 
						|
 | 
						|
    @param cond WHERE clause of the subquery
 | 
						|
*/
 | 
						|
 | 
						|
static void reset_equality_number_for_subq_conds(Item * cond)
 | 
						|
{
 | 
						|
  if (!cond)
 | 
						|
    return;
 | 
						|
  if (cond->type() == Item::COND_ITEM)
 | 
						|
  {
 | 
						|
    List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
 | 
						|
    Item *item;
 | 
						|
    while ((item=li++))
 | 
						|
    {
 | 
						|
      if (item->type() == Item::FUNC_ITEM &&
 | 
						|
      ((Item_func*)item)->functype()== Item_func::EQ_FUNC)
 | 
						|
        ((Item_func_eq*)item)->in_equality_no= UINT_MAX;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    if (cond->type() == Item::FUNC_ITEM &&
 | 
						|
      ((Item_func*)cond)->functype()== Item_func::EQ_FUNC)
 | 
						|
        ((Item_func_eq*)cond)->in_equality_no= UINT_MAX;
 | 
						|
  }
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  Convert a subquery predicate into a TABLE_LIST semi-join nest
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    convert_subq_to_sj()
 | 
						|
       parent_join  Parent join, the one that has subq_pred in its WHERE/ON 
 | 
						|
                    clause
 | 
						|
       subq_pred    Subquery predicate to be converted
 | 
						|
  
 | 
						|
  DESCRIPTION
 | 
						|
    Convert a subquery predicate into a TABLE_LIST semi-join nest. All the 
 | 
						|
    prerequisites are already checked, so the conversion is always successfull.
 | 
						|
 | 
						|
    Prepared Statements: the transformation is permanent:
 | 
						|
     - Changes in TABLE_LIST structures are naturally permanent
 | 
						|
     - Item tree changes are performed on statement MEM_ROOT:
 | 
						|
        = we activate statement MEM_ROOT 
 | 
						|
        = this function is called before the first fix_prepare_information
 | 
						|
          call.
 | 
						|
 | 
						|
    This is intended because the criteria for subquery-to-sj conversion remain
 | 
						|
    constant for the lifetime of the Prepared Statement.
 | 
						|
 | 
						|
  RETURN
 | 
						|
    FALSE  OK
 | 
						|
    TRUE   Out of memory error
 | 
						|
*/
 | 
						|
 | 
						|
static bool convert_subq_to_sj(JOIN *parent_join, Item_in_subselect *subq_pred)
 | 
						|
{
 | 
						|
  SELECT_LEX *parent_lex= parent_join->select_lex;
 | 
						|
  TABLE_LIST *emb_tbl_nest= NULL;
 | 
						|
  TABLE_LIST *orig_tl;
 | 
						|
  List<TABLE_LIST> *emb_join_list= &parent_lex->top_join_list;
 | 
						|
  THD *thd= parent_join->thd;
 | 
						|
  SELECT_LEX *save_lex;
 | 
						|
  Item **left;
 | 
						|
  Item *left_exp;
 | 
						|
  Item *left_exp_orig;
 | 
						|
 | 
						|
  uint ncols;
 | 
						|
  DBUG_ENTER("convert_subq_to_sj");
 | 
						|
 | 
						|
  /*
 | 
						|
    1. Find out where to put the predicate into.
 | 
						|
     Note: for "t1 LEFT JOIN t2" this will be t2, a leaf.
 | 
						|
  */
 | 
						|
  if ((void*)subq_pred->emb_on_expr_nest != (void*)NO_JOIN_NEST)
 | 
						|
  {
 | 
						|
    if (subq_pred->emb_on_expr_nest->nested_join)
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        We're dealing with
 | 
						|
 | 
						|
          ... [LEFT] JOIN  ( ... ) ON (subquery AND whatever) ...
 | 
						|
 | 
						|
        The sj-nest will be inserted into the brackets nest.
 | 
						|
      */
 | 
						|
      emb_tbl_nest=  subq_pred->emb_on_expr_nest;
 | 
						|
      emb_join_list= &emb_tbl_nest->nested_join->join_list;
 | 
						|
    }
 | 
						|
    else if (!subq_pred->emb_on_expr_nest->outer_join)
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        We're dealing with
 | 
						|
 | 
						|
          ... INNER JOIN tblX ON (subquery AND whatever) ...
 | 
						|
 | 
						|
        The sj-nest will be tblX's "sibling", i.e. another child of its
 | 
						|
        parent. This is ok because tblX is joined as an inner join.
 | 
						|
      */
 | 
						|
      emb_tbl_nest= subq_pred->emb_on_expr_nest->embedding;
 | 
						|
      if (emb_tbl_nest)
 | 
						|
        emb_join_list= &emb_tbl_nest->nested_join->join_list;
 | 
						|
    }
 | 
						|
    else if (!subq_pred->emb_on_expr_nest->nested_join)
 | 
						|
    {
 | 
						|
      TABLE_LIST *outer_tbl= subq_pred->emb_on_expr_nest;
 | 
						|
      TABLE_LIST *wrap_nest;
 | 
						|
      LEX_CSTRING sj_wrap_name= { STRING_WITH_LEN("(sj-wrap)") };
 | 
						|
      /*
 | 
						|
        We're dealing with
 | 
						|
 | 
						|
          ... LEFT JOIN tbl ON (on_expr AND subq_pred) ...
 | 
						|
 | 
						|
        we'll need to convert it into:
 | 
						|
 | 
						|
          ... LEFT JOIN ( tbl SJ (subq_tables) ) ON (on_expr AND subq_pred) ...
 | 
						|
                        |                      |
 | 
						|
                        |<----- wrap_nest ---->|
 | 
						|
        
 | 
						|
        Q:  other subqueries may be pointing to this element. What to do?
 | 
						|
        A1: simple solution: copy *subq_pred->expr_join_nest= *parent_nest.
 | 
						|
            But we'll need to fix other pointers.
 | 
						|
        A2: Another way: have TABLE_LIST::next_ptr so the following
 | 
						|
            subqueries know the table has been nested.
 | 
						|
        A3: changes in the TABLE_LIST::outer_join will make everything work
 | 
						|
            automatically.
 | 
						|
      */
 | 
						|
      if (!(wrap_nest= alloc_join_nest(thd)))
 | 
						|
      {
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      wrap_nest->embedding= outer_tbl->embedding;
 | 
						|
      wrap_nest->join_list= outer_tbl->join_list;
 | 
						|
      wrap_nest->alias= sj_wrap_name;
 | 
						|
 | 
						|
      wrap_nest->nested_join->join_list.empty();
 | 
						|
      wrap_nest->nested_join->join_list.push_back(outer_tbl, thd->mem_root);
 | 
						|
 | 
						|
      outer_tbl->embedding= wrap_nest;
 | 
						|
      outer_tbl->join_list= &wrap_nest->nested_join->join_list;
 | 
						|
 | 
						|
      /*
 | 
						|
        wrap_nest will take place of outer_tbl, so move the outer join flag
 | 
						|
        and on_expr
 | 
						|
      */
 | 
						|
      wrap_nest->outer_join= outer_tbl->outer_join;
 | 
						|
      outer_tbl->outer_join= 0;
 | 
						|
 | 
						|
      wrap_nest->on_expr= outer_tbl->on_expr;
 | 
						|
      outer_tbl->on_expr= NULL;
 | 
						|
 | 
						|
      List_iterator<TABLE_LIST> li(*wrap_nest->join_list);
 | 
						|
      TABLE_LIST *tbl;
 | 
						|
      while ((tbl= li++))
 | 
						|
      {
 | 
						|
        if (tbl == outer_tbl)
 | 
						|
        {
 | 
						|
          li.replace(wrap_nest);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      /*
 | 
						|
        Ok now wrap_nest 'contains' outer_tbl and we're ready to add the 
 | 
						|
        semi-join nest into it
 | 
						|
      */
 | 
						|
      emb_join_list= &wrap_nest->nested_join->join_list;
 | 
						|
      emb_tbl_nest=  wrap_nest;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  TABLE_LIST *sj_nest;
 | 
						|
  NESTED_JOIN *nested_join;
 | 
						|
  LEX_CSTRING sj_nest_name= { STRING_WITH_LEN("(sj-nest)") };
 | 
						|
  if (!(sj_nest= alloc_join_nest(thd)))
 | 
						|
  {
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
  }
 | 
						|
  nested_join= sj_nest->nested_join;
 | 
						|
 | 
						|
  sj_nest->join_list= emb_join_list;
 | 
						|
  sj_nest->embedding= emb_tbl_nest;
 | 
						|
  sj_nest->alias= sj_nest_name;
 | 
						|
  sj_nest->sj_subq_pred= subq_pred;
 | 
						|
  sj_nest->original_subq_pred_used_tables= subq_pred->used_tables() |
 | 
						|
                                           subq_pred->left_exp()->used_tables();
 | 
						|
  /* Nests do not participate in those 'chains', so: */
 | 
						|
  /* sj_nest->next_leaf= sj_nest->next_local= sj_nest->next_global == NULL*/
 | 
						|
  emb_join_list->push_back(sj_nest, thd->mem_root);
 | 
						|
 | 
						|
  /* 
 | 
						|
    nested_join->used_tables and nested_join->not_null_tables are
 | 
						|
    initialized in simplify_joins().
 | 
						|
  */
 | 
						|
  
 | 
						|
  /* 
 | 
						|
    2. Walk through subquery's top list and set 'embedding' to point to the
 | 
						|
       sj-nest.
 | 
						|
  */
 | 
						|
  st_select_lex *subq_lex= subq_pred->unit->first_select();
 | 
						|
  DBUG_ASSERT(subq_lex->next_select() == NULL);
 | 
						|
  nested_join->join_list.empty();
 | 
						|
  List_iterator_fast<TABLE_LIST> li(subq_lex->top_join_list);
 | 
						|
  TABLE_LIST *tl;
 | 
						|
  while ((tl= li++))
 | 
						|
  {
 | 
						|
    tl->embedding= sj_nest;
 | 
						|
    tl->join_list= &nested_join->join_list;
 | 
						|
    nested_join->join_list.push_back(tl, thd->mem_root);
 | 
						|
  }
 | 
						|
  
 | 
						|
  /*
 | 
						|
    Reconnect the next_leaf chain.
 | 
						|
    TODO: Do we have to put subquery's tables at the end of the chain?
 | 
						|
          Inserting them at the beginning would be a bit faster.
 | 
						|
    NOTE: We actually insert them at the front! That's because the order is
 | 
						|
          reversed in this list.
 | 
						|
  */
 | 
						|
  parent_lex->leaf_tables.append(&subq_lex->leaf_tables);
 | 
						|
 | 
						|
  if (subq_lex->options & OPTION_SCHEMA_TABLE)
 | 
						|
    parent_lex->options |= OPTION_SCHEMA_TABLE;
 | 
						|
 | 
						|
  /*
 | 
						|
    Same as above for next_local chain
 | 
						|
    (a theory: a next_local chain always starts with ::leaf_tables
 | 
						|
     because view's tables are inserted after the view)
 | 
						|
  */
 | 
						|
  
 | 
						|
  for (orig_tl= (TABLE_LIST*)(parent_lex->table_list.first);
 | 
						|
       orig_tl->next_local;
 | 
						|
       orig_tl= orig_tl->next_local)
 | 
						|
  {}
 | 
						|
 | 
						|
  orig_tl->next_local= subq_lex->join->tables_list;
 | 
						|
 | 
						|
  /* A theory: no need to re-connect the next_global chain */
 | 
						|
 | 
						|
  /* 3. Remove the original subquery predicate from the WHERE/ON */
 | 
						|
 | 
						|
  /*TODO: also reset the 'm_with_subquery' there. */
 | 
						|
 | 
						|
  /* n. Adjust the parent_join->table_count counter */
 | 
						|
  uint table_no= parent_join->table_count;
 | 
						|
  /* n. Walk through child's tables and adjust table->map */
 | 
						|
  List_iterator_fast<TABLE_LIST> si(subq_lex->leaf_tables);
 | 
						|
  while ((tl= si++))
 | 
						|
  {
 | 
						|
    tl->set_tablenr(table_no);
 | 
						|
    if (tl->is_jtbm())
 | 
						|
    {
 | 
						|
      tl->jtbm_table_no= table_no;
 | 
						|
      Item *dummy= tl->jtbm_subselect;
 | 
						|
      tl->jtbm_subselect->fix_after_pullout(parent_lex, &dummy, true);
 | 
						|
      DBUG_ASSERT(dummy == tl->jtbm_subselect);
 | 
						|
    }
 | 
						|
    else if (tl->table_function)
 | 
						|
    {
 | 
						|
      tl->table_function->fix_after_pullout(tl, parent_lex, true);
 | 
						|
    }
 | 
						|
    SELECT_LEX *old_sl= tl->select_lex;
 | 
						|
    tl->select_lex= parent_join->select_lex; 
 | 
						|
    for (TABLE_LIST *emb= tl->embedding;
 | 
						|
         emb && emb->select_lex == old_sl;
 | 
						|
         emb= emb->embedding)
 | 
						|
      emb->select_lex= parent_join->select_lex;
 | 
						|
    table_no++;
 | 
						|
  }
 | 
						|
  parent_join->table_count += subq_lex->join->table_count;
 | 
						|
  //parent_join->table_count += subq_lex->leaf_tables.elements;
 | 
						|
 | 
						|
  /* 
 | 
						|
    Put the subquery's WHERE into semi-join's sj_on_expr
 | 
						|
    Add the subquery-induced equalities too.
 | 
						|
  */
 | 
						|
  save_lex= thd->lex->current_select;
 | 
						|
  table_map subq_pred_used_tables;
 | 
						|
 | 
						|
  thd->lex->current_select=subq_lex;
 | 
						|
  left= subq_pred->left_exp_ptr();
 | 
						|
  if ((*left)->fix_fields_if_needed(thd, left))
 | 
						|
    goto restore_tl_and_exit;
 | 
						|
  left_exp= *left;
 | 
						|
  left_exp_orig= subq_pred->left_exp_orig();
 | 
						|
  thd->lex->current_select=save_lex;
 | 
						|
 | 
						|
  subq_pred_used_tables= subq_pred->used_tables();
 | 
						|
  sj_nest->nested_join->sj_corr_tables= subq_pred_used_tables;
 | 
						|
  sj_nest->nested_join->sj_depends_on=  subq_pred_used_tables |
 | 
						|
                                        left_exp->used_tables();
 | 
						|
  sj_nest->sj_on_expr= subq_lex->join->conds;
 | 
						|
 | 
						|
  /*
 | 
						|
    Create the IN-equalities and inject them into semi-join's ON expression.
 | 
						|
    Additionally, for LooseScan strategy
 | 
						|
     - Record the number of IN-equalities.
 | 
						|
     - Create list of pointers to (oe1, ..., ieN). We'll need the list to
 | 
						|
       see which of the expressions are bound and which are not (for those
 | 
						|
       we'll produce a distinct stream of (ie_i1,...ie_ik).
 | 
						|
 | 
						|
       (TODO: can we just create a list of pointers and hope the expressions
 | 
						|
       will not substitute themselves on fix_fields()? or we need to wrap
 | 
						|
       them into Item_direct_view_refs and store pointers to those. The
 | 
						|
       pointers to Item_direct_view_refs are guaranteed to be stable as 
 | 
						|
       Item_direct_view_refs doesn't substitute itself with anything in 
 | 
						|
       Item_direct_view_ref::fix_fields.
 | 
						|
  */
 | 
						|
  ncols= sj_nest->sj_in_exprs= left_exp->cols();
 | 
						|
  sj_nest->nested_join->sj_outer_expr_list.empty();
 | 
						|
  reset_equality_number_for_subq_conds(sj_nest->sj_on_expr);
 | 
						|
 | 
						|
  if (ncols == 1)
 | 
						|
  {
 | 
						|
    /* add left = select_list_element */
 | 
						|
    nested_join->sj_outer_expr_list.push_back(left,
 | 
						|
                                              thd->mem_root);
 | 
						|
    /*
 | 
						|
      Create Item_func_eq. Note that
 | 
						|
      1. this is done on the statement, not execution, arena
 | 
						|
      2. if it's a PS then this happens only once - on the first execution.
 | 
						|
         On following re-executions, the item will be fix_field-ed normally.
 | 
						|
      3. Thus it should be created as if it was fix_field'ed, in particular
 | 
						|
         all pointers to items in the execution arena should be protected
 | 
						|
         with thd->change_item_tree
 | 
						|
    */
 | 
						|
    Item_func_eq *item_eq=
 | 
						|
      new (thd->mem_root) Item_func_eq(thd, left_exp_orig,
 | 
						|
                                       subq_lex->ref_pointer_array[0]);
 | 
						|
    if (!item_eq)
 | 
						|
      goto restore_tl_and_exit;
 | 
						|
    if (left_exp_orig != left_exp)
 | 
						|
      thd->change_item_tree(item_eq->arguments(), left_exp);
 | 
						|
    item_eq->in_equality_no= 0;
 | 
						|
    sj_nest->sj_on_expr= and_items(thd, sj_nest->sj_on_expr, item_eq);
 | 
						|
  }
 | 
						|
  else if (left_exp->type() == Item::ROW_ITEM)
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      disassemple left expression and add
 | 
						|
      left1 = select_list_element1 and left2 = select_list_element2 ...
 | 
						|
    */
 | 
						|
    for (uint i= 0; i < ncols; i++)
 | 
						|
    {
 | 
						|
      nested_join->sj_outer_expr_list.push_back(left_exp->addr(i),
 | 
						|
                                                thd->mem_root);
 | 
						|
      Item_func_eq *item_eq=
 | 
						|
        new (thd->mem_root)
 | 
						|
        Item_func_eq(thd, left_exp_orig->element_index(i),
 | 
						|
                     subq_lex->ref_pointer_array[i]);
 | 
						|
      if (!item_eq)
 | 
						|
        goto restore_tl_and_exit;
 | 
						|
      DBUG_ASSERT(left_exp->element_index(i)->fixed());
 | 
						|
      if (left_exp_orig->element_index(i) !=
 | 
						|
          left_exp->element_index(i))
 | 
						|
        thd->change_item_tree(item_eq->arguments(),
 | 
						|
                              left_exp->element_index(i));
 | 
						|
      item_eq->in_equality_no= i;
 | 
						|
      sj_nest->sj_on_expr= and_items(thd, sj_nest->sj_on_expr, item_eq);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      add row operation
 | 
						|
      left = (select_list_element1, select_list_element2, ...)
 | 
						|
    */
 | 
						|
    Item_row *row= new (thd->mem_root) Item_row(thd, subq_lex->pre_fix);
 | 
						|
    /* fix fields on subquery was call so they should be the same */
 | 
						|
    if (!row)
 | 
						|
      goto restore_tl_and_exit;
 | 
						|
    DBUG_ASSERT(ncols == row->cols());
 | 
						|
    nested_join->sj_outer_expr_list.push_back(left);
 | 
						|
    Item_func_eq *item_eq=
 | 
						|
      new (thd->mem_root) Item_func_eq(thd, left_exp_orig, row);
 | 
						|
    if (!item_eq)
 | 
						|
      goto restore_tl_and_exit;
 | 
						|
    for (uint i= 0; i < row->cols(); i++)
 | 
						|
    {
 | 
						|
      if (row->element_index(i) != subq_lex->ref_pointer_array[i])
 | 
						|
        thd->change_item_tree(row->addr(i), subq_lex->ref_pointer_array[i]);
 | 
						|
    }
 | 
						|
    item_eq->in_equality_no= 0;
 | 
						|
    sj_nest->sj_on_expr= and_items(thd, sj_nest->sj_on_expr, item_eq);
 | 
						|
  }
 | 
						|
  /*
 | 
						|
    Fix the created equality and AND
 | 
						|
 | 
						|
    Note that fix_fields() can actually fail in a meaningful way here. One
 | 
						|
    example is when the IN-equality is not valid, because it compares columns
 | 
						|
    with incompatible collations. (One can argue it would be more appropriate
 | 
						|
    to check for this at name resolution stage, but as a legacy of IN->EXISTS
 | 
						|
    we have in here).
 | 
						|
  */
 | 
						|
  if (sj_nest->sj_on_expr->fix_fields_if_needed(thd, &sj_nest->sj_on_expr))
 | 
						|
    goto restore_tl_and_exit;
 | 
						|
 | 
						|
  /*
 | 
						|
    Walk through sj nest's WHERE and ON expressions and call
 | 
						|
    item->fix_table_changes() for all items.
 | 
						|
  */
 | 
						|
  sj_nest->sj_on_expr->fix_after_pullout(parent_lex, &sj_nest->sj_on_expr,
 | 
						|
                                         TRUE);
 | 
						|
  fix_list_after_tbl_changes(parent_lex, &sj_nest->nested_join->join_list);
 | 
						|
 | 
						|
 | 
						|
  /* Unlink the child select_lex so it doesn't show up in EXPLAIN: */
 | 
						|
  subq_lex->master_unit()->exclude_level();
 | 
						|
 | 
						|
  DBUG_EXECUTE("where",
 | 
						|
               print_where(sj_nest->sj_on_expr,"SJ-EXPR", QT_ORDINARY););
 | 
						|
 | 
						|
  /* Inject sj_on_expr into the parent's WHERE or ON */
 | 
						|
  if (emb_tbl_nest)
 | 
						|
  {
 | 
						|
    emb_tbl_nest->on_expr= and_items(thd, emb_tbl_nest->on_expr,
 | 
						|
                                     sj_nest->sj_on_expr);
 | 
						|
    emb_tbl_nest->on_expr->top_level_item();
 | 
						|
    if (emb_tbl_nest->on_expr->fix_fields_if_needed(thd,
 | 
						|
                                                    &emb_tbl_nest->on_expr))
 | 
						|
      goto restore_tl_and_exit;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    /* Inject into the WHERE */
 | 
						|
    parent_join->conds= and_items(thd, parent_join->conds, sj_nest->sj_on_expr);
 | 
						|
    parent_join->conds->top_level_item();
 | 
						|
    /*
 | 
						|
      fix_fields must update the properties (e.g. st_select_lex::cond_count of
 | 
						|
      the correct select_lex.
 | 
						|
    */
 | 
						|
    save_lex= thd->lex->current_select;
 | 
						|
    thd->lex->current_select=parent_join->select_lex;
 | 
						|
    if (parent_join->conds->fix_fields_if_needed(thd, &parent_join->conds))
 | 
						|
      goto restore_tl_and_exit;
 | 
						|
 | 
						|
    thd->lex->current_select=save_lex;
 | 
						|
    parent_join->select_lex->where= parent_join->conds;
 | 
						|
  }
 | 
						|
 | 
						|
  if (subq_lex->ftfunc_list->elements)
 | 
						|
  {
 | 
						|
    Item_func_match *ifm;
 | 
						|
    List_iterator_fast<Item_func_match> li(*(subq_lex->ftfunc_list));
 | 
						|
    while ((ifm= li++))
 | 
						|
      parent_lex->ftfunc_list->push_front(ifm, thd->mem_root);
 | 
						|
  }
 | 
						|
 | 
						|
  // The subqueries were replaced for Item_int(1) earlier
 | 
						|
  subq_pred->reset_strategy(SUBS_SEMI_JOIN);       // for subsequent executions
 | 
						|
 | 
						|
  parent_lex->have_merged_subqueries= TRUE;
 | 
						|
  /* Fatal error may have been set to by fix_after_pullout() */
 | 
						|
  DBUG_RETURN(thd->is_fatal_error);
 | 
						|
 | 
						|
restore_tl_and_exit:
 | 
						|
  orig_tl->next_local= NULL;
 | 
						|
  DBUG_RETURN(TRUE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
const int SUBQERY_TEMPTABLE_NAME_MAX_LEN= 20;
 | 
						|
 | 
						|
static void create_subquery_temptable_name(LEX_STRING *str, uint number)
 | 
						|
{
 | 
						|
  char *to= str->str;
 | 
						|
  DBUG_ASSERT(number < 10000);       
 | 
						|
  to= strmov(to, "<subquery");
 | 
						|
  to= int10_to_str((int) number, to, 10);
 | 
						|
  to[0]= '>';
 | 
						|
  to[1]= 0;
 | 
						|
  str->length= (size_t) (to - str->str)+1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Convert subquery predicate into non-mergeable semi-join nest.
 | 
						|
 | 
						|
  TODO: 
 | 
						|
    why does this do IN-EXISTS conversion? Can't we unify it with mergeable
 | 
						|
    semi-joins? currently, convert_subq_to_sj() cannot fail to convert (unless
 | 
						|
    fatal errors)
 | 
						|
 | 
						|
    
 | 
						|
  RETURN 
 | 
						|
    FALSE - Ok
 | 
						|
    TRUE  - Fatal error
 | 
						|
*/
 | 
						|
 | 
						|
static bool convert_subq_to_jtbm(JOIN *parent_join, 
 | 
						|
                                 Item_in_subselect *subq_pred, 
 | 
						|
                                 bool *remove_item)
 | 
						|
{
 | 
						|
  SELECT_LEX *parent_lex= parent_join->select_lex;
 | 
						|
  List<TABLE_LIST> *emb_join_list= &parent_lex->top_join_list;
 | 
						|
  TABLE_LIST *emb_tbl_nest= NULL; // will change when we learn to handle outer joins
 | 
						|
  TABLE_LIST *tl;
 | 
						|
  bool optimization_delayed= TRUE;
 | 
						|
  TABLE_LIST *jtbm;
 | 
						|
  LEX_STRING tbl_alias;
 | 
						|
  THD *thd= parent_join->thd;
 | 
						|
  DBUG_ENTER("convert_subq_to_jtbm");
 | 
						|
 | 
						|
  subq_pred->set_strategy(SUBS_MATERIALIZATION);
 | 
						|
  subq_pred->is_jtbm_merged= TRUE;
 | 
						|
 | 
						|
  *remove_item= TRUE;
 | 
						|
 | 
						|
  if (!(tbl_alias.str= (char*)thd->calloc(SUBQERY_TEMPTABLE_NAME_MAX_LEN)) ||
 | 
						|
      !(jtbm= alloc_join_nest(thd))) //todo: this is not a join nest!
 | 
						|
  {
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
  }
 | 
						|
 | 
						|
  jtbm->join_list= emb_join_list;
 | 
						|
  jtbm->embedding= emb_tbl_nest;
 | 
						|
  jtbm->jtbm_subselect= subq_pred;
 | 
						|
  jtbm->nested_join= NULL;
 | 
						|
 | 
						|
  /* Nests do not participate in those 'chains', so: */
 | 
						|
  /* jtbm->next_leaf= jtbm->next_local= jtbm->next_global == NULL*/
 | 
						|
  emb_join_list->push_back(jtbm, thd->mem_root);
 | 
						|
  
 | 
						|
  /* 
 | 
						|
    Inject the jtbm table into TABLE_LIST::next_leaf list, so that 
 | 
						|
    make_join_statistics() and co. can find it.
 | 
						|
  */
 | 
						|
  parent_lex->leaf_tables.push_back(jtbm, thd->mem_root);
 | 
						|
 | 
						|
  if (subq_pred->unit->first_select()->options & OPTION_SCHEMA_TABLE)
 | 
						|
    parent_lex->options |= OPTION_SCHEMA_TABLE;
 | 
						|
 | 
						|
  /*
 | 
						|
    Same as above for TABLE_LIST::next_local chain
 | 
						|
    (a theory: a next_local chain always starts with ::leaf_tables
 | 
						|
     because view's tables are inserted after the view)
 | 
						|
  */
 | 
						|
  for (tl= (TABLE_LIST*)(parent_lex->table_list.first); tl->next_local; tl= tl->next_local)
 | 
						|
  {}
 | 
						|
  tl->next_local= jtbm;
 | 
						|
 | 
						|
  /* A theory: no need to re-connect the next_global chain */
 | 
						|
  if (optimization_delayed)
 | 
						|
  {
 | 
						|
    DBUG_ASSERT(parent_join->table_count < MAX_TABLES);
 | 
						|
 | 
						|
    jtbm->jtbm_table_no= parent_join->table_count;
 | 
						|
 | 
						|
    create_subquery_temptable_name(&tbl_alias,
 | 
						|
                                   subq_pred->unit->first_select()->select_number);
 | 
						|
    jtbm->alias.str=    tbl_alias.str;
 | 
						|
    jtbm->alias.length= tbl_alias.length;
 | 
						|
    parent_join->table_count++;
 | 
						|
    DBUG_RETURN(thd->is_fatal_error);
 | 
						|
  }
 | 
						|
  subselect_hash_sj_engine *hash_sj_engine=
 | 
						|
    ((subselect_hash_sj_engine*)subq_pred->engine);
 | 
						|
  jtbm->table= hash_sj_engine->tmp_table;
 | 
						|
 | 
						|
  jtbm->table->tablenr= parent_join->table_count;
 | 
						|
  jtbm->table->map= table_map(1) << (parent_join->table_count);
 | 
						|
  jtbm->jtbm_table_no= jtbm->table->tablenr;
 | 
						|
 | 
						|
  parent_join->table_count++;
 | 
						|
  DBUG_ASSERT(parent_join->table_count < MAX_TABLES);
 | 
						|
 | 
						|
  Item *conds= hash_sj_engine->semi_join_conds;
 | 
						|
  conds->fix_after_pullout(parent_lex, &conds, TRUE);
 | 
						|
 | 
						|
  DBUG_EXECUTE("where", print_where(conds,"SJ-EXPR", QT_ORDINARY););
 | 
						|
  
 | 
						|
  create_subquery_temptable_name(&tbl_alias, hash_sj_engine->materialize_join->
 | 
						|
                                              select_lex->select_number);
 | 
						|
  jtbm->alias.str=    tbl_alias.str;
 | 
						|
  jtbm->alias.length= tbl_alias.length;
 | 
						|
 | 
						|
  parent_lex->have_merged_subqueries= TRUE;
 | 
						|
 | 
						|
  /* Don't unlink the child subselect, as the subquery will be used. */
 | 
						|
 | 
						|
  DBUG_RETURN(thd->is_fatal_error);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static TABLE_LIST *alloc_join_nest(THD *thd)
 | 
						|
{
 | 
						|
  TABLE_LIST *tbl;
 | 
						|
  if (!(tbl= (TABLE_LIST*) thd->calloc(ALIGN_SIZE(sizeof(TABLE_LIST))+
 | 
						|
                                       sizeof(NESTED_JOIN))))
 | 
						|
    return NULL;
 | 
						|
  tbl->nested_join= (NESTED_JOIN*) ((uchar*)tbl + 
 | 
						|
                                    ALIGN_SIZE(sizeof(TABLE_LIST)));
 | 
						|
  return tbl;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  @Note  thd->is_fatal_error can be set in case of OOM
 | 
						|
*/
 | 
						|
 | 
						|
void fix_list_after_tbl_changes(SELECT_LEX *new_parent, List<TABLE_LIST> *tlist)
 | 
						|
{
 | 
						|
  List_iterator<TABLE_LIST> it(*tlist);
 | 
						|
  TABLE_LIST *table;
 | 
						|
  while ((table= it++))
 | 
						|
  {
 | 
						|
    if (table->on_expr)
 | 
						|
      table->on_expr->fix_after_pullout(new_parent, &table->on_expr, TRUE);
 | 
						|
    if (table->nested_join)
 | 
						|
      fix_list_after_tbl_changes(new_parent, &table->nested_join->join_list);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void set_emb_join_nest(List<TABLE_LIST> *tables, TABLE_LIST *emb_sj_nest)
 | 
						|
{
 | 
						|
  List_iterator<TABLE_LIST> it(*tables);
 | 
						|
  TABLE_LIST *tbl;
 | 
						|
  while ((tbl= it++))
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      Note: check for nested_join first. 
 | 
						|
       derived-merged tables have tbl->table!=NULL &&
 | 
						|
       tbl->table->reginfo==NULL.
 | 
						|
    */
 | 
						|
    if (tbl->nested_join)
 | 
						|
      set_emb_join_nest(&tbl->nested_join->join_list, emb_sj_nest);
 | 
						|
    else if (tbl->table)
 | 
						|
      tbl->table->reginfo.join_tab->emb_sj_nest= emb_sj_nest;
 | 
						|
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  Pull tables out of semi-join nests, if possible
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    pull_out_semijoin_tables()
 | 
						|
      join  The join where to do the semi-join flattening
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Try to pull tables out of semi-join nests.
 | 
						|
     
 | 
						|
    PRECONDITIONS
 | 
						|
    When this function is called, the join may have several semi-join nests
 | 
						|
    but it is guaranteed that one semi-join nest does not contain another.
 | 
						|
   
 | 
						|
    ACTION
 | 
						|
    A table can be pulled out of the semi-join nest if
 | 
						|
     - It is a constant table, or
 | 
						|
     - It is accessed via eq_ref(outer_tables)
 | 
						|
 | 
						|
    POSTCONDITIONS
 | 
						|
     * Tables that were pulled out have JOIN_TAB::emb_sj_nest == NULL
 | 
						|
     * Tables that were not pulled out have JOIN_TAB::emb_sj_nest pointing 
 | 
						|
       to semi-join nest they are in.
 | 
						|
     * Semi-join nests' TABLE_LIST::sj_inner_tables is updated accordingly
 | 
						|
 | 
						|
    This operation is (and should be) performed at each PS execution since
 | 
						|
    tables may become/cease to be constant across PS reexecutions.
 | 
						|
    
 | 
						|
  NOTE
 | 
						|
    Table pullout may make uncorrelated subquery correlated. Consider this
 | 
						|
    example:
 | 
						|
    
 | 
						|
     ... WHERE oe IN (SELECT it1.primary_key WHERE p(it1, it2) ... ) 
 | 
						|
    
 | 
						|
    here table it1 can be pulled out (we have it1.primary_key=oe which gives
 | 
						|
    us functional dependency). Once it1 is pulled out, all references to it1
 | 
						|
    from p(it1, it2) become references to outside of the subquery and thus
 | 
						|
    make the subquery (i.e. its semi-join nest) correlated.
 | 
						|
    Making the subquery (i.e. its semi-join nest) correlated prevents us from
 | 
						|
    using Materialization or LooseScan to execute it. 
 | 
						|
 | 
						|
  RETURN 
 | 
						|
    0 - OK
 | 
						|
    1 - Out of memory error
 | 
						|
*/
 | 
						|
 | 
						|
int pull_out_semijoin_tables(JOIN *join)
 | 
						|
{
 | 
						|
  TABLE_LIST *sj_nest;
 | 
						|
  DBUG_ENTER("pull_out_semijoin_tables");
 | 
						|
  List_iterator<TABLE_LIST> sj_list_it(join->select_lex->sj_nests);
 | 
						|
 | 
						|
  /* Try pulling out of the each of the semi-joins */
 | 
						|
  while ((sj_nest= sj_list_it++))
 | 
						|
  {
 | 
						|
    List_iterator<TABLE_LIST> child_li(sj_nest->nested_join->join_list);
 | 
						|
    TABLE_LIST *tbl;
 | 
						|
    Json_writer_object trace_wrapper(join->thd);
 | 
						|
    Json_writer_object trace(join->thd, "semijoin_table_pullout");
 | 
						|
    Json_writer_array trace_arr(join->thd, "pulled_out_tables");
 | 
						|
 | 
						|
    /*
 | 
						|
      Don't do table pull-out for nested joins (if we get nested joins here, it
 | 
						|
      means these are outer joins. It is theoretically possible to do pull-out
 | 
						|
      for some of the outer tables but we don't support this currently.
 | 
						|
    */
 | 
						|
    bool have_join_nest_children= FALSE;
 | 
						|
 | 
						|
    set_emb_join_nest(&sj_nest->nested_join->join_list, sj_nest);
 | 
						|
 | 
						|
    while ((tbl= child_li++))
 | 
						|
    {
 | 
						|
      if (tbl->nested_join)
 | 
						|
      {
 | 
						|
        have_join_nest_children= TRUE;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    table_map pulled_tables= 0;
 | 
						|
    table_map dep_tables= 0;
 | 
						|
    if (have_join_nest_children)
 | 
						|
      goto skip;
 | 
						|
 | 
						|
    /*
 | 
						|
      Calculate set of tables within this semi-join nest that have
 | 
						|
      other dependent tables
 | 
						|
    */
 | 
						|
    child_li.rewind();
 | 
						|
    while ((tbl= child_li++))
 | 
						|
    {
 | 
						|
      TABLE *const table= tbl->table;
 | 
						|
      if (table &&
 | 
						|
         (table->reginfo.join_tab->dependent &
 | 
						|
          sj_nest->nested_join->used_tables))
 | 
						|
        dep_tables|= table->reginfo.join_tab->dependent;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Action #1: Mark the constant tables to be pulled out */
 | 
						|
    child_li.rewind();
 | 
						|
    while ((tbl= child_li++))
 | 
						|
    {
 | 
						|
      if (tbl->table)
 | 
						|
      {
 | 
						|
        tbl->table->reginfo.join_tab->emb_sj_nest= sj_nest;
 | 
						|
#if 0 
 | 
						|
        /* 
 | 
						|
          Do not pull out tables because they are constant. This operation has
 | 
						|
          a problem:
 | 
						|
          - Some constant tables may become/cease to be constant across PS
 | 
						|
            re-executions
 | 
						|
          - Contrary to our initial assumption, it turned out that table pullout 
 | 
						|
            operation is not easily undoable.
 | 
						|
 | 
						|
          The solution is to leave constant tables where they are. This will
 | 
						|
          affect only constant tables that are 1-row or empty, tables that are
 | 
						|
          constant because they are accessed via eq_ref(const) access will
 | 
						|
          still be pulled out as functionally-dependent.
 | 
						|
 | 
						|
          This will cause us to miss the chance to flatten some of the 
 | 
						|
          subqueries, but since const tables do not generate many duplicates,
 | 
						|
          it really doesn't matter that much whether they were pulled out or
 | 
						|
          not.
 | 
						|
 | 
						|
          All of this was done as fix for BUG#43768.
 | 
						|
        */
 | 
						|
        if (tbl->table->map & join->const_table_map)
 | 
						|
        {
 | 
						|
          pulled_tables |= tbl->table->map;
 | 
						|
          DBUG_PRINT("info", ("Table %s pulled out (reason: constant)",
 | 
						|
                              tbl->table->alias));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    /*
 | 
						|
      Action #2: Find which tables we can pull out based on
 | 
						|
      update_ref_and_keys() data. Note that pulling one table out can allow
 | 
						|
      us to pull out some other tables too.
 | 
						|
    */
 | 
						|
    bool pulled_a_table;
 | 
						|
    do 
 | 
						|
    {
 | 
						|
      pulled_a_table= FALSE;
 | 
						|
      child_li.rewind();
 | 
						|
      while ((tbl= child_li++))
 | 
						|
      {
 | 
						|
        if (tbl->table && !(pulled_tables & tbl->table->map) &&
 | 
						|
            !(dep_tables & tbl->table->map))
 | 
						|
        {
 | 
						|
          if (find_eq_ref_candidate(tbl->table, 
 | 
						|
                                    sj_nest->nested_join->used_tables & 
 | 
						|
                                    ~pulled_tables))
 | 
						|
          {
 | 
						|
            pulled_a_table= TRUE;
 | 
						|
            pulled_tables |= tbl->table->map;
 | 
						|
            DBUG_PRINT("info", ("Table %s pulled out (reason: func dep)",
 | 
						|
                                tbl->table->alias.c_ptr_safe()));
 | 
						|
            trace_arr.add(tbl->table->alias.c_ptr_safe());
 | 
						|
            /*
 | 
						|
              Pulling a table out of uncorrelated subquery in general makes
 | 
						|
              makes it correlated. See the NOTE to this funtion. 
 | 
						|
            */
 | 
						|
            sj_nest->sj_subq_pred->is_correlated= TRUE;
 | 
						|
            sj_nest->nested_join->sj_corr_tables|= tbl->table->map;
 | 
						|
            sj_nest->nested_join->sj_depends_on|= tbl->table->map;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } while (pulled_a_table);
 | 
						|
 
 | 
						|
    child_li.rewind();
 | 
						|
  skip:
 | 
						|
    /*
 | 
						|
      Action #3: Move the pulled out TABLE_LIST elements to the parents.
 | 
						|
    */
 | 
						|
    table_map inner_tables= sj_nest->nested_join->used_tables & 
 | 
						|
                            ~pulled_tables;
 | 
						|
    /* Record the bitmap of inner tables */
 | 
						|
    sj_nest->sj_inner_tables= inner_tables;
 | 
						|
    if (pulled_tables)
 | 
						|
    {
 | 
						|
      List<TABLE_LIST> *upper_join_list= (sj_nest->embedding != NULL)?
 | 
						|
                                           (&sj_nest->embedding->nested_join->join_list): 
 | 
						|
                                           (&join->select_lex->top_join_list);
 | 
						|
      Query_arena *arena, backup;
 | 
						|
      arena= join->thd->activate_stmt_arena_if_needed(&backup);
 | 
						|
      while ((tbl= child_li++))
 | 
						|
      {
 | 
						|
        if (tbl->table)
 | 
						|
        {
 | 
						|
          if (inner_tables & tbl->table->map)
 | 
						|
          {
 | 
						|
            /* This table is not pulled out */
 | 
						|
            tbl->table->reginfo.join_tab->emb_sj_nest= sj_nest;
 | 
						|
          }
 | 
						|
          else
 | 
						|
          {
 | 
						|
            /* This table has been pulled out of the semi-join nest */
 | 
						|
            tbl->table->reginfo.join_tab->emb_sj_nest= NULL;
 | 
						|
            /*
 | 
						|
              Pull the table up in the same way as simplify_joins() does:
 | 
						|
              update join_list and embedding pointers but keep next[_local]
 | 
						|
              pointers.
 | 
						|
            */
 | 
						|
            child_li.remove();
 | 
						|
            sj_nest->nested_join->used_tables &= ~tbl->table->map;
 | 
						|
            upper_join_list->push_back(tbl, join->thd->mem_root);
 | 
						|
            tbl->join_list= upper_join_list;
 | 
						|
            tbl->embedding= sj_nest->embedding;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      /* Remove the sj-nest itself if we've removed everything from it */
 | 
						|
      if (!inner_tables)
 | 
						|
      {
 | 
						|
        List_iterator<TABLE_LIST> li(*upper_join_list);
 | 
						|
        /* Find the sj_nest in the list. */
 | 
						|
        while (sj_nest != li++) ;
 | 
						|
        li.remove();
 | 
						|
        /* Also remove it from the list of SJ-nests: */
 | 
						|
        sj_list_it.remove();
 | 
						|
      }
 | 
						|
 | 
						|
      if (arena)
 | 
						|
        join->thd->restore_active_arena(arena, &backup);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* 
 | 
						|
  Optimize semi-join nests that could be run with sj-materialization
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    optimize_semijoin_nests()
 | 
						|
      join           The join to optimize semi-join nests for
 | 
						|
      all_table_map  Bitmap of all tables in the join
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Optimize each of the semi-join nests that can be run with
 | 
						|
    materialization. For each of the nests, we
 | 
						|
     - Generate the best join order for this "sub-join" and remember it;
 | 
						|
     - Remember the sub-join execution cost (it's part of materialization
 | 
						|
       cost);
 | 
						|
     - Calculate other costs that will be incurred if we decide 
 | 
						|
       to use materialization strategy for this semi-join nest.
 | 
						|
 | 
						|
    All obtained information is saved and will be used by the main join
 | 
						|
    optimization pass.
 | 
						|
  
 | 
						|
  NOTES 
 | 
						|
    Because of Join::reoptimize(), this function may be called multiple times.
 | 
						|
 | 
						|
  RETURN
 | 
						|
    FALSE  Ok 
 | 
						|
    TRUE   Out of memory error
 | 
						|
*/
 | 
						|
 | 
						|
bool optimize_semijoin_nests(JOIN *join, table_map all_table_map)
 | 
						|
{
 | 
						|
  DBUG_ENTER("optimize_semijoin_nests");
 | 
						|
  THD *thd= join->thd;
 | 
						|
  List_iterator<TABLE_LIST> sj_list_it(join->select_lex->sj_nests);
 | 
						|
  TABLE_LIST *sj_nest;
 | 
						|
  if (!join->select_lex->sj_nests.elements)
 | 
						|
    DBUG_RETURN(FALSE);
 | 
						|
  Json_writer_object wrapper(thd);
 | 
						|
  Json_writer_object trace_semijoin_nest(thd,
 | 
						|
                              "execution_plan_for_potential_materialization");
 | 
						|
  Json_writer_array trace_steps_array(thd, "steps");
 | 
						|
  while ((sj_nest= sj_list_it++))
 | 
						|
  {
 | 
						|
    /* semi-join nests with only constant tables are not valid */
 | 
						|
   /// DBUG_ASSERT(sj_nest->sj_inner_tables & ~join->const_table_map);
 | 
						|
 | 
						|
    sj_nest->sj_mat_info= NULL;
 | 
						|
    /*
 | 
						|
      The statement may have been executed with 'semijoin=on' earlier.
 | 
						|
      We need to verify that 'semijoin=on' still holds.
 | 
						|
     */
 | 
						|
    if (optimizer_flag(join->thd, OPTIMIZER_SWITCH_SEMIJOIN) &&
 | 
						|
        optimizer_flag(join->thd, OPTIMIZER_SWITCH_MATERIALIZATION))
 | 
						|
    {
 | 
						|
      if ((sj_nest->sj_inner_tables  & ~join->const_table_map) && /* not everything was pulled out */
 | 
						|
          !sj_nest->sj_subq_pred->is_correlated && 
 | 
						|
           sj_nest->sj_subq_pred->types_allow_materialization)
 | 
						|
      {
 | 
						|
        join->emb_sjm_nest= sj_nest;
 | 
						|
        if (choose_plan(join, all_table_map &~join->const_table_map))
 | 
						|
          DBUG_RETURN(TRUE); /* purecov: inspected */
 | 
						|
        /*
 | 
						|
          The best plan to run the subquery is now in join->best_positions,
 | 
						|
          save it.
 | 
						|
        */
 | 
						|
        uint n_tables= my_count_bits(sj_nest->sj_inner_tables & ~join->const_table_map);
 | 
						|
        SJ_MATERIALIZATION_INFO* sjm;
 | 
						|
        if (!(sjm= new SJ_MATERIALIZATION_INFO) ||
 | 
						|
            !(sjm->positions= (POSITION*)join->thd->alloc(sizeof(POSITION)*
 | 
						|
                                                          n_tables)))
 | 
						|
          DBUG_RETURN(TRUE); /* purecov: inspected */
 | 
						|
        sjm->tables= n_tables;
 | 
						|
        sjm->is_used= FALSE;
 | 
						|
        double subjoin_out_rows, subjoin_read_time;
 | 
						|
 | 
						|
        /*
 | 
						|
        join->get_partial_cost_and_fanout(n_tables + join->const_tables,
 | 
						|
                                          table_map(-1),
 | 
						|
                                          &subjoin_read_time, 
 | 
						|
                                          &subjoin_out_rows);
 | 
						|
        */
 | 
						|
        join->get_prefix_cost_and_fanout(n_tables, 
 | 
						|
                                         &subjoin_read_time,
 | 
						|
                                         &subjoin_out_rows);
 | 
						|
 | 
						|
        sjm->materialization_cost.convert_from_cost(subjoin_read_time);
 | 
						|
        sjm->rows_with_duplicates= sjm->rows= subjoin_out_rows;
 | 
						|
        
 | 
						|
        // Don't use the following list because it has "stale" items. use
 | 
						|
        // ref_pointer_array instead:
 | 
						|
        //
 | 
						|
        //List<Item> &right_expr_list= 
 | 
						|
        //  sj_nest->sj_subq_pred->unit->first_select()->item_list;
 | 
						|
        /*
 | 
						|
          Adjust output cardinality estimates. If the subquery has form
 | 
						|
 | 
						|
           ... oe IN (SELECT t1.colX, t2.colY, func(X,Y,Z) )
 | 
						|
 | 
						|
           then the number of distinct output record combinations has an
 | 
						|
           upper bound of product of number of records matching the tables 
 | 
						|
           that are used by the SELECT clause.
 | 
						|
           TODO:
 | 
						|
             We can get a more precise estimate if we
 | 
						|
              - use rec_per_key cardinality estimates. For simple cases like 
 | 
						|
                "oe IN (SELECT t.key ...)" it is trivial. 
 | 
						|
              - Functional dependencies between the tables in the semi-join
 | 
						|
                nest (the payoff is probably less here?)
 | 
						|
          
 | 
						|
          See also get_post_group_estimate().
 | 
						|
        */
 | 
						|
        SELECT_LEX *subq_select= sj_nest->sj_subq_pred->unit->first_select();
 | 
						|
        {
 | 
						|
          for (uint i=0 ; i < join->const_tables + sjm->tables ; i++)
 | 
						|
          {
 | 
						|
            JOIN_TAB *tab= join->best_positions[i].table;
 | 
						|
            join->map2table[tab->table->tablenr]= tab;
 | 
						|
          }
 | 
						|
          table_map map= 0;
 | 
						|
          for (uint i=0; i < subq_select->item_list.elements; i++)
 | 
						|
            map|= subq_select->ref_pointer_array[i]->used_tables();
 | 
						|
          map= map & ~PSEUDO_TABLE_BITS;
 | 
						|
          Table_map_iterator tm_it(map);
 | 
						|
          int tableno;
 | 
						|
          double rows= 1.0;
 | 
						|
          while ((tableno = tm_it.next_bit()) != Table_map_iterator::BITMAP_END)
 | 
						|
            rows= COST_MULT(rows,
 | 
						|
			    join->map2table[tableno]->table->opt_range_condition_rows);
 | 
						|
          sjm->rows= MY_MIN(sjm->rows, rows);
 | 
						|
        }
 | 
						|
        memcpy((uchar*) sjm->positions,
 | 
						|
               (uchar*) (join->best_positions + join->const_tables),
 | 
						|
               sizeof(POSITION) * n_tables);
 | 
						|
 | 
						|
        /*
 | 
						|
          Calculate temporary table parameters and usage costs
 | 
						|
        */
 | 
						|
        uint rowlen= get_tmp_table_rec_length(subq_select->ref_pointer_array,
 | 
						|
                                              subq_select->item_list.elements);
 | 
						|
        double lookup_cost= get_tmp_table_lookup_cost(join->thd,
 | 
						|
                                                      subjoin_out_rows, rowlen);
 | 
						|
        double write_cost= get_tmp_table_write_cost(join->thd,
 | 
						|
                                                    subjoin_out_rows, rowlen);
 | 
						|
 | 
						|
        /*
 | 
						|
          Let materialization cost include the cost to write the data into the
 | 
						|
          temporary table:
 | 
						|
        */ 
 | 
						|
        sjm->materialization_cost.add_io(subjoin_out_rows, write_cost);
 | 
						|
        
 | 
						|
        /*
 | 
						|
          Set the cost to do a full scan of the temptable (will need this to 
 | 
						|
          consider doing sjm-scan):
 | 
						|
        */ 
 | 
						|
        sjm->scan_cost.reset();
 | 
						|
        sjm->scan_cost.add_io(sjm->rows, lookup_cost);
 | 
						|
 | 
						|
        sjm->lookup_cost.convert_from_cost(lookup_cost);
 | 
						|
        sj_nest->sj_mat_info= sjm;
 | 
						|
        DBUG_EXECUTE("opt", print_sjm(sjm););
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  join->emb_sjm_nest= NULL;
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Get estimated record length for semi-join materialization temptable
 | 
						|
  
 | 
						|
  SYNOPSIS
 | 
						|
    get_tmp_table_rec_length()
 | 
						|
      items  IN subquery's select list.
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Calculate estimated record length for semi-join materialization
 | 
						|
    temptable. It's an estimate because we don't follow every bit of
 | 
						|
    create_tmp_table()'s logic. This isn't necessary as the return value of
 | 
						|
    this function is used only for cost calculations.
 | 
						|
 | 
						|
  RETURN
 | 
						|
    Length of the temptable record, in bytes
 | 
						|
*/
 | 
						|
 | 
						|
static uint get_tmp_table_rec_length(Ref_ptr_array p_items, uint elements)
 | 
						|
{
 | 
						|
  uint len= 0;
 | 
						|
  Item *item;
 | 
						|
  //List_iterator<Item> it(items);
 | 
						|
  for (uint i= 0; i < elements ; i++)
 | 
						|
  {
 | 
						|
    item = p_items[i];
 | 
						|
    switch (item->result_type()) {
 | 
						|
    case REAL_RESULT:
 | 
						|
      len += sizeof(double);
 | 
						|
      break;
 | 
						|
    case INT_RESULT:
 | 
						|
      if (item->max_length >= (MY_INT32_NUM_DECIMAL_DIGITS - 1))
 | 
						|
        len += 8;
 | 
						|
      else
 | 
						|
        len += 4;
 | 
						|
      break;
 | 
						|
    case STRING_RESULT:
 | 
						|
      enum enum_field_types type;
 | 
						|
      /* DATE/TIME and GEOMETRY fields have STRING_RESULT result type.  */
 | 
						|
      if ((type= item->field_type()) == MYSQL_TYPE_DATETIME ||
 | 
						|
          type == MYSQL_TYPE_TIME || type == MYSQL_TYPE_DATE ||
 | 
						|
          type == MYSQL_TYPE_TIMESTAMP || type == MYSQL_TYPE_GEOMETRY)
 | 
						|
        len += 8;
 | 
						|
      else
 | 
						|
        len += item->max_length;
 | 
						|
      break;
 | 
						|
    case DECIMAL_RESULT:
 | 
						|
      len += 10;
 | 
						|
      break;
 | 
						|
    case ROW_RESULT:
 | 
						|
    default:
 | 
						|
      DBUG_ASSERT(0); /* purecov: deadcode */
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return len;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  The cost of a lookup into a unique hash/btree index on a temporary table
 | 
						|
  with 'row_count' rows each of size 'row_size'.
 | 
						|
 | 
						|
  @param thd  current query context
 | 
						|
  @param row_count  number of rows in the temp table
 | 
						|
  @param row_size   average size in bytes of the rows
 | 
						|
 | 
						|
  @return  the cost of one lookup
 | 
						|
*/
 | 
						|
 | 
						|
double
 | 
						|
get_tmp_table_lookup_cost(THD *thd, double row_count, uint row_size)
 | 
						|
{
 | 
						|
  if (row_count > thd->variables.max_heap_table_size / (double) row_size)
 | 
						|
    return (double) DISK_TEMPTABLE_LOOKUP_COST;
 | 
						|
  else
 | 
						|
    return (double) HEAP_TEMPTABLE_LOOKUP_COST;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
  The cost of writing a row into a temporary table with 'row_count' unique
 | 
						|
  rows each of size 'row_size'.
 | 
						|
 | 
						|
  @param thd  current query context
 | 
						|
  @param row_count  number of rows in the temp table
 | 
						|
  @param row_size   average size in bytes of the rows
 | 
						|
 | 
						|
  @return  the cost of writing one row
 | 
						|
*/
 | 
						|
 | 
						|
double
 | 
						|
get_tmp_table_write_cost(THD *thd, double row_count, uint row_size)
 | 
						|
{
 | 
						|
  double lookup_cost= get_tmp_table_lookup_cost(thd, row_count, row_size);
 | 
						|
  /*
 | 
						|
    TODO:
 | 
						|
    This is an optimistic estimate. Add additional costs resulting from
 | 
						|
    actually writing the row to memory/disk and possible index reorganization.
 | 
						|
  */
 | 
						|
  return lookup_cost;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Check if table's KEYUSE elements have an eq_ref(outer_tables) candidate
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    find_eq_ref_candidate()
 | 
						|
      table             Table to be checked
 | 
						|
      sj_inner_tables   Bitmap of inner tables. eq_ref(inner_table) doesn't
 | 
						|
                        count.
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Check if table's KEYUSE elements have an eq_ref(outer_tables) candidate
 | 
						|
 | 
						|
  TODO
 | 
						|
    Check again if it is feasible to factor common parts with constant table
 | 
						|
    search
 | 
						|
 | 
						|
    Also check if it's feasible to factor common parts with table elimination
 | 
						|
 | 
						|
  RETURN
 | 
						|
    TRUE  - There exists an eq_ref(outer-tables) candidate
 | 
						|
    FALSE - Otherwise
 | 
						|
*/
 | 
						|
 | 
						|
bool find_eq_ref_candidate(TABLE *table, table_map sj_inner_tables)
 | 
						|
{
 | 
						|
  KEYUSE *keyuse= table->reginfo.join_tab->keyuse;
 | 
						|
 | 
						|
  if (keyuse)
 | 
						|
  {
 | 
						|
    do
 | 
						|
    {
 | 
						|
      uint key= keyuse->key;
 | 
						|
      key_part_map bound_parts= 0;
 | 
						|
      if (!keyuse->is_for_hash_join() &&
 | 
						|
          (table->key_info[key].flags & HA_NOSAME))
 | 
						|
      {
 | 
						|
        KEY *keyinfo= table->key_info + key;
 | 
						|
        do  /* For all equalities on all key parts */
 | 
						|
        {
 | 
						|
          /*
 | 
						|
            Check if this is "t.keypart = expr(outer_tables)
 | 
						|
 | 
						|
            Don't allow variants that can produce duplicates:
 | 
						|
            - Dont allow "ref or null"
 | 
						|
            - the keyuse (that is, the operation) must be null-rejecting,
 | 
						|
              unless the other expression is non-NULLable.
 | 
						|
          */
 | 
						|
          if (!(keyuse->used_tables & sj_inner_tables) &&
 | 
						|
              !(keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL) &&
 | 
						|
              (keyuse->null_rejecting || !keyuse->val->maybe_null()))
 | 
						|
          {
 | 
						|
            bound_parts |= 1 << keyuse->keypart;
 | 
						|
          }
 | 
						|
          keyuse++;
 | 
						|
        } while (keyuse->key == key && keyuse->table == table);
 | 
						|
 | 
						|
        if (bound_parts == PREV_BITS(key_part_map,
 | 
						|
                                     keyinfo->user_defined_key_parts))
 | 
						|
          return TRUE;
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        do
 | 
						|
        {
 | 
						|
          keyuse++;
 | 
						|
        } while (keyuse->key == key && keyuse->table == table);
 | 
						|
      }
 | 
						|
    } while (keyuse->table == table);
 | 
						|
  }
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Do semi-join optimization step after we've added a new tab to join prefix
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    optimize_semi_joins()
 | 
						|
      join                        The join we're optimizing
 | 
						|
      remaining_tables            Tables not in the join prefix
 | 
						|
      new_join_tab                Join tab we've just added to the join prefix
 | 
						|
      idx                         Index of this join tab (i.e. number of tables
 | 
						|
                                  in the prefix minus one)
 | 
						|
      current_record_count INOUT  Estimate of #records in join prefix's output
 | 
						|
      current_read_time    INOUT  Cost to execute the join prefix
 | 
						|
      loose_scan_pos       IN     A POSITION with LooseScan plan to access 
 | 
						|
                                  table new_join_tab
 | 
						|
                                  (produced by the last best_access_path call)
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Update semi-join optimization state after we've added another tab (table 
 | 
						|
    and access method) to the join prefix.
 | 
						|
    
 | 
						|
    The state is maintained in join->positions[#prefix_size]. Each of the
 | 
						|
    available strategies has its own state variables.
 | 
						|
    
 | 
						|
    for each semi-join strategy
 | 
						|
    {
 | 
						|
      update strategy's state variables;
 | 
						|
 | 
						|
      if (join prefix has all the tables that are needed to consider
 | 
						|
          using this strategy for the semi-join(s))
 | 
						|
      {
 | 
						|
        calculate cost of using the strategy
 | 
						|
        if ((this is the first strategy to handle the semi-join nest(s)  ||
 | 
						|
            the cost is less than other strategies))
 | 
						|
        {
 | 
						|
          // Pick this strategy
 | 
						|
          pos->sj_strategy= ..
 | 
						|
          ..
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    Most of the new state is saved join->positions[idx] (and hence no undo
 | 
						|
    is necessary). Several members of class JOIN are updated also, these
 | 
						|
    changes can be rolled back with restore_prev_sj_state().
 | 
						|
 | 
						|
    See setup_semijoin_dups_elimination() for a description of what kinds of
 | 
						|
    join prefixes each strategy can handle.
 | 
						|
*/
 | 
						|
 | 
						|
bool is_multiple_semi_joins(JOIN *join, POSITION *prefix, uint idx, table_map inner_tables)
 | 
						|
{
 | 
						|
  for (int i= (int)idx; i >= 0; i--)
 | 
						|
  {
 | 
						|
    TABLE_LIST *emb_sj_nest;
 | 
						|
    if ((emb_sj_nest= prefix[i].table->emb_sj_nest))
 | 
						|
    {
 | 
						|
      if (inner_tables & emb_sj_nest->sj_inner_tables)
 | 
						|
        return !MY_TEST(inner_tables == (emb_sj_nest->sj_inner_tables &
 | 
						|
                                         ~join->const_table_map));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void optimize_semi_joins(JOIN *join, table_map remaining_tables, uint idx,
 | 
						|
                         double *current_record_count,
 | 
						|
                         double *current_read_time, POSITION *loose_scan_pos)
 | 
						|
{
 | 
						|
  POSITION *pos= join->positions + idx;
 | 
						|
  const JOIN_TAB *new_join_tab= pos->table; 
 | 
						|
 | 
						|
#ifdef HAVE_valgrind
 | 
						|
  new (&pos->firstmatch_picker) Firstmatch_picker;
 | 
						|
  new (&pos->loosescan_picker) LooseScan_picker;
 | 
						|
  new (&pos->sjmat_picker) Sj_materialization_picker;
 | 
						|
  new (&pos->dups_weedout_picker) Duplicate_weedout_picker;
 | 
						|
#endif
 | 
						|
 | 
						|
  if (join->emb_sjm_nest || //(1)
 | 
						|
      !join->select_lex->have_merged_subqueries) //(2)
 | 
						|
  {
 | 
						|
    /* 
 | 
						|
      (1): We're performing optimization inside SJ-Materialization nest:
 | 
						|
       - there are no other semi-joins inside semi-join nests
 | 
						|
       - attempts to build semi-join strategies here will confuse
 | 
						|
         the optimizer, so bail out.
 | 
						|
      (2): Don't waste time on semi-join optimizations if we don't have any
 | 
						|
           semi-joins
 | 
						|
    */
 | 
						|
    pos->sj_strategy= SJ_OPT_NONE;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Semi_join_strategy_picker *pickers[]=
 | 
						|
  {
 | 
						|
    &pos->firstmatch_picker,
 | 
						|
    &pos->loosescan_picker,
 | 
						|
    &pos->sjmat_picker,
 | 
						|
    &pos->dups_weedout_picker,
 | 
						|
    NULL,
 | 
						|
  };
 | 
						|
  Json_writer_array trace_steps(join->thd, "semijoin_strategy_choice");
 | 
						|
  /* 
 | 
						|
    Update join->cur_sj_inner_tables (Used by FirstMatch in this function and
 | 
						|
    LooseScan detector in best_access_path)
 | 
						|
  */
 | 
						|
  remaining_tables &= ~new_join_tab->table->map;
 | 
						|
  table_map dups_producing_tables, UNINIT_VAR(prev_dups_producing_tables),
 | 
						|
    UNINIT_VAR(prev_sjm_lookup_tables);
 | 
						|
 | 
						|
  if (idx == join->const_tables)
 | 
						|
    dups_producing_tables= 0;
 | 
						|
  else
 | 
						|
    dups_producing_tables= pos[-1].dups_producing_tables;
 | 
						|
 | 
						|
  TABLE_LIST *emb_sj_nest;
 | 
						|
  if ((emb_sj_nest= new_join_tab->emb_sj_nest))
 | 
						|
    dups_producing_tables |= emb_sj_nest->sj_inner_tables;
 | 
						|
 | 
						|
  Semi_join_strategy_picker **strategy, **prev_strategy= 0;
 | 
						|
  if (idx == join->const_tables)
 | 
						|
  {
 | 
						|
    /* First table, initialize pickers */
 | 
						|
    for (strategy= pickers; *strategy != NULL; strategy++)
 | 
						|
      (*strategy)->set_empty();
 | 
						|
    pos->inner_tables_handled_with_other_sjs= 0;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    for (strategy= pickers; *strategy != NULL; strategy++)
 | 
						|
    {
 | 
						|
      (*strategy)->set_from_prev(pos - 1);
 | 
						|
    }
 | 
						|
    pos->inner_tables_handled_with_other_sjs=
 | 
						|
       pos[-1].inner_tables_handled_with_other_sjs;
 | 
						|
  }
 | 
						|
 | 
						|
  pos->prefix_cost.convert_from_cost(*current_read_time);
 | 
						|
  pos->prefix_record_count= *current_record_count;
 | 
						|
 | 
						|
  {
 | 
						|
    pos->sj_strategy= SJ_OPT_NONE;
 | 
						|
 | 
						|
    for (strategy= pickers; *strategy != NULL; strategy++)
 | 
						|
    {
 | 
						|
      table_map handled_fanout;
 | 
						|
      sj_strategy_enum sj_strategy;
 | 
						|
      double rec_count= *current_record_count;
 | 
						|
      double read_time= *current_read_time;
 | 
						|
      if ((*strategy)->check_qep(join, idx, remaining_tables, 
 | 
						|
                                 new_join_tab,
 | 
						|
                                 &rec_count,
 | 
						|
                                 &read_time,
 | 
						|
                                 &handled_fanout,
 | 
						|
                                 &sj_strategy,
 | 
						|
                                 loose_scan_pos))
 | 
						|
      {
 | 
						|
        /*
 | 
						|
          It's possible to use the strategy. Use it, if
 | 
						|
           - it removes semi-join fanout that was not removed before
 | 
						|
           - using it is cheaper than using something else,
 | 
						|
               and {if some other strategy has removed fanout
 | 
						|
               that this strategy is trying to remove, then it
 | 
						|
               did remove the fanout only for one semi-join}
 | 
						|
               This is to avoid a situation when
 | 
						|
                1. strategy X removes fanout for semijoin X,Y
 | 
						|
                2. using strategy Z is cheaper, but it only removes
 | 
						|
                   fanout from semijoin X.
 | 
						|
                3. We have no clue what to do about fanount of semi-join Y.
 | 
						|
        */
 | 
						|
        if ((dups_producing_tables & handled_fanout) ||
 | 
						|
            (read_time < *current_read_time &&
 | 
						|
             !(handled_fanout & pos->inner_tables_handled_with_other_sjs)))
 | 
						|
        {
 | 
						|
          DBUG_ASSERT(pos->sj_strategy != sj_strategy);
 | 
						|
          /*
 | 
						|
            If the strategy chosen first time or
 | 
						|
            the strategy replace strategy which was used to exectly the same
 | 
						|
            tables
 | 
						|
          */
 | 
						|
          if (pos->sj_strategy == SJ_OPT_NONE ||
 | 
						|
              handled_fanout ==
 | 
						|
                (prev_dups_producing_tables ^ dups_producing_tables))
 | 
						|
          {
 | 
						|
            prev_strategy= strategy;
 | 
						|
            if (pos->sj_strategy == SJ_OPT_NONE)
 | 
						|
            {
 | 
						|
              prev_dups_producing_tables= dups_producing_tables;
 | 
						|
              prev_sjm_lookup_tables= join->sjm_lookup_tables;
 | 
						|
            }
 | 
						|
            /* Mark strategy as used */
 | 
						|
            (*strategy)->mark_used();
 | 
						|
            pos->sj_strategy= sj_strategy;
 | 
						|
            if (sj_strategy == SJ_OPT_MATERIALIZE)
 | 
						|
              join->sjm_lookup_tables |= handled_fanout;
 | 
						|
            else
 | 
						|
              join->sjm_lookup_tables &= ~handled_fanout;
 | 
						|
            *current_read_time= read_time;
 | 
						|
            *current_record_count= rec_count;
 | 
						|
            dups_producing_tables &= ~handled_fanout;
 | 
						|
 | 
						|
            //TODO: update bitmap of semi-joins that were handled together with
 | 
						|
            // others.
 | 
						|
            if (is_multiple_semi_joins(join, join->positions, idx,
 | 
						|
                                       handled_fanout))
 | 
						|
              pos->inner_tables_handled_with_other_sjs |= handled_fanout;
 | 
						|
          }
 | 
						|
          else
 | 
						|
          {
 | 
						|
            /* Conflict fall to most general variant */
 | 
						|
            (*prev_strategy)->set_empty();
 | 
						|
            dups_producing_tables= prev_dups_producing_tables;
 | 
						|
            join->sjm_lookup_tables= prev_sjm_lookup_tables;
 | 
						|
            // mark it 'none' to avpoid loops
 | 
						|
            pos->sj_strategy= SJ_OPT_NONE;
 | 
						|
            // next skip to last;
 | 
						|
            strategy= pickers +
 | 
						|
              (sizeof(pickers)/sizeof(Semi_join_strategy_picker*) - 3);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          /* We decided not to apply the strategy. */
 | 
						|
          (*strategy)->set_empty();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (unlikely(join->thd->trace_started() && pos->sj_strategy != SJ_OPT_NONE))
 | 
						|
    {
 | 
						|
      Json_writer_object tr(join->thd);
 | 
						|
      const char *sname;
 | 
						|
      switch (pos->sj_strategy) {
 | 
						|
        case SJ_OPT_MATERIALIZE:
 | 
						|
          sname= "SJ-Materialization";
 | 
						|
          break;
 | 
						|
        case SJ_OPT_MATERIALIZE_SCAN:
 | 
						|
          sname= "SJ-Materialization-Scan";
 | 
						|
          break;
 | 
						|
        case SJ_OPT_FIRST_MATCH:
 | 
						|
          sname= "FirstMatch";
 | 
						|
          break;
 | 
						|
        case SJ_OPT_DUPS_WEEDOUT:
 | 
						|
          sname= "DuplicateWeedout";
 | 
						|
          break;
 | 
						|
        case SJ_OPT_LOOSE_SCAN:
 | 
						|
          sname= "LooseScan";
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          DBUG_ASSERT(0);
 | 
						|
          sname="Invalid";
 | 
						|
      }
 | 
						|
      tr.add("chosen_strategy", sname);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  update_sj_state(join, new_join_tab, idx, remaining_tables);
 | 
						|
 | 
						|
  pos->prefix_cost.convert_from_cost(*current_read_time);
 | 
						|
  pos->prefix_record_count= *current_record_count;
 | 
						|
  pos->dups_producing_tables= dups_producing_tables;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Update JOIN's semi-join optimization state after the join tab new_tab
 | 
						|
  has been added into the join prefix.
 | 
						|
 | 
						|
  @seealso restore_prev_sj_state() does the reverse actoion
 | 
						|
*/
 | 
						|
 | 
						|
void update_sj_state(JOIN *join, const JOIN_TAB *new_tab,
 | 
						|
                     uint idx, table_map remaining_tables)
 | 
						|
{
 | 
						|
  DBUG_ASSERT(!join->emb_sjm_nest);
 | 
						|
  if (TABLE_LIST *emb_sj_nest= new_tab->emb_sj_nest)
 | 
						|
  {
 | 
						|
    join->cur_sj_inner_tables |= emb_sj_nest->sj_inner_tables;
 | 
						|
 | 
						|
    /* Remove the sj_nest if all of its SJ-inner tables are in cur_table_map */
 | 
						|
    if (!(remaining_tables &
 | 
						|
          emb_sj_nest->sj_inner_tables & ~new_tab->table->map))
 | 
						|
      join->cur_sj_inner_tables &= ~emb_sj_nest->sj_inner_tables;
 | 
						|
  }
 | 
						|
#ifndef DBUG_OFF
 | 
						|
  join->dbug_verify_sj_inner_tables(idx + 1);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void Sj_materialization_picker::set_from_prev(POSITION *prev)
 | 
						|
{
 | 
						|
  if (prev->sjmat_picker.is_used)
 | 
						|
    set_empty();
 | 
						|
  else
 | 
						|
  {
 | 
						|
    sjm_scan_need_tables= prev->sjmat_picker.sjm_scan_need_tables; 
 | 
						|
    sjm_scan_last_inner=  prev->sjmat_picker.sjm_scan_last_inner;
 | 
						|
  }
 | 
						|
  is_used= FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool Sj_materialization_picker::check_qep(JOIN *join,
 | 
						|
                                          uint idx,
 | 
						|
                                          table_map remaining_tables, 
 | 
						|
                                          const JOIN_TAB *new_join_tab,
 | 
						|
                                          double *record_count,
 | 
						|
                                          double *read_time,
 | 
						|
                                          table_map *handled_fanout,
 | 
						|
                                          sj_strategy_enum *strategy,
 | 
						|
                                          POSITION *loose_scan_pos)
 | 
						|
{
 | 
						|
  bool sjm_scan;
 | 
						|
  SJ_MATERIALIZATION_INFO *mat_info;
 | 
						|
  THD *thd= join->thd;
 | 
						|
  if ((mat_info= at_sjmat_pos(join, remaining_tables,
 | 
						|
                              new_join_tab, idx, &sjm_scan)))
 | 
						|
  {
 | 
						|
    if (sjm_scan)
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        We can't yet evaluate this option yet. This is because we can't
 | 
						|
        accout for fanout of sj-inner tables yet:
 | 
						|
 | 
						|
          ntX  SJM-SCAN(it1 ... itN) | ot1 ... otN  |
 | 
						|
                                     ^(1)           ^(2)
 | 
						|
 | 
						|
        we're now at position (1). SJM temptable in general has multiple
 | 
						|
        records, so at point (1) we'll get the fanout from sj-inner tables (ie
 | 
						|
        there will be multiple record combinations).
 | 
						|
 | 
						|
        The final join result will not contain any semi-join produced
 | 
						|
        fanout, i.e. tables within SJM-SCAN(...) will not contribute to
 | 
						|
        the cardinality of the join output.  Extra fanout produced by 
 | 
						|
        SJM-SCAN(...) will be 'absorbed' into fanout produced by ot1 ...  otN.
 | 
						|
 | 
						|
        The simple way to model this is to remove SJM-SCAN(...) fanout once
 | 
						|
        we reach the point #2.
 | 
						|
      */
 | 
						|
      sjm_scan_need_tables=
 | 
						|
        new_join_tab->emb_sj_nest->sj_inner_tables | 
 | 
						|
        new_join_tab->emb_sj_nest->nested_join->sj_depends_on |
 | 
						|
        new_join_tab->emb_sj_nest->nested_join->sj_corr_tables;
 | 
						|
      sjm_scan_last_inner= idx;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      /* This is SJ-Materialization with lookups */
 | 
						|
      Cost_estimate prefix_cost; 
 | 
						|
      signed int first_tab= (int)idx - mat_info->tables;
 | 
						|
      double prefix_rec_count;
 | 
						|
      Json_writer_object trace(join->thd);
 | 
						|
      trace.add("strategy", "SJ-Materialization");
 | 
						|
 | 
						|
      if (first_tab < (int)join->const_tables)
 | 
						|
      {
 | 
						|
        prefix_cost.reset();
 | 
						|
        prefix_rec_count= 1.0;
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        prefix_cost= join->positions[first_tab].prefix_cost;
 | 
						|
        prefix_rec_count= join->positions[first_tab].prefix_record_count;
 | 
						|
      }
 | 
						|
 | 
						|
      double mat_read_time= prefix_cost.total_cost();
 | 
						|
      mat_read_time=
 | 
						|
        COST_ADD(mat_read_time,
 | 
						|
                 COST_ADD(mat_info->materialization_cost.total_cost(),
 | 
						|
                          COST_MULT(prefix_rec_count,
 | 
						|
                                    mat_info->lookup_cost.total_cost())));
 | 
						|
 | 
						|
      /*
 | 
						|
        NOTE: When we pick to use SJM[-Scan] we don't memcpy its POSITION
 | 
						|
        elements to join->positions as that makes it hard to return things
 | 
						|
        back when making one step back in join optimization. That's done 
 | 
						|
        after the QEP has been chosen.
 | 
						|
      */
 | 
						|
      *read_time=    mat_read_time;
 | 
						|
      *record_count= prefix_rec_count;
 | 
						|
      *handled_fanout= new_join_tab->emb_sj_nest->sj_inner_tables;
 | 
						|
      *strategy= SJ_OPT_MATERIALIZE;
 | 
						|
      if (unlikely(trace.trace_started()))
 | 
						|
      {
 | 
						|
        trace.add("records", *record_count);
 | 
						|
        trace.add("read_time", *read_time);
 | 
						|
      }
 | 
						|
      return TRUE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  /* 4.A SJM-Scan second phase check */
 | 
						|
  if (sjm_scan_need_tables && /* Have SJM-Scan prefix */
 | 
						|
      !(sjm_scan_need_tables & remaining_tables))
 | 
						|
  {
 | 
						|
    Json_writer_object trace(join->thd);
 | 
						|
    trace.add("strategy", "SJ-Materialization-Scan");
 | 
						|
    TABLE_LIST *mat_nest= 
 | 
						|
      join->positions[sjm_scan_last_inner].table->emb_sj_nest;
 | 
						|
    SJ_MATERIALIZATION_INFO *mat_info= mat_nest->sj_mat_info;
 | 
						|
 | 
						|
    double prefix_cost;
 | 
						|
    double prefix_rec_count;
 | 
						|
    int first_tab= sjm_scan_last_inner + 1 - mat_info->tables;
 | 
						|
    /* Get the prefix cost */
 | 
						|
    if (first_tab == (int)join->const_tables)
 | 
						|
    {
 | 
						|
      prefix_rec_count= 1.0;
 | 
						|
      prefix_cost= 0.0;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      prefix_cost= join->positions[first_tab - 1].prefix_cost.total_cost();
 | 
						|
      prefix_rec_count= join->positions[first_tab - 1].prefix_record_count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Add materialization cost */
 | 
						|
    prefix_cost=
 | 
						|
      COST_ADD(prefix_cost,
 | 
						|
               COST_ADD(mat_info->materialization_cost.total_cost(),
 | 
						|
                        COST_MULT(prefix_rec_count,
 | 
						|
                                  mat_info->scan_cost.total_cost())));
 | 
						|
    prefix_rec_count= COST_MULT(prefix_rec_count, mat_info->rows);
 | 
						|
    
 | 
						|
    uint i;
 | 
						|
    table_map rem_tables= remaining_tables;
 | 
						|
    for (i= idx; i != (first_tab + mat_info->tables - 1); i--)
 | 
						|
      rem_tables |= join->positions[i].table->table->map;
 | 
						|
 | 
						|
    POSITION curpos, dummy;
 | 
						|
    /* Need to re-run best-access-path as we prefix_rec_count has changed */
 | 
						|
    bool disable_jbuf= (join->thd->variables.join_cache_level == 0);
 | 
						|
    Json_writer_temp_disable trace_semijoin_mat_scan(thd);
 | 
						|
    for (i= first_tab + mat_info->tables; i <= idx; i++)
 | 
						|
    {
 | 
						|
      best_access_path(join, join->positions[i].table, rem_tables,
 | 
						|
                       join->positions, i,
 | 
						|
                       disable_jbuf, prefix_rec_count, &curpos, &dummy);
 | 
						|
      prefix_rec_count= COST_MULT(prefix_rec_count, curpos.records_read);
 | 
						|
      prefix_cost= COST_ADD(prefix_cost, curpos.read_time);
 | 
						|
      prefix_cost= COST_ADD(prefix_cost,
 | 
						|
                            prefix_rec_count / TIME_FOR_COMPARE);
 | 
						|
      //TODO: take into account join condition selectivity here
 | 
						|
    }
 | 
						|
 | 
						|
    *strategy= SJ_OPT_MATERIALIZE_SCAN;
 | 
						|
    *read_time=    prefix_cost;
 | 
						|
    /*
 | 
						|
      Note: the next line means we did not remove the subquery's fanout from
 | 
						|
      *record_count. It needs to be removed, as the join prefix is
 | 
						|
 | 
						|
        ntX  SJM-SCAN(it1 ... itN) | (ot1 ... otN) ...
 | 
						|
 | 
						|
      here, the SJM-SCAN may have introduced subquery's fanout (duplicate rows,
 | 
						|
      rows that don't have matches in ot1_i). All this fanout is gone after
 | 
						|
      table otN (or earlier) but taking it into account is hard.
 | 
						|
 | 
						|
      Some consolation here is that SJM-Scan strategy is applicable when the
 | 
						|
      subquery is smaller than tables otX. If the subquery has large cardinality,
 | 
						|
      we can greatly overestimate *record_count here, but it doesn't matter as
 | 
						|
      SJ-Materialization-Lookup is a better strategy anyway.
 | 
						|
    */
 | 
						|
    *record_count= prefix_rec_count;
 | 
						|
    *handled_fanout= mat_nest->sj_inner_tables;
 | 
						|
    if (unlikely(trace.trace_started()))
 | 
						|
    {
 | 
						|
      trace.add("records", *record_count);
 | 
						|
      trace.add("read_time", *read_time);
 | 
						|
    }
 | 
						|
    return TRUE;
 | 
						|
  }
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void LooseScan_picker::set_from_prev(POSITION *prev)
 | 
						|
{
 | 
						|
  if (prev->loosescan_picker.is_used)
 | 
						|
    set_empty();
 | 
						|
  else
 | 
						|
  {
 | 
						|
    first_loosescan_table= prev->loosescan_picker.first_loosescan_table;
 | 
						|
    loosescan_need_tables= prev->loosescan_picker.loosescan_need_tables;
 | 
						|
  }
 | 
						|
  is_used= FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool LooseScan_picker::check_qep(JOIN *join,
 | 
						|
                                 uint idx,
 | 
						|
                                 table_map remaining_tables, 
 | 
						|
                                 const JOIN_TAB *new_join_tab,
 | 
						|
                                 double *record_count, 
 | 
						|
                                 double *read_time,
 | 
						|
                                 table_map *handled_fanout,
 | 
						|
                                 sj_strategy_enum *strategy,
 | 
						|
                                 POSITION *loose_scan_pos)
 | 
						|
{
 | 
						|
  POSITION *first= join->positions + first_loosescan_table; 
 | 
						|
  /* 
 | 
						|
    LooseScan strategy can't handle interleaving between tables from the 
 | 
						|
    semi-join that LooseScan is handling and any other tables.
 | 
						|
 | 
						|
    If we were considering LooseScan for the join prefix (1)
 | 
						|
       and the table we're adding creates an interleaving (2)
 | 
						|
    then 
 | 
						|
       stop considering loose scan
 | 
						|
  */
 | 
						|
  if ((first_loosescan_table != MAX_TABLES) &&   // (1)
 | 
						|
      (first->table->emb_sj_nest->sj_inner_tables & remaining_tables) && //(2)
 | 
						|
      new_join_tab->emb_sj_nest != first->table->emb_sj_nest) //(2)
 | 
						|
  {
 | 
						|
    first_loosescan_table= MAX_TABLES;
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
    If we got an option to use LooseScan for the current table, start
 | 
						|
    considering using LooseScan strategy
 | 
						|
  */
 | 
						|
  if (loose_scan_pos->read_time != DBL_MAX && !join->outer_join)
 | 
						|
  {
 | 
						|
    first_loosescan_table= idx;
 | 
						|
    loosescan_need_tables=
 | 
						|
      new_join_tab->emb_sj_nest->sj_inner_tables | 
 | 
						|
      new_join_tab->emb_sj_nest->nested_join->sj_depends_on |
 | 
						|
      new_join_tab->emb_sj_nest->nested_join->sj_corr_tables;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if ((first_loosescan_table != MAX_TABLES) && 
 | 
						|
      !(remaining_tables & loosescan_need_tables) &&
 | 
						|
      (new_join_tab->table->map & loosescan_need_tables))
 | 
						|
  {
 | 
						|
    Json_writer_object trace(join->thd);
 | 
						|
    trace.add("strategy", "LooseScan");
 | 
						|
    /* 
 | 
						|
      Ok we have LooseScan plan and also have all LooseScan sj-nest's
 | 
						|
      inner tables and outer correlated tables into the prefix.
 | 
						|
    */
 | 
						|
 | 
						|
    first= join->positions + first_loosescan_table; 
 | 
						|
    uint n_tables= my_count_bits(first->table->emb_sj_nest->sj_inner_tables);
 | 
						|
    /* Got a complete LooseScan range. Calculate its cost */
 | 
						|
    /*
 | 
						|
      The same problem as with FirstMatch - we need to save POSITIONs
 | 
						|
      somewhere but reserving space for all cases would require too
 | 
						|
      much space. We will re-calculate POSITION structures later on. 
 | 
						|
    */
 | 
						|
    bool disable_jbuf= (join->thd->variables.join_cache_level == 0);
 | 
						|
    optimize_wo_join_buffering(join, first_loosescan_table, idx,
 | 
						|
                               remaining_tables, 
 | 
						|
                               TRUE,  //first_alt
 | 
						|
                               disable_jbuf ? join->table_count :
 | 
						|
                                 first_loosescan_table + n_tables,
 | 
						|
                               record_count,
 | 
						|
                               read_time);
 | 
						|
    /*
 | 
						|
      We don't yet have any other strategies that could handle this
 | 
						|
      semi-join nest (the other options are Duplicate Elimination or
 | 
						|
      Materialization, which need at least the same set of tables in 
 | 
						|
      the join prefix to be considered) so unconditionally pick the 
 | 
						|
      LooseScan.
 | 
						|
    */
 | 
						|
    *strategy= SJ_OPT_LOOSE_SCAN;
 | 
						|
    *handled_fanout= first->table->emb_sj_nest->sj_inner_tables;
 | 
						|
    if (unlikely(trace.trace_started()))
 | 
						|
    {
 | 
						|
      trace.add("records", *record_count);
 | 
						|
      trace.add("read_time", *read_time);
 | 
						|
    }
 | 
						|
    return TRUE;
 | 
						|
  }
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
void Firstmatch_picker::set_from_prev(POSITION *prev)
 | 
						|
{
 | 
						|
  if (prev->firstmatch_picker.is_used)
 | 
						|
    invalidate_firstmatch_prefix();
 | 
						|
  else
 | 
						|
  {
 | 
						|
    first_firstmatch_table= prev->firstmatch_picker.first_firstmatch_table;
 | 
						|
    first_firstmatch_rtbl=  prev->firstmatch_picker.first_firstmatch_rtbl;
 | 
						|
    firstmatch_need_tables= prev->firstmatch_picker.firstmatch_need_tables;
 | 
						|
  }
 | 
						|
  is_used= FALSE;
 | 
						|
}
 | 
						|
 | 
						|
bool Firstmatch_picker::check_qep(JOIN *join,
 | 
						|
                                  uint idx,
 | 
						|
                                  table_map remaining_tables, 
 | 
						|
                                  const JOIN_TAB *new_join_tab,
 | 
						|
                                  double *record_count,
 | 
						|
                                  double *read_time,
 | 
						|
                                  table_map *handled_fanout,
 | 
						|
                                  sj_strategy_enum *strategy,
 | 
						|
                                  POSITION *loose_scan_pos)
 | 
						|
{
 | 
						|
  if (new_join_tab->emb_sj_nest &&
 | 
						|
      optimizer_flag(join->thd, OPTIMIZER_SWITCH_FIRSTMATCH) &&
 | 
						|
      !join->outer_join)
 | 
						|
  {
 | 
						|
    const table_map outer_corr_tables=
 | 
						|
      new_join_tab->emb_sj_nest->nested_join->sj_corr_tables |
 | 
						|
      new_join_tab->emb_sj_nest->nested_join->sj_depends_on;
 | 
						|
    const table_map sj_inner_tables=
 | 
						|
      new_join_tab->emb_sj_nest->sj_inner_tables & ~join->const_table_map;
 | 
						|
 | 
						|
    /* 
 | 
						|
      Enter condition:
 | 
						|
       1. The next join tab belongs to semi-join nest
 | 
						|
          (verified for the encompassing code block above).
 | 
						|
       2. We're not in a duplicate producer range yet
 | 
						|
       3. All outer tables that
 | 
						|
           - the subquery is correlated with, or
 | 
						|
           - referred to from the outer_expr 
 | 
						|
          are in the join prefix
 | 
						|
       4. All inner tables are still part of remaining_tables.
 | 
						|
    */
 | 
						|
    if (!join->cur_sj_inner_tables &&              // (2)
 | 
						|
        !(remaining_tables & outer_corr_tables) && // (3)
 | 
						|
        (sj_inner_tables ==                        // (4)
 | 
						|
         ((remaining_tables | new_join_tab->table->map) & sj_inner_tables)))
 | 
						|
    {
 | 
						|
      /* Start tracking potential FirstMatch range */
 | 
						|
      first_firstmatch_table= idx;
 | 
						|
      firstmatch_need_tables= sj_inner_tables;
 | 
						|
      first_firstmatch_rtbl= remaining_tables;
 | 
						|
    }
 | 
						|
 | 
						|
    if (in_firstmatch_prefix())
 | 
						|
    {
 | 
						|
      if (outer_corr_tables & first_firstmatch_rtbl)
 | 
						|
      {
 | 
						|
        /*
 | 
						|
          Trying to add an sj-inner table whose sj-nest has an outer correlated 
 | 
						|
          table that was not in the prefix. This means FirstMatch can't be used.
 | 
						|
        */
 | 
						|
        invalidate_firstmatch_prefix();
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        /* Record that we need all of this semi-join's inner tables, too */
 | 
						|
        firstmatch_need_tables|= sj_inner_tables;
 | 
						|
      }
 | 
						|
    
 | 
						|
      if (in_firstmatch_prefix() && 
 | 
						|
          !(firstmatch_need_tables & remaining_tables))
 | 
						|
      {
 | 
						|
        Json_writer_object trace(join->thd);
 | 
						|
        trace.add("strategy", "FirstMatch");
 | 
						|
        /*
 | 
						|
          Got a complete FirstMatch range. Calculate correct costs and fanout
 | 
						|
        */
 | 
						|
 | 
						|
        if (idx == first_firstmatch_table && 
 | 
						|
            optimizer_flag(join->thd, OPTIMIZER_SWITCH_SEMIJOIN_WITH_CACHE))
 | 
						|
        {
 | 
						|
          /* 
 | 
						|
            An important special case: only one inner table, and @@optimizer_switch
 | 
						|
            allows join buffering.
 | 
						|
             - read_time is the same (i.e. FirstMatch doesn't add any cost
 | 
						|
             - remove fanout added by the last table
 | 
						|
          */
 | 
						|
          if (*record_count)
 | 
						|
            *record_count /= join->positions[idx].records_read;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          optimize_wo_join_buffering(join, first_firstmatch_table, idx,
 | 
						|
                                     remaining_tables, FALSE, idx,
 | 
						|
                                     record_count, 
 | 
						|
                                     read_time);
 | 
						|
        }
 | 
						|
        /*
 | 
						|
          We ought to save the alternate POSITIONs produced by
 | 
						|
          optimize_wo_join_buffering but the problem is that providing save
 | 
						|
          space uses too much space. Instead, we will re-calculate the
 | 
						|
          alternate POSITIONs after we've picked the best QEP.
 | 
						|
        */
 | 
						|
        *handled_fanout= firstmatch_need_tables;
 | 
						|
        /* *record_count and *read_time were set by the above call */
 | 
						|
        *strategy= SJ_OPT_FIRST_MATCH;
 | 
						|
        if (unlikely(trace.trace_started()))
 | 
						|
        {
 | 
						|
          trace.add("records", *record_count);
 | 
						|
          trace.add("read_time", *read_time);
 | 
						|
        }
 | 
						|
        return TRUE;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
    invalidate_firstmatch_prefix();
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void Duplicate_weedout_picker::set_from_prev(POSITION *prev)
 | 
						|
{
 | 
						|
  if (prev->dups_weedout_picker.is_used)
 | 
						|
    set_empty();
 | 
						|
  else
 | 
						|
  {
 | 
						|
    dupsweedout_tables=      prev->dups_weedout_picker.dupsweedout_tables;
 | 
						|
    first_dupsweedout_table= prev->dups_weedout_picker.first_dupsweedout_table;
 | 
						|
  }
 | 
						|
  is_used= FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool Duplicate_weedout_picker::check_qep(JOIN *join,
 | 
						|
                                         uint idx,
 | 
						|
                                         table_map remaining_tables, 
 | 
						|
                                         const JOIN_TAB *new_join_tab,
 | 
						|
                                         double *record_count,
 | 
						|
                                         double *read_time,
 | 
						|
                                         table_map *handled_fanout,
 | 
						|
                                         sj_strategy_enum *strategy,
 | 
						|
                                         POSITION *loose_scan_pos
 | 
						|
                                         )
 | 
						|
{
 | 
						|
  TABLE_LIST *nest;
 | 
						|
  if ((nest= new_join_tab->emb_sj_nest))
 | 
						|
  {
 | 
						|
    if (!dupsweedout_tables)
 | 
						|
      first_dupsweedout_table= idx;
 | 
						|
 | 
						|
    dupsweedout_tables |= nest->sj_inner_tables |
 | 
						|
                          nest->nested_join->sj_depends_on |
 | 
						|
                          nest->nested_join->sj_corr_tables;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (dupsweedout_tables)
 | 
						|
  {
 | 
						|
    /* we're in the process of constructing a DuplicateWeedout range */
 | 
						|
    TABLE_LIST *emb= new_join_tab->table->pos_in_table_list->embedding;
 | 
						|
    /* and we've entered an inner side of an outer join*/
 | 
						|
    if (emb && emb->on_expr)
 | 
						|
      dupsweedout_tables |= emb->nested_join->used_tables;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /* If this is the last table that we need for DuplicateWeedout range */
 | 
						|
  if (dupsweedout_tables && !(remaining_tables & ~new_join_tab->table->map &
 | 
						|
                              dupsweedout_tables))
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      Ok, reached a state where we could put a dups weedout point.
 | 
						|
      Walk back and calculate
 | 
						|
        - the join cost (this is needed as the accumulated cost may assume 
 | 
						|
          some other duplicate elimination method)
 | 
						|
        - extra fanout that will be removed by duplicate elimination
 | 
						|
        - duplicate elimination cost
 | 
						|
      There are two cases:
 | 
						|
        1. We have other strategy/ies to remove all of the duplicates.
 | 
						|
        2. We don't.
 | 
						|
      
 | 
						|
      We need to calculate the cost in case #2 also because we need to make
 | 
						|
      choice between this join order and others.
 | 
						|
    */
 | 
						|
    uint first_tab= first_dupsweedout_table;
 | 
						|
    double dups_cost;
 | 
						|
    double prefix_rec_count;
 | 
						|
    double sj_inner_fanout= 1.0;
 | 
						|
    double sj_outer_fanout= 1.0;
 | 
						|
    uint temptable_rec_size;
 | 
						|
    Json_writer_object trace(join->thd);
 | 
						|
    trace.add("strategy", "DuplicateWeedout");
 | 
						|
 | 
						|
    if (first_tab == join->const_tables)
 | 
						|
    {
 | 
						|
      prefix_rec_count= 1.0;
 | 
						|
      temptable_rec_size= 0;
 | 
						|
      dups_cost= 0.0;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      dups_cost= join->positions[first_tab - 1].prefix_cost.total_cost();
 | 
						|
      prefix_rec_count= join->positions[first_tab - 1].prefix_record_count;
 | 
						|
      temptable_rec_size= 8; /* This is not true but we'll make it so */
 | 
						|
    }
 | 
						|
    
 | 
						|
    table_map dups_removed_fanout= 0;
 | 
						|
    double current_fanout= prefix_rec_count;
 | 
						|
    for (uint j= first_dupsweedout_table; j <= idx; j++)
 | 
						|
    {
 | 
						|
      POSITION *p= join->positions + j;
 | 
						|
      current_fanout= COST_MULT(current_fanout, p->records_read);
 | 
						|
      dups_cost= COST_ADD(dups_cost,
 | 
						|
                          COST_ADD(p->read_time,
 | 
						|
                                   current_fanout / TIME_FOR_COMPARE));
 | 
						|
      if (p->table->emb_sj_nest)
 | 
						|
      {
 | 
						|
        sj_inner_fanout= COST_MULT(sj_inner_fanout, p->records_read);
 | 
						|
        dups_removed_fanout |= p->table->table->map;
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        /* Ensure that table supports comparable rowids */
 | 
						|
        DBUG_ASSERT(!(p->table->table->file->ha_table_flags() & HA_NON_COMPARABLE_ROWID));
 | 
						|
 | 
						|
        sj_outer_fanout= COST_MULT(sj_outer_fanout, p->records_read);
 | 
						|
        temptable_rec_size += p->table->table->file->ref_length;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
      Add the cost of temptable use. The table will have sj_outer_fanout
 | 
						|
      records, and we will make 
 | 
						|
      - sj_outer_fanout table writes
 | 
						|
      - sj_inner_fanout*sj_outer_fanout  lookups.
 | 
						|
 | 
						|
    */
 | 
						|
    double one_lookup_cost= get_tmp_table_lookup_cost(join->thd,
 | 
						|
                                                      sj_outer_fanout,
 | 
						|
                                                      temptable_rec_size);
 | 
						|
    double one_write_cost= get_tmp_table_write_cost(join->thd,
 | 
						|
                                                    sj_outer_fanout,
 | 
						|
                                                    temptable_rec_size);
 | 
						|
 | 
						|
    double write_cost= COST_MULT(join->positions[first_tab].prefix_record_count,
 | 
						|
                                 sj_outer_fanout * one_write_cost);
 | 
						|
    double full_lookup_cost=
 | 
						|
             COST_MULT(join->positions[first_tab].prefix_record_count,
 | 
						|
                       COST_MULT(sj_outer_fanout,
 | 
						|
                                 sj_inner_fanout * one_lookup_cost));
 | 
						|
    dups_cost= COST_ADD(dups_cost, COST_ADD(write_cost, full_lookup_cost));
 | 
						|
    
 | 
						|
    *read_time= dups_cost;
 | 
						|
    *record_count= prefix_rec_count * sj_outer_fanout;
 | 
						|
    *handled_fanout= dups_removed_fanout;
 | 
						|
    *strategy= SJ_OPT_DUPS_WEEDOUT;
 | 
						|
    if (unlikely(trace.trace_started()))
 | 
						|
    {
 | 
						|
      trace.add("records", *record_count);
 | 
						|
      trace.add("read_time", *read_time);
 | 
						|
    }
 | 
						|
    return TRUE;
 | 
						|
  }
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef DBUG_OFF
 | 
						|
/*
 | 
						|
  Verify the value of JOIN::cur_sj_inner_tables by recomputing it
 | 
						|
*/
 | 
						|
void JOIN::dbug_verify_sj_inner_tables(uint prefix_size) const
 | 
						|
{
 | 
						|
  table_map cur_map= const_table_map;
 | 
						|
  table_map nests_entered= 0;
 | 
						|
  if (emb_sjm_nest)
 | 
						|
  {
 | 
						|
    DBUG_ASSERT(cur_sj_inner_tables == 0);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (uint i= const_tables; i < prefix_size; i++)
 | 
						|
  {
 | 
						|
    JOIN_TAB *tab= positions[i].table;
 | 
						|
    cur_map |= tab->table->map;
 | 
						|
    if (TABLE_LIST *sj_nest= tab->emb_sj_nest)
 | 
						|
    {
 | 
						|
      nests_entered |= sj_nest->sj_inner_tables;
 | 
						|
      if (!(sj_nest->sj_inner_tables & ~cur_map))
 | 
						|
      {
 | 
						|
        // all nest tables are in the prefix already
 | 
						|
        nests_entered &= ~sj_nest->sj_inner_tables;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_ASSERT(nests_entered == cur_sj_inner_tables);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
  Remove the last join tab from from join->cur_sj_inner_tables bitmap
 | 
						|
 | 
						|
  @note
 | 
						|
  remaining_tables contains @tab.
 | 
						|
 | 
						|
  @seealso update_sj_state() does the reverse
 | 
						|
*/
 | 
						|
 | 
						|
void restore_prev_sj_state(const table_map remaining_tables, 
 | 
						|
                                  const JOIN_TAB *tab, uint idx)
 | 
						|
{
 | 
						|
  TABLE_LIST *emb_sj_nest;
 | 
						|
 | 
						|
  if (tab->emb_sj_nest)
 | 
						|
  {
 | 
						|
    table_map subq_tables= tab->emb_sj_nest->sj_inner_tables;
 | 
						|
    tab->join->sjm_lookup_tables &= ~subq_tables;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!tab->join->emb_sjm_nest && (emb_sj_nest= tab->emb_sj_nest))
 | 
						|
  {
 | 
						|
    table_map subq_tables= emb_sj_nest->sj_inner_tables &
 | 
						|
                           ~tab->join->const_table_map;
 | 
						|
    /* If we're removing the last SJ-inner table, remove the sj-nest */
 | 
						|
    if ((remaining_tables & subq_tables) == subq_tables)
 | 
						|
    {
 | 
						|
      // All non-const tables of the SJ nest are in the remaining_tables.
 | 
						|
      // we are not in the nest anymore.
 | 
						|
      tab->join->cur_sj_inner_tables &= ~emb_sj_nest->sj_inner_tables;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      // Semi-join nest has:
 | 
						|
      // - a table being removed (not in the prefix)
 | 
						|
      // - some tables in the prefix.
 | 
						|
      tab->join->cur_sj_inner_tables |= emb_sj_nest->sj_inner_tables;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef DBUG_OFF
 | 
						|
  /* positions[idx] has been removed. Verify the state for [0...idx-1]  */
 | 
						|
  tab->join->dbug_verify_sj_inner_tables(idx);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Given a semi-join nest, find out which of the IN-equalities are bound
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_bound_sj_equalities()
 | 
						|
      sj_nest           Semi-join nest
 | 
						|
      remaining_tables  Tables that are not yet bound
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Given a semi-join nest, find out which of the IN-equalities have their
 | 
						|
    left part expression bound (i.e. the said expression doesn't refer to
 | 
						|
    any of remaining_tables and can be evaluated).
 | 
						|
 | 
						|
  RETURN
 | 
						|
    Bitmap of bound IN-equalities.
 | 
						|
*/
 | 
						|
 | 
						|
ulonglong get_bound_sj_equalities(TABLE_LIST *sj_nest, 
 | 
						|
                                  table_map remaining_tables)
 | 
						|
{
 | 
						|
  List_iterator<Item_ptr> li(sj_nest->nested_join->sj_outer_expr_list);
 | 
						|
  Item **item;
 | 
						|
  uint i= 0;
 | 
						|
  ulonglong res= 0;
 | 
						|
  while ((item= li++))
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      Q: should this take into account equality propagation and how?
 | 
						|
      A: If e->outer_side is an Item_field, walk over the equality
 | 
						|
         class and see if there is an element that is bound?
 | 
						|
      (this is an optional feature)
 | 
						|
    */
 | 
						|
    if (!(item[0]->used_tables() & remaining_tables))
 | 
						|
    {
 | 
						|
      res |= 1ULL << i;
 | 
						|
    }
 | 
						|
    i++;
 | 
						|
  }
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Check if the last tables of the partial join order allow to use
 | 
						|
  sj-materialization strategy for them
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    at_sjmat_pos()
 | 
						|
      join              
 | 
						|
      remaining_tables
 | 
						|
      tab                the last table's join tab
 | 
						|
      idx                last table's index
 | 
						|
      loose_scan    OUT  TRUE <=> use LooseScan
 | 
						|
 | 
						|
  RETURN
 | 
						|
    TRUE   Yes, can apply sj-materialization
 | 
						|
    FALSE  No, some of the requirements are not met
 | 
						|
*/
 | 
						|
 | 
						|
static SJ_MATERIALIZATION_INFO *
 | 
						|
at_sjmat_pos(const JOIN *join, table_map remaining_tables, const JOIN_TAB *tab,
 | 
						|
             uint idx, bool *loose_scan)
 | 
						|
{
 | 
						|
  /*
 | 
						|
   Check if 
 | 
						|
    1. We're in a semi-join nest that can be run with SJ-materialization
 | 
						|
    2. All the tables correlated through the IN subquery are in the prefix
 | 
						|
  */
 | 
						|
  TABLE_LIST *emb_sj_nest= tab->emb_sj_nest;
 | 
						|
  table_map suffix= remaining_tables & ~tab->table->map;
 | 
						|
  if (emb_sj_nest && emb_sj_nest->sj_mat_info &&
 | 
						|
      !(suffix & emb_sj_nest->sj_inner_tables))
 | 
						|
  {
 | 
						|
    /* 
 | 
						|
      Walk back and check if all immediately preceding tables are from
 | 
						|
      this semi-join.
 | 
						|
    */
 | 
						|
    uint n_tables= my_count_bits(tab->emb_sj_nest->sj_inner_tables);
 | 
						|
    for (uint i= 1; i < n_tables ; i++)
 | 
						|
    {
 | 
						|
      if (join->positions[idx - i].table->emb_sj_nest != tab->emb_sj_nest)
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    *loose_scan= MY_TEST(remaining_tables & ~tab->table->map &
 | 
						|
                                (emb_sj_nest->sj_inner_tables |
 | 
						|
                                 emb_sj_nest->nested_join->sj_depends_on));
 | 
						|
    if (*loose_scan && !emb_sj_nest->sj_subq_pred->sjm_scan_allowed)
 | 
						|
      return NULL;
 | 
						|
    else
 | 
						|
      return emb_sj_nest->sj_mat_info;
 | 
						|
  }
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Re-calculate values of join->best_positions[start..end].prefix_record_count
 | 
						|
*/
 | 
						|
 | 
						|
static void recalculate_prefix_record_count(JOIN *join, uint start, uint end)
 | 
						|
{
 | 
						|
  for (uint j= start; j < end ;j++)
 | 
						|
  {
 | 
						|
    double prefix_count;
 | 
						|
    if (j == join->const_tables)
 | 
						|
      prefix_count= 1.0;
 | 
						|
    else
 | 
						|
      prefix_count= COST_MULT(join->best_positions[j-1].prefix_record_count,
 | 
						|
			      join->best_positions[j-1].records_read);
 | 
						|
 | 
						|
    join->best_positions[j].prefix_record_count= prefix_count;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Fix semi-join strategies for the picked join order
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    fix_semijoin_strategies_for_picked_join_order()
 | 
						|
      join  The join with the picked join order
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Fix semi-join strategies for the picked join order. This is a step that
 | 
						|
    needs to be done right after we have fixed the join order. What we do
 | 
						|
    here is switch join's semi-join strategy description from backward-based
 | 
						|
    to forwards based.
 | 
						|
    
 | 
						|
    When join optimization is in progress, we re-consider semi-join
 | 
						|
    strategies after we've added another table. Here's an illustration.
 | 
						|
    Suppose the join optimization is underway:
 | 
						|
 | 
						|
    1) ot1  it1  it2 
 | 
						|
                 sjX  -- looking at (ot1, it1, it2) join prefix, we decide
 | 
						|
                         to use semi-join strategy sjX.
 | 
						|
 | 
						|
    2) ot1  it1  it2  ot2 
 | 
						|
                 sjX  sjY -- Having added table ot2, we now may consider
 | 
						|
                             another semi-join strategy and decide to use a 
 | 
						|
                             different strategy sjY. Note that the record
 | 
						|
                             of sjX has remained under it2. That is
 | 
						|
                             necessary because we need to be able to get
 | 
						|
                             back to (ot1, it1, it2) join prefix.
 | 
						|
      what makes things even worse is that there are cases where the choice
 | 
						|
      of sjY changes the way we should access it2. 
 | 
						|
 | 
						|
    3) [ot1  it1  it2  ot2  ot3]
 | 
						|
                  sjX  sjY  -- This means that after join optimization is
 | 
						|
                               finished, semi-join info should be read
 | 
						|
                               right-to-left (while nearly all plan refinement
 | 
						|
                               functions, EXPLAIN, etc proceed from left to 
 | 
						|
                               right)
 | 
						|
 | 
						|
    This function does the needed reversal, making it possible to read the
 | 
						|
    join and semi-join order from left to right.
 | 
						|
*/    
 | 
						|
 | 
						|
void fix_semijoin_strategies_for_picked_join_order(JOIN *join)
 | 
						|
{
 | 
						|
  join->sjm_lookup_tables= 0;
 | 
						|
  join->sjm_scan_tables= 0;
 | 
						|
  if (!join->select_lex->sj_nests.elements)
 | 
						|
    return;
 | 
						|
 | 
						|
  THD *thd= join->thd;
 | 
						|
  uint table_count=join->table_count;
 | 
						|
  uint tablenr;
 | 
						|
  table_map remaining_tables= 0;
 | 
						|
  table_map handled_tabs= 0;
 | 
						|
  Json_writer_object trace_wrapper(thd);
 | 
						|
  Json_writer_array trace_semijoin_strategies(thd,
 | 
						|
                                              "fix_semijoin_strategies_for_picked_join_order");
 | 
						|
 | 
						|
  for (tablenr= table_count - 1 ; tablenr != join->const_tables - 1; tablenr--)
 | 
						|
  {
 | 
						|
    POSITION *pos= join->best_positions + tablenr;
 | 
						|
    JOIN_TAB *s= pos->table;
 | 
						|
    uint UNINIT_VAR(first); // Set by every branch except SJ_OPT_NONE which doesn't use it
 | 
						|
 | 
						|
    if ((handled_tabs & s->table->map) || pos->sj_strategy == SJ_OPT_NONE)
 | 
						|
    {
 | 
						|
      remaining_tables |= s->table->map;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (pos->sj_strategy == SJ_OPT_MATERIALIZE)
 | 
						|
    {
 | 
						|
      SJ_MATERIALIZATION_INFO *sjm= s->emb_sj_nest->sj_mat_info;
 | 
						|
      sjm->is_used= TRUE;
 | 
						|
      sjm->is_sj_scan= FALSE;
 | 
						|
      memcpy((uchar*) (pos - sjm->tables + 1), (uchar*) sjm->positions,
 | 
						|
             sizeof(POSITION) * sjm->tables);
 | 
						|
      recalculate_prefix_record_count(join, tablenr - sjm->tables + 1,
 | 
						|
                                      tablenr);
 | 
						|
      first= tablenr - sjm->tables + 1;
 | 
						|
      join->best_positions[first].n_sj_tables= sjm->tables;
 | 
						|
      join->best_positions[first].sj_strategy= SJ_OPT_MATERIALIZE;
 | 
						|
      Json_writer_object semijoin_strategy(thd);
 | 
						|
      semijoin_strategy.add("semi_join_strategy","SJ-Materialization");
 | 
						|
      Json_writer_array semijoin_plan(thd, "join_order");
 | 
						|
      for (uint i= first; i < first+ sjm->tables; i++)
 | 
						|
      {
 | 
						|
        if (unlikely(thd->trace_started()))
 | 
						|
        {
 | 
						|
          Json_writer_object trace_one_table(thd);
 | 
						|
          trace_one_table.add_table_name(join->best_positions[i].table);
 | 
						|
        }
 | 
						|
        join->sjm_lookup_tables |= join->best_positions[i].table->table->map;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else if (pos->sj_strategy == SJ_OPT_MATERIALIZE_SCAN)
 | 
						|
    {
 | 
						|
      POSITION *first_inner= join->best_positions + pos->sjmat_picker.sjm_scan_last_inner;
 | 
						|
      SJ_MATERIALIZATION_INFO *sjm= first_inner->table->emb_sj_nest->sj_mat_info;
 | 
						|
      sjm->is_used= TRUE;
 | 
						|
      sjm->is_sj_scan= TRUE;
 | 
						|
      first= pos->sjmat_picker.sjm_scan_last_inner - sjm->tables + 1;
 | 
						|
      memcpy((uchar*) (join->best_positions + first),
 | 
						|
             (uchar*) sjm->positions, sizeof(POSITION) * sjm->tables);
 | 
						|
      recalculate_prefix_record_count(join, first, first + sjm->tables);
 | 
						|
      join->best_positions[first].sj_strategy= SJ_OPT_MATERIALIZE_SCAN;
 | 
						|
      join->best_positions[first].n_sj_tables= sjm->tables;
 | 
						|
      /* 
 | 
						|
        Do what optimize_semi_joins did: re-run best_access_path for every
 | 
						|
        table in the [last_inner_table + 1; pos..) range
 | 
						|
      */
 | 
						|
      double prefix_rec_count;
 | 
						|
      /* Get the prefix record count */
 | 
						|
      if (first == join->const_tables)
 | 
						|
        prefix_rec_count= 1.0;
 | 
						|
      else
 | 
						|
        prefix_rec_count= join->best_positions[first-1].prefix_record_count;
 | 
						|
      
 | 
						|
      /* Add materialization record count*/
 | 
						|
      prefix_rec_count *= sjm->rows;
 | 
						|
      
 | 
						|
      uint i;
 | 
						|
      table_map rem_tables= remaining_tables;
 | 
						|
      for (i= tablenr; i != (first + sjm->tables - 1); i--)
 | 
						|
        rem_tables |= join->best_positions[i].table->table->map;
 | 
						|
 | 
						|
      for (i= first; i < first+ sjm->tables; i++)
 | 
						|
        join->sjm_scan_tables |= join->best_positions[i].table->table->map;
 | 
						|
 | 
						|
      POSITION dummy;
 | 
						|
      join->cur_sj_inner_tables= 0;
 | 
						|
      Json_writer_object semijoin_strategy(thd);
 | 
						|
      semijoin_strategy.add("semi_join_strategy","SJ-Materialization-Scan");
 | 
						|
      Json_writer_array semijoin_plan(thd, "join_order");
 | 
						|
      for (i= first + sjm->tables; i <= tablenr; i++)
 | 
						|
      {
 | 
						|
        Json_writer_object trace_one_table(thd);
 | 
						|
        if (unlikely(thd->trace_started()))
 | 
						|
        {
 | 
						|
          trace_one_table.add_table_name(join->best_positions[i].table);
 | 
						|
        }
 | 
						|
        best_access_path(join, join->best_positions[i].table, rem_tables,
 | 
						|
                         join->best_positions, i,
 | 
						|
                         FALSE, prefix_rec_count,
 | 
						|
                         join->best_positions + i, &dummy);
 | 
						|
        prefix_rec_count *= join->best_positions[i].records_read;
 | 
						|
        rem_tables &= ~join->best_positions[i].table->table->map;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 
 | 
						|
    if (pos->sj_strategy == SJ_OPT_FIRST_MATCH)
 | 
						|
    {
 | 
						|
      first= pos->firstmatch_picker.first_firstmatch_table;
 | 
						|
      join->best_positions[first].sj_strategy= SJ_OPT_FIRST_MATCH;
 | 
						|
      join->best_positions[first].n_sj_tables= tablenr - first + 1;
 | 
						|
      POSITION dummy; // For loose scan paths
 | 
						|
      double record_count= (first== join->const_tables)? 1.0: 
 | 
						|
                           join->best_positions[tablenr - 1].prefix_record_count;
 | 
						|
      
 | 
						|
      table_map rem_tables= remaining_tables;
 | 
						|
      uint idx;
 | 
						|
      for (idx= first; idx <= tablenr; idx++)
 | 
						|
      {
 | 
						|
        rem_tables |= join->best_positions[idx].table->table->map;
 | 
						|
      }
 | 
						|
      /*
 | 
						|
        Re-run best_access_path to produce best access methods that do not use
 | 
						|
        join buffering
 | 
						|
      */ 
 | 
						|
      join->cur_sj_inner_tables= 0;
 | 
						|
      Json_writer_object semijoin_strategy(thd);
 | 
						|
      semijoin_strategy.add("semi_join_strategy","FirstMatch");
 | 
						|
      Json_writer_array semijoin_plan(thd, "join_order");
 | 
						|
      for (idx= first; idx <= tablenr; idx++)
 | 
						|
      {
 | 
						|
        Json_writer_object trace_one_table(thd);
 | 
						|
        if (unlikely(thd->trace_started()))
 | 
						|
        {
 | 
						|
          trace_one_table.add_table_name(join->best_positions[idx].table);
 | 
						|
        }
 | 
						|
        if (join->best_positions[idx].use_join_buffer)
 | 
						|
        {
 | 
						|
           best_access_path(join, join->best_positions[idx].table,
 | 
						|
                            rem_tables, join->best_positions, idx,
 | 
						|
                            TRUE /* no jbuf */,
 | 
						|
                            record_count, join->best_positions + idx, &dummy);
 | 
						|
        }
 | 
						|
        record_count *= join->best_positions[idx].records_read;
 | 
						|
        rem_tables &= ~join->best_positions[idx].table->table->map;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (pos->sj_strategy == SJ_OPT_LOOSE_SCAN) 
 | 
						|
    {
 | 
						|
      first= pos->loosescan_picker.first_loosescan_table;
 | 
						|
      POSITION *first_pos= join->best_positions + first;
 | 
						|
      POSITION loose_scan_pos; // For loose scan paths
 | 
						|
      double record_count= (first== join->const_tables)? 1.0: 
 | 
						|
                           join->best_positions[tablenr - 1].prefix_record_count;
 | 
						|
      
 | 
						|
      table_map rem_tables= remaining_tables;
 | 
						|
      uint idx;
 | 
						|
      for (idx= first; idx <= tablenr; idx++)
 | 
						|
        rem_tables |= join->best_positions[idx].table->table->map;
 | 
						|
      /*
 | 
						|
        Re-run best_access_path to produce best access methods that do not use
 | 
						|
        join buffering
 | 
						|
      */ 
 | 
						|
      join->cur_sj_inner_tables= 0;
 | 
						|
      Json_writer_object semijoin_strategy(thd);
 | 
						|
      semijoin_strategy.add("semi_join_strategy","LooseScan");
 | 
						|
      Json_writer_array semijoin_plan(thd, "join_order");
 | 
						|
      for (idx= first; idx <= tablenr; idx++)
 | 
						|
      {
 | 
						|
        Json_writer_object trace_one_table(thd);
 | 
						|
        if (unlikely(thd->trace_started()))
 | 
						|
        {
 | 
						|
          trace_one_table.add_table_name(join->best_positions[idx].table);
 | 
						|
        }
 | 
						|
        if (join->best_positions[idx].use_join_buffer || (idx == first))
 | 
						|
        {
 | 
						|
           best_access_path(join, join->best_positions[idx].table,
 | 
						|
                            rem_tables, join->best_positions, idx,
 | 
						|
                            TRUE /* no jbuf */,
 | 
						|
                            record_count, join->best_positions + idx,
 | 
						|
                            &loose_scan_pos);
 | 
						|
           if (idx==first)
 | 
						|
           {
 | 
						|
             join->best_positions[idx]= loose_scan_pos;
 | 
						|
             /*
 | 
						|
               If LooseScan is based on ref access (including the "degenerate"
 | 
						|
               one with 0 key parts), we should use full index scan.
 | 
						|
 | 
						|
               Unfortunately, lots of code assumes that if tab->type==JT_ALL && 
 | 
						|
               tab->quick!=NULL, then quick select should be used. The only
 | 
						|
               simple way to fix this is to remove the quick select:
 | 
						|
             */
 | 
						|
             if (join->best_positions[idx].key)
 | 
						|
             {
 | 
						|
               delete join->best_positions[idx].table->quick;
 | 
						|
               join->best_positions[idx].table->quick= NULL;
 | 
						|
             }
 | 
						|
           }
 | 
						|
        }
 | 
						|
        rem_tables &= ~join->best_positions[idx].table->table->map;
 | 
						|
        record_count *= join->best_positions[idx].records_read;
 | 
						|
      }
 | 
						|
      first_pos->sj_strategy= SJ_OPT_LOOSE_SCAN;
 | 
						|
      first_pos->n_sj_tables= my_count_bits(first_pos->table->emb_sj_nest->sj_inner_tables);
 | 
						|
    }
 | 
						|
 | 
						|
    if (pos->sj_strategy == SJ_OPT_DUPS_WEEDOUT)
 | 
						|
    {
 | 
						|
      Json_writer_object semijoin_strategy(thd);
 | 
						|
      semijoin_strategy.add("semi_join_strategy","DuplicateWeedout");
 | 
						|
      /* 
 | 
						|
        Duplicate Weedout starting at pos->first_dupsweedout_table, ending at
 | 
						|
        this table.
 | 
						|
      */
 | 
						|
      first= pos->dups_weedout_picker.first_dupsweedout_table;
 | 
						|
      join->best_positions[first].sj_strategy= SJ_OPT_DUPS_WEEDOUT;
 | 
						|
      join->best_positions[first].n_sj_tables= tablenr - first + 1;
 | 
						|
    }
 | 
						|
    
 | 
						|
    uint i_end= first + join->best_positions[first].n_sj_tables;
 | 
						|
    for (uint i= first; i < i_end; i++)
 | 
						|
    {
 | 
						|
      if (i != first)
 | 
						|
        join->best_positions[i].sj_strategy= SJ_OPT_NONE;
 | 
						|
      handled_tabs |= join->best_positions[i].table->table->map;
 | 
						|
    }
 | 
						|
 | 
						|
    if (tablenr != first)
 | 
						|
      pos->sj_strategy= SJ_OPT_NONE;
 | 
						|
    remaining_tables |= s->table->map;
 | 
						|
    join->join_tab[first].sj_strategy= join->best_positions[first].sj_strategy;
 | 
						|
    join->join_tab[first].n_sj_tables= join->best_positions[first].n_sj_tables;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Return the number of tables at the top-level of the JOIN
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    get_number_of_tables_at_top_level()
 | 
						|
      join  The join with the picked join order
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    The number of tables in the JOIN currently include all the inner tables of the
 | 
						|
    mergeable semi-joins. The function would make sure that we only count the semi-join
 | 
						|
    nest and not the inner tables of teh semi-join nest.
 | 
						|
*/
 | 
						|
 | 
						|
uint get_number_of_tables_at_top_level(JOIN *join)
 | 
						|
{
 | 
						|
  uint j= 0, tables= 0;
 | 
						|
  while(j < join->table_count)
 | 
						|
  {
 | 
						|
    POSITION *cur_pos= &join->best_positions[j];
 | 
						|
    tables++;
 | 
						|
    if (cur_pos->sj_strategy == SJ_OPT_MATERIALIZE ||
 | 
						|
        cur_pos->sj_strategy == SJ_OPT_MATERIALIZE_SCAN)
 | 
						|
    {
 | 
						|
      SJ_MATERIALIZATION_INFO *sjm= cur_pos->table->emb_sj_nest->sj_mat_info;
 | 
						|
      j= j + sjm->tables;
 | 
						|
    }
 | 
						|
    else
 | 
						|
      j++;
 | 
						|
  }
 | 
						|
  return tables;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Setup semi-join materialization strategy for one semi-join nest
 | 
						|
  
 | 
						|
  SYNOPSIS
 | 
						|
 | 
						|
  setup_sj_materialization()
 | 
						|
    tab  The first tab in the semi-join
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Setup execution structures for one semi-join materialization nest:
 | 
						|
    - Create the materialization temporary table
 | 
						|
    - If we're going to do index lookups
 | 
						|
        create TABLE_REF structure to make the lookus
 | 
						|
    - else (if we're going to do a full scan of the temptable)
 | 
						|
        create Copy_field structures to do copying.
 | 
						|
 | 
						|
  RETURN
 | 
						|
    FALSE  Ok
 | 
						|
    TRUE   Error
 | 
						|
*/
 | 
						|
 | 
						|
bool setup_sj_materialization_part1(JOIN_TAB *sjm_tab)
 | 
						|
{
 | 
						|
  JOIN_TAB *tab= sjm_tab->bush_children->start;
 | 
						|
  TABLE_LIST *emb_sj_nest= tab->table->pos_in_table_list->embedding;
 | 
						|
  SJ_MATERIALIZATION_INFO *sjm;
 | 
						|
  THD *thd;
 | 
						|
 | 
						|
  DBUG_ENTER("setup_sj_materialization");
 | 
						|
  
 | 
						|
  /* Walk out of outer join nests until we reach the semi-join nest we're in */
 | 
						|
  while (!emb_sj_nest->sj_mat_info)
 | 
						|
    emb_sj_nest= emb_sj_nest->embedding;
 | 
						|
 | 
						|
  sjm= emb_sj_nest->sj_mat_info;
 | 
						|
  thd= tab->join->thd;
 | 
						|
  /* First the calls come to the materialization function */
 | 
						|
 | 
						|
  DBUG_ASSERT(sjm->is_used);
 | 
						|
  /* 
 | 
						|
    Set up the table to write to, do as select_union::create_result_table does
 | 
						|
  */
 | 
						|
  sjm->sjm_table_param.init();
 | 
						|
  sjm->sjm_table_param.bit_fields_as_long= TRUE;
 | 
						|
  SELECT_LEX *subq_select= emb_sj_nest->sj_subq_pred->unit->first_select();
 | 
						|
  const LEX_CSTRING sj_materialize_name= { STRING_WITH_LEN("sj-materialize") };
 | 
						|
  List_iterator<Item> it(subq_select->item_list);
 | 
						|
  Item *item;
 | 
						|
  while((item= it++))
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      This semi-join replaced the subquery (subq_select) and so on
 | 
						|
      re-executing it will not be prepared. To use the Items from its
 | 
						|
      select list we have to prepare (fix_fields) them
 | 
						|
    */
 | 
						|
    if (item->fix_fields_if_needed(thd, it.ref()))
 | 
						|
      DBUG_RETURN(TRUE);
 | 
						|
    item= *(it.ref()); // it can be changed by fix_fields
 | 
						|
    DBUG_ASSERT(!item->name.length || item->name.length == strlen(item->name.str));
 | 
						|
    sjm->sjm_table_cols.push_back(item, thd->mem_root);
 | 
						|
  }
 | 
						|
 | 
						|
  sjm->sjm_table_param.field_count= subq_select->item_list.elements;
 | 
						|
  sjm->sjm_table_param.func_count= sjm->sjm_table_param.field_count;
 | 
						|
  sjm->sjm_table_param.force_not_null_cols= TRUE;
 | 
						|
 | 
						|
  if (!(sjm->table= create_tmp_table(thd, &sjm->sjm_table_param, 
 | 
						|
                                     sjm->sjm_table_cols, (ORDER*) 0, 
 | 
						|
                                     TRUE /* distinct */, 
 | 
						|
                                     1, /*save_sum_fields*/
 | 
						|
                                     thd->variables.option_bits | TMP_TABLE_ALL_COLUMNS, 
 | 
						|
                                     HA_POS_ERROR /*rows_limit */, 
 | 
						|
                                     &sj_materialize_name)))
 | 
						|
    DBUG_RETURN(TRUE); /* purecov: inspected */
 | 
						|
  sjm->table->map=  emb_sj_nest->nested_join->used_tables;
 | 
						|
  sjm->table->file->extra(HA_EXTRA_WRITE_CACHE);
 | 
						|
  sjm->table->file->extra(HA_EXTRA_IGNORE_DUP_KEY);
 | 
						|
 | 
						|
  tab->join->sj_tmp_tables.push_back(sjm->table, thd->mem_root);
 | 
						|
  tab->join->sjm_info_list.push_back(sjm, thd->mem_root);
 | 
						|
  
 | 
						|
  sjm->materialized= FALSE;
 | 
						|
  sjm_tab->table= sjm->table;
 | 
						|
  sjm_tab->tab_list= emb_sj_nest;
 | 
						|
  sjm->table->pos_in_table_list= emb_sj_nest;
 | 
						|
 
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
   @retval
 | 
						|
   FALSE ok
 | 
						|
   TRUE  error
 | 
						|
*/
 | 
						|
 | 
						|
bool setup_sj_materialization_part2(JOIN_TAB *sjm_tab)
 | 
						|
{
 | 
						|
  DBUG_ENTER("setup_sj_materialization_part2");
 | 
						|
  JOIN_TAB *tab= sjm_tab->bush_children->start;
 | 
						|
  TABLE_LIST *emb_sj_nest= tab->table->pos_in_table_list->embedding;
 | 
						|
  /* Walk out of outer join nests until we reach the semi-join nest we're in */
 | 
						|
  while (!emb_sj_nest->sj_mat_info)
 | 
						|
    emb_sj_nest= emb_sj_nest->embedding;
 | 
						|
  SJ_MATERIALIZATION_INFO *sjm= emb_sj_nest->sj_mat_info;
 | 
						|
  THD *thd= tab->join->thd;
 | 
						|
  uint i;
 | 
						|
 | 
						|
  if (!sjm->is_sj_scan)
 | 
						|
  {
 | 
						|
    KEY           *tmp_key; /* The only index on the temporary table. */
 | 
						|
    uint          tmp_key_parts; /* Number of keyparts in tmp_key. */
 | 
						|
    tmp_key= sjm->table->key_info;
 | 
						|
    tmp_key_parts= tmp_key->user_defined_key_parts;
 | 
						|
    
 | 
						|
    /*
 | 
						|
      Create/initialize everything we will need to index lookups into the
 | 
						|
      temptable.
 | 
						|
    */
 | 
						|
    TABLE_REF *tab_ref;
 | 
						|
    tab_ref= &sjm_tab->ref;
 | 
						|
    tab_ref->key= 0; /* The only temp table index. */
 | 
						|
    tab_ref->key_length= tmp_key->key_length;
 | 
						|
    if (!(tab_ref->key_buff=
 | 
						|
          (uchar*) thd->calloc(ALIGN_SIZE(tmp_key->key_length) * 2)) ||
 | 
						|
        !(tab_ref->key_copy=
 | 
						|
          (store_key**) thd->alloc((sizeof(store_key*) *
 | 
						|
                                    (tmp_key_parts + 1)))) ||
 | 
						|
        !(tab_ref->items=
 | 
						|
          (Item**) thd->alloc(sizeof(Item*) * tmp_key_parts)))
 | 
						|
      DBUG_RETURN(TRUE); /* purecov: inspected */
 | 
						|
 | 
						|
    tab_ref->key_buff2=tab_ref->key_buff+ALIGN_SIZE(tmp_key->key_length);
 | 
						|
    tab_ref->key_err=1;
 | 
						|
    tab_ref->null_rejecting= 1;
 | 
						|
    tab_ref->disable_cache= FALSE;
 | 
						|
 | 
						|
    KEY_PART_INFO *cur_key_part= tmp_key->key_part;
 | 
						|
    store_key **ref_key= tab_ref->key_copy;
 | 
						|
    uchar *cur_ref_buff= tab_ref->key_buff;
 | 
						|
    
 | 
						|
    for (i= 0; i < tmp_key_parts; i++, cur_key_part++, ref_key++)
 | 
						|
    {
 | 
						|
      tab_ref->items[i]=
 | 
						|
        emb_sj_nest->sj_subq_pred->left_exp()->element_index(i);
 | 
						|
      int null_count= MY_TEST(cur_key_part->field->real_maybe_null());
 | 
						|
      *ref_key= new store_key_item(thd, cur_key_part->field,
 | 
						|
                                   /* TODO:
 | 
						|
                                      the NULL byte is taken into account in
 | 
						|
                                      cur_key_part->store_length, so instead of
 | 
						|
                                      cur_ref_buff + MY_TEST(maybe_null), we could
 | 
						|
                                      use that information instead.
 | 
						|
                                   */
 | 
						|
                                   cur_ref_buff + null_count,
 | 
						|
                                   null_count ? cur_ref_buff : 0,
 | 
						|
                                   cur_key_part->length, tab_ref->items[i],
 | 
						|
                                   FALSE);
 | 
						|
      if (!*ref_key)
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
      cur_ref_buff+= cur_key_part->store_length;
 | 
						|
    }
 | 
						|
    *ref_key= NULL; /* End marker. */
 | 
						|
      
 | 
						|
    /*
 | 
						|
      We don't ever have guarded conditions for SJM tables, but code at SQL
 | 
						|
      layer depends on cond_guards array being alloced.
 | 
						|
    */
 | 
						|
    if (!(tab_ref->cond_guards= (bool**) thd->calloc(sizeof(uint*)*tmp_key_parts)))
 | 
						|
    {
 | 
						|
      DBUG_RETURN(TRUE);
 | 
						|
    }
 | 
						|
 | 
						|
    tab_ref->key_err= 1;
 | 
						|
    tab_ref->key_parts= tmp_key_parts;
 | 
						|
    sjm->tab_ref= tab_ref;
 | 
						|
 | 
						|
    /*
 | 
						|
      Remove the injected semi-join IN-equalities from join_tab conds. This
 | 
						|
      needs to be done because the IN-equalities refer to columns of
 | 
						|
      sj-inner tables which are not available after the materialization
 | 
						|
      has been finished.
 | 
						|
    */
 | 
						|
    for (i= 0; i < sjm->tables; i++)
 | 
						|
    {
 | 
						|
      if (remove_sj_conds(thd, &tab[i].select_cond) ||
 | 
						|
          (tab[i].select && remove_sj_conds(thd, &tab[i].select->cond)))
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
    }
 | 
						|
    if (!(sjm->in_equality= create_subq_in_equalities(thd, sjm,
 | 
						|
                                                      emb_sj_nest->sj_subq_pred)))
 | 
						|
      DBUG_RETURN(TRUE); /* purecov: inspected */
 | 
						|
    sjm_tab->type= JT_EQ_REF;
 | 
						|
    sjm_tab->select_cond= sjm->in_equality;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      We'll be doing full scan of the temptable.  
 | 
						|
      Setup copying of temptable columns back to the record buffers
 | 
						|
      for their source tables. We need this because IN-equalities
 | 
						|
      refer to the original tables.
 | 
						|
 | 
						|
      EXAMPLE
 | 
						|
 | 
						|
      Consider the query:
 | 
						|
        SELECT * FROM ot WHERE ot.col1 IN (SELECT it.col2 FROM it)
 | 
						|
      
 | 
						|
      Suppose it's executed with SJ-Materialization-scan. We choose to do scan
 | 
						|
      if we can't do the lookup, i.e. the join order is (it, ot). The plan
 | 
						|
      would look as follows:
 | 
						|
 | 
						|
        table    access method      condition
 | 
						|
         it      materialize+scan    -
 | 
						|
         ot      (whatever)          ot1.col1=it.col2 (C2)
 | 
						|
 | 
						|
      The condition C2 refers to current row of table it. The problem is
 | 
						|
      that by the time we evaluate C2, we would have finished with scanning
 | 
						|
      it itself and will be scanning the temptable. 
 | 
						|
 | 
						|
      At the moment, our solution is to copy back: when we get the next
 | 
						|
      temptable record, we copy its columns to their corresponding columns
 | 
						|
      in the record buffers for the source tables. 
 | 
						|
    */
 | 
						|
    if (!(sjm->copy_field= new Copy_field[sjm->sjm_table_cols.elements]))
 | 
						|
      DBUG_RETURN(TRUE);
 | 
						|
 | 
						|
    //it.rewind();
 | 
						|
    Ref_ptr_array p_items= emb_sj_nest->sj_subq_pred->unit->first_select()->ref_pointer_array;
 | 
						|
    for (uint i=0; i < sjm->sjm_table_cols.elements; i++)
 | 
						|
    {
 | 
						|
      bool dummy;
 | 
						|
      Item_equal *item_eq;
 | 
						|
      //Item *item= (it++)->real_item();
 | 
						|
      Item *item= p_items[i]->real_item();
 | 
						|
      DBUG_ASSERT(item->type() == Item::FIELD_ITEM);
 | 
						|
      Field *copy_to= ((Item_field*)item)->field;
 | 
						|
      /*
 | 
						|
        Tricks with Item_equal are due to the following: suppose we have a
 | 
						|
        query:
 | 
						|
        
 | 
						|
        ... WHERE cond(ot.col) AND ot.col IN (SELECT it2.col FROM it1,it2
 | 
						|
                                               WHERE it1.col= it2.col)
 | 
						|
         then equality propagation will create an 
 | 
						|
         
 | 
						|
           Item_equal(it1.col, it2.col, ot.col) 
 | 
						|
         
 | 
						|
         then substitute_for_best_equal_field() will change the conditions
 | 
						|
         according to the join order:
 | 
						|
 | 
						|
         table | attached condition
 | 
						|
         ------+--------------------
 | 
						|
          it1  |
 | 
						|
          it2  | it1.col=it2.col
 | 
						|
          ot   | cond(it1.col)
 | 
						|
 | 
						|
         although we've originally had "SELECT it2.col", conditions attached 
 | 
						|
         to subsequent outer tables will refer to it1.col, so SJM-Scan will
 | 
						|
         need to unpack data to there. 
 | 
						|
         That is, if an element from subquery's select list participates in 
 | 
						|
         equality propagation, then we need to unpack it to the first
 | 
						|
         element equality propagation member that refers to table that is
 | 
						|
         within the subquery.
 | 
						|
      */
 | 
						|
      item_eq= find_item_equal(tab->join->cond_equal, copy_to, &dummy);
 | 
						|
 | 
						|
      if (item_eq)
 | 
						|
      {
 | 
						|
        List_iterator<Item> it(item_eq->equal_items);
 | 
						|
        /* We're interested in field items only */
 | 
						|
        if (item_eq->get_const())
 | 
						|
          it++;
 | 
						|
        Item *item;
 | 
						|
        while ((item= it++))
 | 
						|
        {
 | 
						|
          if (!(item->used_tables() & ~emb_sj_nest->sj_inner_tables))
 | 
						|
          {
 | 
						|
            DBUG_ASSERT(item->real_item()->type() == Item::FIELD_ITEM);
 | 
						|
            copy_to= ((Item_field *) (item->real_item()))->field;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      sjm->copy_field[i].set(copy_to, sjm->table->field[i], FALSE);
 | 
						|
      /* The write_set for source tables must be set up to allow the copying */
 | 
						|
      bitmap_set_bit(copy_to->table->write_set, copy_to->field_index);
 | 
						|
    }
 | 
						|
    sjm_tab->type= JT_ALL;
 | 
						|
 | 
						|
    /* Initialize full scan */
 | 
						|
    sjm_tab->read_first_record= join_init_read_record;
 | 
						|
    sjm_tab->read_record.copy_field= sjm->copy_field;
 | 
						|
    sjm_tab->read_record.copy_field_end= sjm->copy_field +
 | 
						|
                                         sjm->sjm_table_cols.elements;
 | 
						|
    sjm_tab->read_record.read_record_func= read_record_func_for_rr_and_unpack;
 | 
						|
  }
 | 
						|
 | 
						|
  sjm_tab->bush_children->end[-1].next_select= end_sj_materialize;
 | 
						|
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Create subquery IN-equalities assuming use of materialization strategy
 | 
						|
  
 | 
						|
  SYNOPSIS
 | 
						|
    create_subq_in_equalities()
 | 
						|
      thd        Thread handle
 | 
						|
      sjm        Semi-join materialization structure
 | 
						|
      subq_pred  The subquery predicate
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Create subquery IN-equality predicates. That is, for a subquery
 | 
						|
    
 | 
						|
      (oe1, oe2, ...) IN (SELECT ie1, ie2, ... FROM ...)
 | 
						|
    
 | 
						|
    create "oe1=ie1 AND ie1=ie2 AND ..." expression, such that ie1, ie2, ..
 | 
						|
    refer to the columns of the table that's used to materialize the
 | 
						|
    subquery.
 | 
						|
 | 
						|
  RETURN 
 | 
						|
    Created condition
 | 
						|
*/
 | 
						|
 | 
						|
static Item *create_subq_in_equalities(THD *thd, SJ_MATERIALIZATION_INFO *sjm, 
 | 
						|
                                Item_in_subselect *subq_pred)
 | 
						|
{
 | 
						|
  Item *res= NULL;
 | 
						|
  Item *left_exp= subq_pred->left_exp();
 | 
						|
  uint ncols= left_exp->cols();
 | 
						|
  if (ncols == 1)
 | 
						|
  {
 | 
						|
    if (!(res= new (thd->mem_root) Item_func_eq(thd, left_exp,
 | 
						|
                                new (thd->mem_root) Item_field(thd, sjm->table->field[0]))))
 | 
						|
      return NULL; /* purecov: inspected */
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    Item *conj;
 | 
						|
    for (uint i= 0; i < ncols; i++)
 | 
						|
    {
 | 
						|
      if (!(conj= new (thd->mem_root) Item_func_eq(thd, left_exp->element_index(i),
 | 
						|
                                   new (thd->mem_root) Item_field(thd, sjm->table->field[i]))) ||
 | 
						|
          !(res= and_items(thd, res, conj)))
 | 
						|
        return NULL; /* purecov: inspected */
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (res->fix_fields(thd, &res))
 | 
						|
    return NULL; /* purecov: inspected */
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  @retval
 | 
						|
  0 ok
 | 
						|
  1 error
 | 
						|
*/
 | 
						|
 | 
						|
static bool remove_sj_conds(THD *thd, Item **tree)
 | 
						|
{
 | 
						|
  if (*tree)
 | 
						|
  {
 | 
						|
    if (is_cond_sj_in_equality(*tree))
 | 
						|
    {
 | 
						|
      *tree= NULL;
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    else if ((*tree)->type() == Item::COND_ITEM) 
 | 
						|
    {
 | 
						|
      Item *item;
 | 
						|
      List_iterator<Item> li(*(((Item_cond*)*tree)->argument_list()));
 | 
						|
      while ((item= li++))
 | 
						|
      {
 | 
						|
        if (is_cond_sj_in_equality(item))
 | 
						|
        {
 | 
						|
          Item_int *tmp= new (thd->mem_root) Item_int(thd, 1);
 | 
						|
          if (!tmp)
 | 
						|
            return 1;
 | 
						|
          li.replace(tmp);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Check if given Item was injected by semi-join equality */
 | 
						|
static bool is_cond_sj_in_equality(Item *item)
 | 
						|
{
 | 
						|
  if (item->type() == Item::FUNC_ITEM &&
 | 
						|
      ((Item_func*)item)->functype()== Item_func::EQ_FUNC)
 | 
						|
  {
 | 
						|
    Item_func_eq *item_eq= (Item_func_eq*)item;
 | 
						|
    return MY_TEST(item_eq->in_equality_no != UINT_MAX);
 | 
						|
  }
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Create a temporary table to weed out duplicate rowid combinations
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
 | 
						|
    create_sj_weedout_tmp_table()
 | 
						|
      thd                    Thread handle
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Create a temporary table to weed out duplicate rowid combinations. The
 | 
						|
    table has a single column that is a concatenation of all rowids in the
 | 
						|
    combination. 
 | 
						|
 | 
						|
    Depending on the needed length, there are two cases:
 | 
						|
 | 
						|
    1. When the length of the column < max_key_length:
 | 
						|
 | 
						|
      CREATE TABLE tmp (col VARBINARY(n) NOT NULL, UNIQUE KEY(col));
 | 
						|
 | 
						|
    2. Otherwise (not a valid SQL syntax but internally supported):
 | 
						|
 | 
						|
      CREATE TABLE tmp (col VARBINARY NOT NULL, UNIQUE CONSTRAINT(col));
 | 
						|
 | 
						|
    The code in this function was produced by extraction of relevant parts
 | 
						|
    from create_tmp_table().
 | 
						|
 | 
						|
  RETURN
 | 
						|
    created table
 | 
						|
    NULL on error
 | 
						|
*/
 | 
						|
 | 
						|
bool
 | 
						|
SJ_TMP_TABLE::create_sj_weedout_tmp_table(THD *thd)
 | 
						|
{
 | 
						|
  MEM_ROOT *mem_root_save, own_root;
 | 
						|
  TABLE *table;
 | 
						|
  TABLE_SHARE *share;
 | 
						|
  uint  temp_pool_slot=MY_BIT_NONE;
 | 
						|
  char	*tmpname,path[FN_REFLEN];
 | 
						|
  Field **reg_field;
 | 
						|
  KEY_PART_INFO *key_part_info;
 | 
						|
  KEY *keyinfo;
 | 
						|
  uchar *group_buff;
 | 
						|
  uchar *bitmaps;
 | 
						|
  uint *blob_field;
 | 
						|
  bool using_unique_constraint=FALSE;
 | 
						|
  bool use_packed_rows= FALSE;
 | 
						|
  Field *field, *key_field;
 | 
						|
  uint null_pack_length, null_count;
 | 
						|
  uchar *null_flags;
 | 
						|
  uchar *pos;
 | 
						|
  DBUG_ENTER("create_sj_weedout_tmp_table");
 | 
						|
  DBUG_ASSERT(!is_degenerate);
 | 
						|
 | 
						|
  tmp_table= NULL;
 | 
						|
  uint uniq_tuple_length_arg= rowid_len + null_bytes;
 | 
						|
  /*
 | 
						|
    STEP 1: Get temporary table name
 | 
						|
  */
 | 
						|
  if (use_temp_pool && !(test_flags & TEST_KEEP_TMP_TABLES))
 | 
						|
    temp_pool_slot = bitmap_lock_set_next(&temp_pool);
 | 
						|
 | 
						|
  if (temp_pool_slot != MY_BIT_NONE) // we got a slot
 | 
						|
    sprintf(path, "%s-subquery-%lx-%i", tmp_file_prefix,
 | 
						|
	    current_pid, temp_pool_slot);
 | 
						|
  else
 | 
						|
  {
 | 
						|
    /* if we run out of slots or we are not using tempool */
 | 
						|
    sprintf(path,"%s-subquery-%lx-%lx-%x", tmp_file_prefix,current_pid,
 | 
						|
            (ulong) thd->thread_id, thd->tmp_table++);
 | 
						|
  }
 | 
						|
  fn_format(path, path, mysql_tmpdir, "", MY_REPLACE_EXT|MY_UNPACK_FILENAME);
 | 
						|
 | 
						|
  /* STEP 2: Figure if we'll be using a key or blob+constraint */
 | 
						|
  /* it always has my_charset_bin, so mbmaxlen==1 */
 | 
						|
  if (uniq_tuple_length_arg >= CONVERT_IF_BIGGER_TO_BLOB)
 | 
						|
    using_unique_constraint= TRUE;
 | 
						|
 | 
						|
  /* STEP 3: Allocate memory for temptable description */
 | 
						|
  init_sql_alloc(PSI_INSTRUMENT_ME, &own_root, TABLE_ALLOC_BLOCK_SIZE, 0,
 | 
						|
                 MYF(MY_THREAD_SPECIFIC));
 | 
						|
  if (!multi_alloc_root(&own_root,
 | 
						|
                        &table, sizeof(*table),
 | 
						|
                        &share, sizeof(*share),
 | 
						|
                        ®_field, sizeof(Field*) * (1+1),
 | 
						|
                        &blob_field, sizeof(uint)*2,
 | 
						|
                        &keyinfo, sizeof(*keyinfo),
 | 
						|
                        &key_part_info, sizeof(*key_part_info) * 2,
 | 
						|
                        &start_recinfo,
 | 
						|
                        sizeof(*recinfo)*(1*2+4),
 | 
						|
                        &tmpname, (uint) strlen(path)+1,
 | 
						|
                        &group_buff, (!using_unique_constraint ?
 | 
						|
                                      uniq_tuple_length_arg : 0),
 | 
						|
                        &bitmaps, bitmap_buffer_size(1)*6,
 | 
						|
                        NullS))
 | 
						|
  {
 | 
						|
    if (temp_pool_slot != MY_BIT_NONE)
 | 
						|
      bitmap_lock_clear_bit(&temp_pool, temp_pool_slot);
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
  }
 | 
						|
  strmov(tmpname,path);
 | 
						|
  
 | 
						|
 | 
						|
  /* STEP 4: Create TABLE description */
 | 
						|
  bzero((char*) table,sizeof(*table));
 | 
						|
  bzero((char*) reg_field,sizeof(Field*)*2);
 | 
						|
 | 
						|
  table->mem_root= own_root;
 | 
						|
  mem_root_save= thd->mem_root;
 | 
						|
  thd->mem_root= &table->mem_root;
 | 
						|
 | 
						|
  table->field=reg_field;
 | 
						|
  table->alias.set("weedout-tmp", sizeof("weedout-tmp")-1,
 | 
						|
                   table_alias_charset);
 | 
						|
  table->reginfo.lock_type=TL_WRITE;	/* Will be updated */
 | 
						|
  table->db_stat=HA_OPEN_KEYFILE;
 | 
						|
  table->map=1;
 | 
						|
  table->temp_pool_slot = temp_pool_slot;
 | 
						|
  table->copy_blobs= 1;
 | 
						|
  table->in_use= thd;
 | 
						|
 | 
						|
  table->s= share;
 | 
						|
  init_tmp_table_share(thd, share, "", 0, tmpname, tmpname);
 | 
						|
  share->blob_field= blob_field;
 | 
						|
  share->table_charset= NULL;
 | 
						|
  share->primary_key= MAX_KEY;               // Indicate no primary key
 | 
						|
 | 
						|
  /* Create the field */
 | 
						|
  {
 | 
						|
    LEX_CSTRING field_name= {STRING_WITH_LEN("rowids") };
 | 
						|
    /*
 | 
						|
      For the sake of uniformity, always use Field_varstring (altough we could
 | 
						|
      use Field_string for shorter keys)
 | 
						|
    */
 | 
						|
    field= new Field_varstring(uniq_tuple_length_arg, FALSE, &field_name,
 | 
						|
                               share, &my_charset_bin);
 | 
						|
    if (!field)
 | 
						|
      DBUG_RETURN(0);
 | 
						|
    field->table= table;
 | 
						|
    field->key_start.clear_all();
 | 
						|
    field->part_of_key.clear_all();
 | 
						|
    field->part_of_sortkey.clear_all();
 | 
						|
    field->unireg_check= Field::NONE;
 | 
						|
    field->flags= (NOT_NULL_FLAG | BINARY_FLAG | NO_DEFAULT_VALUE_FLAG);
 | 
						|
    field->reset_fields();
 | 
						|
    field->init(table);
 | 
						|
    field->orig_table= NULL;
 | 
						|
     
 | 
						|
    field->field_index= 0;
 | 
						|
    
 | 
						|
    *(reg_field++)= field;
 | 
						|
    *blob_field= 0;
 | 
						|
    *reg_field= 0;
 | 
						|
 | 
						|
    share->fields= 1;
 | 
						|
    share->blob_fields= 0;
 | 
						|
  }
 | 
						|
 | 
						|
  uint reclength= field->pack_length();
 | 
						|
  if (using_unique_constraint || thd->variables.tmp_memory_table_size == 0)
 | 
						|
  { 
 | 
						|
    share->db_plugin= ha_lock_engine(0, TMP_ENGINE_HTON);
 | 
						|
    table->file= get_new_handler(share, &table->mem_root,
 | 
						|
                                 share->db_type());
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    share->db_plugin= ha_lock_engine(0, heap_hton);
 | 
						|
    table->file= get_new_handler(share, &table->mem_root,
 | 
						|
                                 share->db_type());
 | 
						|
    DBUG_ASSERT(!table->file || uniq_tuple_length_arg <= table->file->max_key_length());
 | 
						|
  }
 | 
						|
  if (!table->file)
 | 
						|
    goto err;
 | 
						|
 | 
						|
  if (table->file->set_ha_share_ref(&share->ha_share))
 | 
						|
  {
 | 
						|
    delete table->file;
 | 
						|
    goto err;
 | 
						|
  }
 | 
						|
 | 
						|
  null_count=1;
 | 
						|
  
 | 
						|
  null_pack_length= 1;
 | 
						|
  reclength += null_pack_length;
 | 
						|
 | 
						|
  share->reclength= reclength;
 | 
						|
  {
 | 
						|
    uint alloc_length=ALIGN_SIZE(share->reclength + MI_UNIQUE_HASH_LENGTH+1);
 | 
						|
    share->rec_buff_length= alloc_length;
 | 
						|
    if (!(table->record[0]= (uchar*)
 | 
						|
                            alloc_root(&table->mem_root, alloc_length*3)))
 | 
						|
      goto err;
 | 
						|
    table->record[1]= table->record[0]+alloc_length;
 | 
						|
    share->default_values= table->record[1]+alloc_length;
 | 
						|
  }
 | 
						|
  setup_tmp_table_column_bitmaps(table, bitmaps, table->s->fields);
 | 
						|
 | 
						|
  recinfo= start_recinfo;
 | 
						|
  null_flags=(uchar*) table->record[0];
 | 
						|
  pos=table->record[0]+ null_pack_length;
 | 
						|
  if (null_pack_length)
 | 
						|
  {
 | 
						|
    bzero((uchar*) recinfo,sizeof(*recinfo));
 | 
						|
    recinfo->type=FIELD_NORMAL;
 | 
						|
    recinfo->length=null_pack_length;
 | 
						|
    recinfo++;
 | 
						|
    bfill(null_flags,null_pack_length,255);	// Set null fields
 | 
						|
 | 
						|
    table->null_flags= (uchar*) table->record[0];
 | 
						|
    share->null_fields= null_count;
 | 
						|
    share->null_bytes= null_pack_length;
 | 
						|
  }
 | 
						|
  null_count=1;
 | 
						|
 | 
						|
  {
 | 
						|
    //Field *field= *reg_field;
 | 
						|
    uint length;
 | 
						|
    bzero((uchar*) recinfo,sizeof(*recinfo));
 | 
						|
    field->move_field(pos,(uchar*) 0,0);
 | 
						|
 | 
						|
    field->reset();
 | 
						|
    /*
 | 
						|
      Test if there is a default field value. The test for ->ptr is to skip
 | 
						|
      'offset' fields generated by initialize_tables
 | 
						|
    */
 | 
						|
    // Initialize the table field:
 | 
						|
    bzero(field->ptr, field->pack_length());
 | 
						|
 | 
						|
    length=field->pack_length();
 | 
						|
    pos+= length;
 | 
						|
 | 
						|
    /* Make entry for create table */
 | 
						|
    recinfo->length=length;
 | 
						|
    recinfo->type= field->tmp_engine_column_type(use_packed_rows);
 | 
						|
    field->set_table_name(&table->alias);
 | 
						|
  }
 | 
						|
 | 
						|
  if (thd->variables.tmp_memory_table_size == ~ (ulonglong) 0)	// No limit
 | 
						|
    share->max_rows= ~(ha_rows) 0;
 | 
						|
  else
 | 
						|
    share->max_rows= (ha_rows) (((share->db_type() == heap_hton) ?
 | 
						|
                                 MY_MIN(thd->variables.tmp_memory_table_size,
 | 
						|
                                        thd->variables.max_heap_table_size) :
 | 
						|
                                 thd->variables.tmp_disk_table_size) /
 | 
						|
			         share->reclength);
 | 
						|
  set_if_bigger(share->max_rows,1);		// For dummy start options
 | 
						|
 | 
						|
 | 
						|
  //// keyinfo= param->keyinfo;
 | 
						|
  if (TRUE)
 | 
						|
  {
 | 
						|
    DBUG_PRINT("info",("Creating group key in temporary table"));
 | 
						|
    share->keys=1;
 | 
						|
    share->uniques= MY_TEST(using_unique_constraint);
 | 
						|
    table->key_info=keyinfo;
 | 
						|
    keyinfo->key_part=key_part_info;
 | 
						|
    keyinfo->flags=HA_NOSAME;
 | 
						|
    keyinfo->usable_key_parts= keyinfo->user_defined_key_parts= 1;
 | 
						|
    keyinfo->key_length=0;
 | 
						|
    keyinfo->rec_per_key=0;
 | 
						|
    keyinfo->algorithm= HA_KEY_ALG_UNDEF;
 | 
						|
    keyinfo->name= weedout_key;
 | 
						|
    {
 | 
						|
      key_part_info->null_bit=0;
 | 
						|
      key_part_info->field=  field;
 | 
						|
      key_part_info->offset= field->offset(table->record[0]);
 | 
						|
      key_part_info->length= (uint16) field->key_length();
 | 
						|
      key_part_info->type=   (uint8) field->key_type();
 | 
						|
      key_part_info->key_type = FIELDFLAG_BINARY;
 | 
						|
      if (!using_unique_constraint)
 | 
						|
      {
 | 
						|
	if (!(key_field= field->new_key_field(thd->mem_root, table,
 | 
						|
                                              group_buff,
 | 
						|
                                              key_part_info->length,
 | 
						|
                                              field->null_ptr,
 | 
						|
                                              field->null_bit)))
 | 
						|
	  goto err;
 | 
						|
      }
 | 
						|
      keyinfo->key_length+=  key_part_info->length;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (unlikely(thd->is_fatal_error))            // If end of memory
 | 
						|
    goto err;
 | 
						|
  share->db_record_offset= 1;
 | 
						|
  table->no_rows= 1;              		// We don't need the data
 | 
						|
 | 
						|
  // recinfo must point after last field
 | 
						|
  recinfo++;
 | 
						|
  if (share->db_type() == TMP_ENGINE_HTON)
 | 
						|
  {
 | 
						|
    if (unlikely(create_internal_tmp_table(table, keyinfo, start_recinfo,
 | 
						|
                                           &recinfo, 0)))
 | 
						|
      goto err;
 | 
						|
  }
 | 
						|
  if (unlikely(open_tmp_table(table)))
 | 
						|
    goto err;
 | 
						|
 | 
						|
  thd->mem_root= mem_root_save;
 | 
						|
  tmp_table= table;
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
 | 
						|
err:
 | 
						|
  thd->mem_root= mem_root_save;
 | 
						|
  free_tmp_table(thd,table);                    /* purecov: inspected */
 | 
						|
  if (temp_pool_slot != MY_BIT_NONE)
 | 
						|
    bitmap_lock_clear_bit(&temp_pool, temp_pool_slot);
 | 
						|
  DBUG_RETURN(TRUE);				/* purecov: inspected */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  SemiJoinDuplicateElimination: Reset the temporary table
 | 
						|
*/
 | 
						|
 | 
						|
int SJ_TMP_TABLE::sj_weedout_delete_rows()
 | 
						|
{
 | 
						|
  DBUG_ENTER("SJ_TMP_TABLE::sj_weedout_delete_rows");
 | 
						|
  if (tmp_table)
 | 
						|
  {
 | 
						|
    int rc= tmp_table->file->ha_delete_all_rows();
 | 
						|
    DBUG_RETURN(rc);
 | 
						|
  }
 | 
						|
  have_degenerate_row= FALSE;
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  SemiJoinDuplicateElimination: Weed out duplicate row combinations
 | 
						|
 | 
						|
  SYNPOSIS
 | 
						|
    sj_weedout_check_row()
 | 
						|
      thd    Thread handle
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Try storing current record combination of outer tables (i.e. their
 | 
						|
    rowids) in the temporary table. This records the fact that we've seen 
 | 
						|
    this record combination and also tells us if we've seen it before.
 | 
						|
 | 
						|
  RETURN
 | 
						|
    -1  Error
 | 
						|
    1   The row combination is a duplicate (discard it)
 | 
						|
    0   The row combination is not a duplicate (continue)
 | 
						|
*/
 | 
						|
 | 
						|
int SJ_TMP_TABLE::sj_weedout_check_row(THD *thd)
 | 
						|
{
 | 
						|
  int error;
 | 
						|
  SJ_TMP_TABLE::TAB *tab= tabs;
 | 
						|
  SJ_TMP_TABLE::TAB *tab_end= tabs_end;
 | 
						|
  uchar *ptr;
 | 
						|
  uchar *nulls_ptr;
 | 
						|
 | 
						|
  DBUG_ENTER("SJ_TMP_TABLE::sj_weedout_check_row");
 | 
						|
 | 
						|
  if (is_degenerate)
 | 
						|
  {
 | 
						|
    if (have_degenerate_row) 
 | 
						|
      DBUG_RETURN(1);
 | 
						|
 | 
						|
    have_degenerate_row= TRUE;
 | 
						|
    DBUG_RETURN(0);
 | 
						|
  }
 | 
						|
 | 
						|
  ptr= tmp_table->record[0] + 1;
 | 
						|
 | 
						|
  /* Put the the rowids tuple into table->record[0]: */
 | 
						|
 | 
						|
  // 1. Store the length 
 | 
						|
  if (((Field_varstring*)(tmp_table->field[0]))->length_bytes == 1)
 | 
						|
  {
 | 
						|
    *ptr= (uchar)(rowid_len + null_bytes);
 | 
						|
    ptr++;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    int2store(ptr, rowid_len + null_bytes);
 | 
						|
    ptr += 2;
 | 
						|
  }
 | 
						|
 | 
						|
  nulls_ptr= ptr;
 | 
						|
  // 2. Zero the null bytes 
 | 
						|
  if (null_bytes)
 | 
						|
  {
 | 
						|
    bzero(ptr, null_bytes);
 | 
						|
    ptr += null_bytes; 
 | 
						|
  }
 | 
						|
 | 
						|
  // 3. Put the rowids
 | 
						|
  for (uint i=0; tab != tab_end; tab++, i++)
 | 
						|
  {
 | 
						|
    handler *h= tab->join_tab->table->file;
 | 
						|
    if (tab->join_tab->table->maybe_null && tab->join_tab->table->null_row)
 | 
						|
    {
 | 
						|
      /* It's a NULL-complemented row */
 | 
						|
      *(nulls_ptr + tab->null_byte) |= tab->null_bit;
 | 
						|
      bzero(ptr + tab->rowid_offset, h->ref_length);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      /* Copy the rowid value */
 | 
						|
      memcpy(ptr + tab->rowid_offset, h->ref, h->ref_length);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  error= tmp_table->file->ha_write_tmp_row(tmp_table->record[0]);
 | 
						|
  if (unlikely(error))
 | 
						|
  {
 | 
						|
    /* create_internal_tmp_table_from_heap will generate error if needed */
 | 
						|
    if (!tmp_table->file->is_fatal_error(error, HA_CHECK_DUP))
 | 
						|
      DBUG_RETURN(1); /* Duplicate */
 | 
						|
 | 
						|
    bool is_duplicate;
 | 
						|
    if (create_internal_tmp_table_from_heap(thd, tmp_table, start_recinfo,
 | 
						|
                                            &recinfo, error, 1, &is_duplicate))
 | 
						|
      DBUG_RETURN(-1);
 | 
						|
    if (is_duplicate)
 | 
						|
      DBUG_RETURN(1);
 | 
						|
  }
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int init_dups_weedout(JOIN *join, uint first_table, int first_fanout_table, uint n_tables)
 | 
						|
{
 | 
						|
  THD *thd= join->thd;
 | 
						|
  DBUG_ENTER("init_dups_weedout");
 | 
						|
  SJ_TMP_TABLE::TAB sjtabs[MAX_TABLES];
 | 
						|
  SJ_TMP_TABLE::TAB *last_tab= sjtabs;
 | 
						|
  uint jt_rowid_offset= 0; // # tuple bytes are already occupied (w/o NULL bytes)
 | 
						|
  uint jt_null_bits= 0;    // # null bits in tuple bytes
 | 
						|
  /*
 | 
						|
    Walk through the range and remember
 | 
						|
     - tables that need their rowids to be put into temptable
 | 
						|
     - the last outer table
 | 
						|
  */
 | 
						|
  for (JOIN_TAB *j=join->join_tab + first_table; 
 | 
						|
       j < join->join_tab + first_table + n_tables; j++)
 | 
						|
  {
 | 
						|
    if (sj_table_is_included(join, j))
 | 
						|
    {
 | 
						|
      last_tab->join_tab= j;
 | 
						|
      last_tab->rowid_offset= jt_rowid_offset;
 | 
						|
      jt_rowid_offset += j->table->file->ref_length;
 | 
						|
      if (j->table->maybe_null)
 | 
						|
      {
 | 
						|
        last_tab->null_byte= jt_null_bits / 8;
 | 
						|
        last_tab->null_bit= jt_null_bits++;
 | 
						|
      }
 | 
						|
      last_tab++;
 | 
						|
      j->table->prepare_for_position();
 | 
						|
      j->keep_current_rowid= TRUE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SJ_TMP_TABLE *sjtbl;
 | 
						|
  if (jt_rowid_offset) /* Temptable has at least one rowid */
 | 
						|
  {
 | 
						|
    size_t tabs_size= (last_tab - sjtabs) * sizeof(SJ_TMP_TABLE::TAB);
 | 
						|
    if (!(sjtbl= (SJ_TMP_TABLE*)thd->alloc(sizeof(SJ_TMP_TABLE))) ||
 | 
						|
        !(sjtbl->tabs= (SJ_TMP_TABLE::TAB*) thd->alloc(tabs_size)))
 | 
						|
      DBUG_RETURN(TRUE); /* purecov: inspected */
 | 
						|
    memcpy(sjtbl->tabs, sjtabs, tabs_size);
 | 
						|
    sjtbl->is_degenerate= FALSE;
 | 
						|
    sjtbl->tabs_end= sjtbl->tabs + (last_tab - sjtabs);
 | 
						|
    sjtbl->rowid_len= jt_rowid_offset;
 | 
						|
    sjtbl->null_bits= jt_null_bits;
 | 
						|
    sjtbl->null_bytes= (jt_null_bits + 7)/8;
 | 
						|
    if (sjtbl->create_sj_weedout_tmp_table(thd))
 | 
						|
      DBUG_RETURN(TRUE);
 | 
						|
    join->sj_tmp_tables.push_back(sjtbl->tmp_table, thd->mem_root);
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    /* 
 | 
						|
      This is a special case where the entire subquery predicate does 
 | 
						|
      not depend on anything at all, ie this is 
 | 
						|
        WHERE const IN (uncorrelated select)
 | 
						|
    */
 | 
						|
    if (!(sjtbl= (SJ_TMP_TABLE*)thd->alloc(sizeof(SJ_TMP_TABLE))))
 | 
						|
      DBUG_RETURN(TRUE); /* purecov: inspected */
 | 
						|
    sjtbl->tmp_table= NULL;
 | 
						|
    sjtbl->is_degenerate= TRUE;
 | 
						|
    sjtbl->have_degenerate_row= FALSE;
 | 
						|
  }
 | 
						|
 | 
						|
  sjtbl->next_flush_table= join->join_tab[first_table].flush_weedout_table;
 | 
						|
  join->join_tab[first_table].flush_weedout_table= sjtbl;
 | 
						|
  join->join_tab[first_fanout_table].first_weedout_table= sjtbl;
 | 
						|
  join->join_tab[first_table + n_tables - 1].check_weed_out_table= sjtbl;
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  @brief
 | 
						|
    Set up semi-join Loose Scan strategy for execution
 | 
						|
 | 
						|
  @detail
 | 
						|
    Other strategies are done in setup_semijoin_dups_elimination(),
 | 
						|
    however, we need to set up Loose Scan earlier, before make_join_select is
 | 
						|
    called. This is to prevent make_join_select() from switching full index
 | 
						|
    scans into quick selects (which will break Loose Scan access).
 | 
						|
 | 
						|
  @return
 | 
						|
    0  OK
 | 
						|
    1  Error
 | 
						|
*/
 | 
						|
 | 
						|
int setup_semijoin_loosescan(JOIN *join)
 | 
						|
{
 | 
						|
  uint i;
 | 
						|
  DBUG_ENTER("setup_semijoin_loosescan");
 | 
						|
 | 
						|
  POSITION *pos= join->best_positions + join->const_tables;
 | 
						|
  for (i= join->const_tables ; i < join->top_join_tab_count; )
 | 
						|
  {
 | 
						|
    JOIN_TAB *tab=join->join_tab + i;
 | 
						|
    switch (pos->sj_strategy) {
 | 
						|
      case SJ_OPT_MATERIALIZE:
 | 
						|
      case SJ_OPT_MATERIALIZE_SCAN:
 | 
						|
        i+= 1; /* join tabs are embedded in the nest */
 | 
						|
        pos += pos->n_sj_tables;
 | 
						|
        break;
 | 
						|
      case SJ_OPT_LOOSE_SCAN:
 | 
						|
      {
 | 
						|
        /* We jump from the last table to the first one */
 | 
						|
        tab->loosescan_match_tab= tab + pos->n_sj_tables - 1;
 | 
						|
 | 
						|
        /* LooseScan requires records to be produced in order */
 | 
						|
        if (tab->select && tab->select->quick)
 | 
						|
          tab->select->quick->need_sorted_output();
 | 
						|
 | 
						|
        for (uint j= i; j < i + pos->n_sj_tables; j++)
 | 
						|
          join->join_tab[j].inside_loosescan_range= TRUE;
 | 
						|
 | 
						|
        /* Calculate key length */
 | 
						|
        uint keylen= 0;
 | 
						|
        uint keyno= pos->loosescan_picker.loosescan_key;
 | 
						|
        for (uint kp=0; kp < pos->loosescan_picker.loosescan_parts; kp++)
 | 
						|
          keylen += tab->table->key_info[keyno].key_part[kp].store_length;
 | 
						|
 | 
						|
        tab->loosescan_key= keyno;
 | 
						|
        tab->loosescan_key_len= keylen;
 | 
						|
        if (pos->n_sj_tables > 1) 
 | 
						|
          tab[pos->n_sj_tables - 1].do_firstmatch= tab;
 | 
						|
        i+= pos->n_sj_tables;
 | 
						|
        pos+= pos->n_sj_tables;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      default:
 | 
						|
      {
 | 
						|
        i++;
 | 
						|
        pos++;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Setup the strategies to eliminate semi-join duplicates.
 | 
						|
  
 | 
						|
  SYNOPSIS
 | 
						|
    setup_semijoin_dups_elimination()
 | 
						|
      join           Join to process
 | 
						|
      options        Join options (needed to see if join buffering will be 
 | 
						|
                     used or not)
 | 
						|
      no_jbuf_after  Another bit of information re where join buffering will
 | 
						|
                     be used.
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Setup the strategies to eliminate semi-join duplicates. ATM there are 4
 | 
						|
    strategies:
 | 
						|
 | 
						|
    1. DuplicateWeedout (use of temptable to remove duplicates based on rowids
 | 
						|
                         of row combinations)
 | 
						|
    2. FirstMatch (pick only the 1st matching row combination of inner tables)
 | 
						|
    3. LooseScan (scanning the sj-inner table in a way that groups duplicates
 | 
						|
                  together and picking the 1st one)
 | 
						|
    4. SJ-Materialization.
 | 
						|
    
 | 
						|
    The join order has "duplicate-generating ranges", and every range is
 | 
						|
    served by one strategy or a combination of FirstMatch with with some
 | 
						|
    other strategy.
 | 
						|
    
 | 
						|
    "Duplicate-generating range" is defined as a range within the join order
 | 
						|
    that contains all of the inner tables of a semi-join. All ranges must be
 | 
						|
    disjoint, if tables of several semi-joins are interleaved, then the ranges
 | 
						|
    are joined together, which is equivalent to converting
 | 
						|
      SELECT ... WHERE oe1 IN (SELECT ie1 ...) AND oe2 IN (SELECT ie2 )
 | 
						|
    to
 | 
						|
      SELECT ... WHERE (oe1, oe2) IN (SELECT ie1, ie2 ... ...)
 | 
						|
    .
 | 
						|
 | 
						|
    Applicability conditions are as follows:
 | 
						|
 | 
						|
    DuplicateWeedout strategy
 | 
						|
    ~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
 | 
						|
      (ot|nt)*  [ it ((it|ot|nt)* (it|ot))]  (nt)*
 | 
						|
      +------+  +=========================+  +---+
 | 
						|
        (1)                 (2)               (3)
 | 
						|
 | 
						|
       (1) - Prefix of OuterTables (those that participate in 
 | 
						|
             IN-equality and/or are correlated with subquery) and outer 
 | 
						|
             Non-correlated tables.
 | 
						|
       (2) - The handled range. The range starts with the first sj-inner
 | 
						|
             table, and covers all sj-inner and outer tables 
 | 
						|
             Within the range,  Inner, Outer, outer non-correlated tables
 | 
						|
             may follow in any order.
 | 
						|
       (3) - The suffix of outer non-correlated tables.
 | 
						|
    
 | 
						|
    FirstMatch strategy
 | 
						|
    ~~~~~~~~~~~~~~~~~~~
 | 
						|
 | 
						|
      (ot|nt)*  [ it ((it|nt)* it) ]  (nt)*
 | 
						|
      +------+  +==================+  +---+
 | 
						|
        (1)             (2)          (3)
 | 
						|
 | 
						|
      (1) - Prefix of outer and non-correlated tables
 | 
						|
      (2) - The handled range, which may contain only inner and
 | 
						|
            non-correlated tables.
 | 
						|
      (3) - The suffix of outer non-correlated tables.
 | 
						|
 | 
						|
    LooseScan strategy 
 | 
						|
    ~~~~~~~~~~~~~~~~~~
 | 
						|
 | 
						|
     (ot|ct|nt) [ loosescan_tbl (ot|nt|it)* it ]  (ot|nt)*
 | 
						|
     +--------+   +===========+ +=============+   +------+
 | 
						|
        (1)           (2)          (3)              (4)
 | 
						|
     
 | 
						|
      (1) - Prefix that may contain any outer tables. The prefix must contain
 | 
						|
            all the non-trivially correlated outer tables. (non-trivially means
 | 
						|
            that the correlation is not just through the IN-equality).
 | 
						|
      
 | 
						|
      (2) - Inner table for which the LooseScan scan is performed.
 | 
						|
 | 
						|
      (3) - The remainder of the duplicate-generating range. It is served by 
 | 
						|
            application of FirstMatch strategy, with the exception that
 | 
						|
            outer IN-correlated tables are considered to be non-correlated.
 | 
						|
 | 
						|
      (4) - THe suffix of outer and outer non-correlated tables.
 | 
						|
 | 
						|
  
 | 
						|
  The choice between the strategies is made by the join optimizer (see
 | 
						|
  optimize_semi_joins() and fix_semijoin_strategies_for_picked_join_order()).
 | 
						|
  This function sets up all fields/structures/etc needed for execution except
 | 
						|
  for setup/initialization of semi-join materialization which is done in 
 | 
						|
  setup_sj_materialization() (todo: can't we move that to here also?)
 | 
						|
 | 
						|
  RETURN
 | 
						|
    FALSE  OK 
 | 
						|
    TRUE   Out of memory error
 | 
						|
*/
 | 
						|
 | 
						|
int setup_semijoin_dups_elimination(JOIN *join, ulonglong options, 
 | 
						|
                                    uint no_jbuf_after)
 | 
						|
{
 | 
						|
  uint i;
 | 
						|
  DBUG_ENTER("setup_semijoin_dups_elimination");
 | 
						|
  
 | 
						|
  join->complex_firstmatch_tables= table_map(0);
 | 
						|
 | 
						|
  POSITION *pos= join->best_positions + join->const_tables;
 | 
						|
  for (i= join->const_tables ; i < join->top_join_tab_count; )
 | 
						|
  {
 | 
						|
    JOIN_TAB *tab=join->join_tab + i;
 | 
						|
    switch (pos->sj_strategy) {
 | 
						|
      case SJ_OPT_MATERIALIZE:
 | 
						|
      case SJ_OPT_MATERIALIZE_SCAN:
 | 
						|
        /* Do nothing */
 | 
						|
        i+= 1;// It used to be pos->n_sj_tables, but now they are embedded in a nest
 | 
						|
        pos += pos->n_sj_tables;
 | 
						|
        break;
 | 
						|
      case SJ_OPT_LOOSE_SCAN:
 | 
						|
      {
 | 
						|
        /* Setup already handled by setup_semijoin_loosescan */
 | 
						|
        i+= pos->n_sj_tables;
 | 
						|
        pos+= pos->n_sj_tables;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case SJ_OPT_DUPS_WEEDOUT:
 | 
						|
      {
 | 
						|
        /*
 | 
						|
          Check for join buffering. If there is one, move the first table
 | 
						|
          forwards, but do not destroy other duplicate elimination methods.
 | 
						|
        */
 | 
						|
        uint first_table= i;
 | 
						|
 | 
						|
        uint join_cache_level= join->thd->variables.join_cache_level;
 | 
						|
        for (uint j= i; j < i + pos->n_sj_tables; j++)
 | 
						|
        {
 | 
						|
          /*
 | 
						|
            When we'll properly take join buffering into account during
 | 
						|
            join optimization, the below check should be changed to 
 | 
						|
            "if (join->best_positions[j].use_join_buffer && 
 | 
						|
                 j <= no_jbuf_after)".
 | 
						|
            For now, use a rough criteria:
 | 
						|
          */
 | 
						|
          JOIN_TAB *js_tab=join->join_tab + j; 
 | 
						|
          if (j != join->const_tables && js_tab->use_quick != 2 &&
 | 
						|
              j <= no_jbuf_after &&
 | 
						|
              ((js_tab->type == JT_ALL && join_cache_level != 0) ||
 | 
						|
               (join_cache_level > 2 && (js_tab->type == JT_REF || 
 | 
						|
                                         js_tab->type == JT_EQ_REF))))
 | 
						|
          {
 | 
						|
            /* Looks like we'll be using join buffer */
 | 
						|
            first_table= join->const_tables;
 | 
						|
            /* 
 | 
						|
              Make sure that possible sorting of rows from the head table 
 | 
						|
              is not to be employed.
 | 
						|
            */
 | 
						|
            if (join->get_sort_by_join_tab())
 | 
						|
	    {
 | 
						|
              join->simple_order= 0;
 | 
						|
              join->simple_group= 0;
 | 
						|
              join->need_tmp= join->test_if_need_tmp_table();
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        init_dups_weedout(join, first_table, i, i + pos->n_sj_tables - first_table);
 | 
						|
        i+= pos->n_sj_tables;
 | 
						|
        pos+= pos->n_sj_tables;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case SJ_OPT_FIRST_MATCH:
 | 
						|
      {
 | 
						|
        JOIN_TAB *j;
 | 
						|
        JOIN_TAB *jump_to= tab-1;
 | 
						|
 | 
						|
        bool complex_range= FALSE;
 | 
						|
        table_map tables_in_range= table_map(0);
 | 
						|
 | 
						|
        for (j= tab; j != tab + pos->n_sj_tables; j++)
 | 
						|
        {
 | 
						|
          tables_in_range |= j->table->map;
 | 
						|
          if (!j->emb_sj_nest)
 | 
						|
          {
 | 
						|
            /* 
 | 
						|
              Got a table that's not within any semi-join nest. This is a case
 | 
						|
              like this:
 | 
						|
 | 
						|
              SELECT * FROM ot1, nt1 WHERE ot1.col IN (SELECT expr FROM it1, it2)
 | 
						|
 | 
						|
              with a join order of 
 | 
						|
 | 
						|
                   +----- FirstMatch range ----+
 | 
						|
                   |                           |
 | 
						|
              ot1 it1 nt1 nt2 it2 it3 ...
 | 
						|
                   |   ^
 | 
						|
                   |   +-------- 'j' points here
 | 
						|
                   +------------- SJ_OPT_FIRST_MATCH was set for this table as
 | 
						|
                                  it's the first one that produces duplicates
 | 
						|
              
 | 
						|
            */
 | 
						|
            DBUG_ASSERT(j != tab);  /* table ntX must have an itX before it */
 | 
						|
 | 
						|
            /* 
 | 
						|
              If the table right before us is an inner table (like it1 in the
 | 
						|
              picture), it should be set to jump back to previous outer-table
 | 
						|
            */
 | 
						|
            if (j[-1].emb_sj_nest)
 | 
						|
              j[-1].do_firstmatch= jump_to;
 | 
						|
 | 
						|
            jump_to= j; /* Jump back to us */
 | 
						|
            complex_range= TRUE;
 | 
						|
          }
 | 
						|
          else
 | 
						|
          {
 | 
						|
            j->first_sj_inner_tab= tab;
 | 
						|
            j->last_sj_inner_tab= tab + pos->n_sj_tables - 1;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        j[-1].do_firstmatch= jump_to;
 | 
						|
        i+= pos->n_sj_tables;
 | 
						|
        pos+= pos->n_sj_tables;
 | 
						|
 | 
						|
        if (complex_range)
 | 
						|
          join->complex_firstmatch_tables|= tables_in_range;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case SJ_OPT_NONE:
 | 
						|
        i++;
 | 
						|
        pos++;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Destroy all temporary tables created by NL-semijoin runtime
 | 
						|
*/
 | 
						|
 | 
						|
void destroy_sj_tmp_tables(JOIN *join)
 | 
						|
{
 | 
						|
  List_iterator<TABLE> it(join->sj_tmp_tables);
 | 
						|
  TABLE *table;
 | 
						|
  while ((table= it++))
 | 
						|
  {
 | 
						|
    /* 
 | 
						|
      SJ-Materialization tables are initialized for either sequential reading 
 | 
						|
      or index lookup, DuplicateWeedout tables are not initialized for read 
 | 
						|
      (we only write to them), so need to call ha_index_or_rnd_end.
 | 
						|
    */
 | 
						|
    table->file->ha_index_or_rnd_end();
 | 
						|
    free_tmp_table(join->thd, table);
 | 
						|
  }
 | 
						|
  join->sj_tmp_tables.empty();
 | 
						|
  join->sjm_info_list.empty();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Remove all records from all temp tables used by NL-semijoin runtime
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    clear_sj_tmp_tables()
 | 
						|
      join  The join to remove tables for
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Remove all records from all temp tables used by NL-semijoin runtime. This 
 | 
						|
    must be done before every join re-execution.
 | 
						|
*/
 | 
						|
 | 
						|
int clear_sj_tmp_tables(JOIN *join)
 | 
						|
{
 | 
						|
  int res;
 | 
						|
  List_iterator<TABLE> it(join->sj_tmp_tables);
 | 
						|
  TABLE *table;
 | 
						|
  while ((table= it++))
 | 
						|
  {
 | 
						|
    if ((res= table->file->ha_delete_all_rows()))
 | 
						|
      return res; /* purecov: inspected */
 | 
						|
  }
 | 
						|
 | 
						|
  SJ_MATERIALIZATION_INFO *sjm;
 | 
						|
  List_iterator<SJ_MATERIALIZATION_INFO> it2(join->sjm_info_list);
 | 
						|
  while ((sjm= it2++))
 | 
						|
  {
 | 
						|
    sjm->materialized= FALSE;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Check if the table's rowid is included in the temptable
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    sj_table_is_included()
 | 
						|
      join      The join
 | 
						|
      join_tab  The table to be checked
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    SemiJoinDuplicateElimination: check the table's rowid should be included
 | 
						|
    in the temptable. This is so if
 | 
						|
 | 
						|
    1. The table is not embedded within some semi-join nest
 | 
						|
    2. The has been pulled out of a semi-join nest, or
 | 
						|
 | 
						|
    3. The table is functionally dependent on some previous table
 | 
						|
 | 
						|
    [4. This is also true for constant tables that can't be
 | 
						|
        NULL-complemented but this function is not called for such tables]
 | 
						|
 | 
						|
  RETURN
 | 
						|
    TRUE  - Include table's rowid
 | 
						|
    FALSE - Don't
 | 
						|
*/
 | 
						|
 | 
						|
static bool sj_table_is_included(JOIN *join, JOIN_TAB *join_tab)
 | 
						|
{
 | 
						|
  if (join_tab->emb_sj_nest)
 | 
						|
    return FALSE;
 | 
						|
  
 | 
						|
  /* Check if this table is functionally dependent on the tables that
 | 
						|
     are within the same outer join nest
 | 
						|
  */
 | 
						|
  TABLE_LIST *embedding= join_tab->table->pos_in_table_list->embedding;
 | 
						|
  if (join_tab->type == JT_EQ_REF)
 | 
						|
  {
 | 
						|
    table_map depends_on= 0;
 | 
						|
    uint idx;
 | 
						|
 | 
						|
    for (uint kp= 0; kp < join_tab->ref.key_parts; kp++)
 | 
						|
      depends_on |= join_tab->ref.items[kp]->used_tables();
 | 
						|
 | 
						|
    Table_map_iterator it(depends_on & ~PSEUDO_TABLE_BITS);
 | 
						|
    while ((idx= it.next_bit())!=Table_map_iterator::BITMAP_END)
 | 
						|
    {
 | 
						|
      JOIN_TAB *ref_tab= join->map2table[idx];
 | 
						|
      if (embedding != ref_tab->table->pos_in_table_list->embedding)
 | 
						|
        return TRUE;
 | 
						|
    }
 | 
						|
    /* Ok, functionally dependent */
 | 
						|
    return FALSE;
 | 
						|
  }
 | 
						|
  /* Not functionally dependent => need to include*/
 | 
						|
  return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Index lookup-based subquery: save some flags for EXPLAIN output
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    save_index_subquery_explain_info()
 | 
						|
      join_tab  Subquery's join tab (there is only one as index lookup is
 | 
						|
                only used for subqueries that are single-table SELECTs)
 | 
						|
      where     Subquery's WHERE clause
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    For index lookup-based subquery (i.e. one executed with
 | 
						|
    subselect_uniquesubquery_engine or subselect_indexsubquery_engine),
 | 
						|
    check its EXPLAIN output row should contain 
 | 
						|
      "Using index" (TAB_INFO_FULL_SCAN_ON_NULL) 
 | 
						|
      "Using Where" (TAB_INFO_USING_WHERE)
 | 
						|
      "Full scan on NULL key" (TAB_INFO_FULL_SCAN_ON_NULL)
 | 
						|
    and set appropriate flags in join_tab->packed_info.
 | 
						|
*/
 | 
						|
 | 
						|
static void save_index_subquery_explain_info(JOIN_TAB *join_tab, Item* where)
 | 
						|
{
 | 
						|
  join_tab->packed_info= TAB_INFO_HAVE_VALUE;
 | 
						|
  if (join_tab->table->covering_keys.is_set(join_tab->ref.key))
 | 
						|
    join_tab->packed_info |= TAB_INFO_USING_INDEX;
 | 
						|
  if (where)
 | 
						|
    join_tab->packed_info |= TAB_INFO_USING_WHERE;
 | 
						|
  for (uint i = 0; i < join_tab->ref.key_parts; i++)
 | 
						|
  {
 | 
						|
    if (join_tab->ref.cond_guards[i])
 | 
						|
    {
 | 
						|
      join_tab->packed_info |= TAB_INFO_FULL_SCAN_ON_NULL;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Check if the join can be rewritten to [unique_]indexsubquery_engine
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Check if the join can be changed into [unique_]indexsubquery_engine.
 | 
						|
 | 
						|
    The check is done after join optimization, the idea is that if the join
 | 
						|
    has only one table and uses a [eq_]ref access generated from subselect's
 | 
						|
    IN-equality then we replace it with a subselect_indexsubquery_engine or a
 | 
						|
    subselect_uniquesubquery_engine.
 | 
						|
 | 
						|
  RETURN 
 | 
						|
    0 - Ok, rewrite done (stop join optimization and return)
 | 
						|
    1 - Fatal error (stop join optimization and return)
 | 
						|
   -1 - No rewrite performed, continue with join optimization
 | 
						|
*/
 | 
						|
 | 
						|
int rewrite_to_index_subquery_engine(JOIN *join)
 | 
						|
{
 | 
						|
  THD *thd= join->thd;
 | 
						|
  JOIN_TAB* join_tab=join->join_tab;
 | 
						|
  SELECT_LEX_UNIT *unit= join->unit;
 | 
						|
  DBUG_ENTER("rewrite_to_index_subquery_engine");
 | 
						|
 | 
						|
  /*
 | 
						|
    is this simple IN subquery?
 | 
						|
  */
 | 
						|
  /* TODO: In order to use these more efficient subquery engines in more cases,
 | 
						|
     the following problems need to be solved:
 | 
						|
     - the code that removes GROUP BY (group_list), also adds an ORDER BY
 | 
						|
       (order), thus GROUP BY queries (almost?) never pass through this branch.
 | 
						|
       Solution: remove the test below '!join->order', because we remove the
 | 
						|
       ORDER clase for subqueries anyway.
 | 
						|
     - in order to set a more efficient engine, the optimizer needs to both
 | 
						|
       decide to remove GROUP BY, *and* select one of the JT_[EQ_]REF[_OR_NULL]
 | 
						|
       access methods, *and* loose scan should be more expensive or
 | 
						|
       inapliccable. When is that possible?
 | 
						|
     - Consider expanding the applicability of this rewrite for loose scan
 | 
						|
       for group by queries.
 | 
						|
  */
 | 
						|
  if (!join->group_list && !join->order &&
 | 
						|
      join->unit->item && 
 | 
						|
      join->unit->item->substype() == Item_subselect::IN_SUBS &&
 | 
						|
      join->table_count == 1 && join->conds &&
 | 
						|
      !join->unit->is_unit_op())
 | 
						|
  {
 | 
						|
    if (!join->having)
 | 
						|
    {
 | 
						|
      Item *where= join->conds;
 | 
						|
      if (join_tab[0].type == JT_EQ_REF &&
 | 
						|
	  join_tab[0].ref.items[0]->name.str == in_left_expr_name.str)
 | 
						|
      {
 | 
						|
        remove_subq_pushed_predicates(join, &where);
 | 
						|
        save_index_subquery_explain_info(join_tab, where);
 | 
						|
        join_tab[0].type= JT_UNIQUE_SUBQUERY;
 | 
						|
        join->error= 0;
 | 
						|
        DBUG_RETURN(unit->item->
 | 
						|
                    change_engine(new
 | 
						|
                                  subselect_uniquesubquery_engine(thd,
 | 
						|
                                                                  join_tab,
 | 
						|
                                                                  unit->item->get_IN_subquery(),
 | 
						|
                                                                  where)));
 | 
						|
      }
 | 
						|
      else if (join_tab[0].type == JT_REF &&
 | 
						|
	       join_tab[0].ref.items[0]->name.str == in_left_expr_name.str)
 | 
						|
      {
 | 
						|
	remove_subq_pushed_predicates(join, &where);
 | 
						|
        save_index_subquery_explain_info(join_tab, where);
 | 
						|
        join_tab[0].type= JT_INDEX_SUBQUERY;
 | 
						|
        join->error= 0;
 | 
						|
        DBUG_RETURN(unit->item->
 | 
						|
                    change_engine(new
 | 
						|
                                  subselect_indexsubquery_engine(thd,
 | 
						|
                                                                 join_tab,
 | 
						|
                                                                 unit->item->get_IN_subquery(),
 | 
						|
                                                                 where,
 | 
						|
                                                                 NULL,
 | 
						|
                                                                 0)));
 | 
						|
      }
 | 
						|
    } else if (join_tab[0].type == JT_REF_OR_NULL &&
 | 
						|
	       join_tab[0].ref.items[0]->name.str == in_left_expr_name.str &&
 | 
						|
               join->having->name.str == in_having_cond.str)
 | 
						|
    {
 | 
						|
      join_tab[0].type= JT_INDEX_SUBQUERY;
 | 
						|
      join->error= 0;
 | 
						|
      join->conds= remove_additional_cond(join->conds);
 | 
						|
      save_index_subquery_explain_info(join_tab, join->conds);
 | 
						|
      DBUG_RETURN(unit->item->
 | 
						|
		  change_engine(new subselect_indexsubquery_engine(thd,
 | 
						|
								   join_tab,
 | 
						|
								   unit->item->get_IN_subquery(),
 | 
						|
								   join->conds,
 | 
						|
                                                                   join->having,
 | 
						|
								   1)));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DBUG_RETURN(-1); /* Haven't done the rewrite */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  Remove additional condition inserted by IN/ALL/ANY transformation.
 | 
						|
 | 
						|
  @param conds   condition for processing
 | 
						|
 | 
						|
  @return
 | 
						|
    new conditions
 | 
						|
*/
 | 
						|
 | 
						|
static Item *remove_additional_cond(Item* conds)
 | 
						|
{
 | 
						|
  if (conds->name.str == in_additional_cond.str)
 | 
						|
    return 0;
 | 
						|
  if (conds->type() == Item::COND_ITEM)
 | 
						|
  {
 | 
						|
    Item_cond *cnd= (Item_cond*) conds;
 | 
						|
    List_iterator<Item> li(*(cnd->argument_list()));
 | 
						|
    Item *item;
 | 
						|
    while ((item= li++))
 | 
						|
    {
 | 
						|
      if (item->name.str == in_additional_cond.str)
 | 
						|
      {
 | 
						|
	li.remove();
 | 
						|
	if (cnd->argument_list()->elements == 1)
 | 
						|
	  return cnd->argument_list()->head();
 | 
						|
	return conds;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return conds;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Remove the predicates pushed down into the subquery
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    remove_subq_pushed_predicates()
 | 
						|
      where   IN  Must be NULL
 | 
						|
              OUT The remaining WHERE condition, or NULL
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Given that this join will be executed using (unique|index)_subquery,
 | 
						|
    without "checking NULL", remove the predicates that were pushed down
 | 
						|
    into the subquery.
 | 
						|
 | 
						|
    If the subquery compares scalar values, we can remove the condition that
 | 
						|
    was wrapped into trig_cond (it will be checked when needed by the subquery
 | 
						|
    engine)
 | 
						|
 | 
						|
    If the subquery compares row values, we need to keep the wrapped
 | 
						|
    equalities in the WHERE clause: when the left (outer) tuple has both NULL
 | 
						|
    and non-NULL values, we'll do a full table scan and will rely on the
 | 
						|
    equalities corresponding to non-NULL parts of left tuple to filter out
 | 
						|
    non-matching records.
 | 
						|
 | 
						|
    TODO: We can remove the equalities that will be guaranteed to be true by the
 | 
						|
    fact that subquery engine will be using index lookup. This must be done only
 | 
						|
    for cases where there are no conversion errors of significance, e.g. 257
 | 
						|
    that is searched in a byte. But this requires homogenization of the return 
 | 
						|
    codes of all Field*::store() methods.
 | 
						|
*/
 | 
						|
 | 
						|
static void remove_subq_pushed_predicates(JOIN *join, Item **where)
 | 
						|
{
 | 
						|
  if (join->conds->type() == Item::FUNC_ITEM &&
 | 
						|
      ((Item_func *)join->conds)->functype() == Item_func::EQ_FUNC &&
 | 
						|
      ((Item_func *)join->conds)->arguments()[0]->type() == Item::REF_ITEM &&
 | 
						|
      ((Item_func *)join->conds)->arguments()[1]->type() == Item::FIELD_ITEM &&
 | 
						|
      test_if_ref (join->conds,
 | 
						|
                   (Item_field *)((Item_func *)join->conds)->arguments()[1],
 | 
						|
                   ((Item_func *)join->conds)->arguments()[0]))
 | 
						|
  {
 | 
						|
    *where= 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  Optimize all subqueries of a query that were not flattened into a semijoin.
 | 
						|
 | 
						|
  @details
 | 
						|
  Optimize all immediate children subqueries of a query.
 | 
						|
 | 
						|
  This phase must be called after substitute_for_best_equal_field() because
 | 
						|
  that function may replace items with other items from a multiple equality,
 | 
						|
  and we need to reference the correct items in the index access method of the
 | 
						|
  IN predicate.
 | 
						|
 | 
						|
  @return Operation status
 | 
						|
  @retval FALSE     success.
 | 
						|
  @retval TRUE      error occurred.
 | 
						|
*/
 | 
						|
 | 
						|
bool JOIN::optimize_unflattened_subqueries()
 | 
						|
{
 | 
						|
  return select_lex->optimize_unflattened_subqueries(false);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
  Optimize all constant subqueries of a query that were not flattened into
 | 
						|
  a semijoin.
 | 
						|
 | 
						|
  @details
 | 
						|
  Similar to other constant conditions, constant subqueries can be used in
 | 
						|
  various constant optimizations. Having optimized constant subqueries before
 | 
						|
  these constant optimizations, makes it possible to estimate if a subquery
 | 
						|
  is "cheap" enough to be executed during the optimization phase.
 | 
						|
 | 
						|
  Constant subqueries can be optimized and evaluated independent of the outer
 | 
						|
  query, therefore if const_only = true, this method can be called early in
 | 
						|
  the optimization phase of the outer query.
 | 
						|
 | 
						|
  @return Operation status
 | 
						|
  @retval FALSE     success.
 | 
						|
  @retval TRUE      error occurred.
 | 
						|
*/
 | 
						|
 
 | 
						|
bool JOIN::optimize_constant_subqueries()
 | 
						|
{
 | 
						|
  ulonglong save_options= select_lex->options;
 | 
						|
  bool res;
 | 
						|
  /*
 | 
						|
    Constant subqueries may be executed during the optimization phase.
 | 
						|
    In EXPLAIN mode the optimizer doesn't initialize many of the data structures
 | 
						|
    needed for execution. In order to make it possible to execute subqueries
 | 
						|
    during optimization, constant subqueries must be optimized for execution,
 | 
						|
    not for EXPLAIN.
 | 
						|
  */
 | 
						|
  select_lex->options&= ~SELECT_DESCRIBE;
 | 
						|
  res= select_lex->optimize_unflattened_subqueries(true);
 | 
						|
  select_lex->options= save_options;
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Join tab execution startup function.
 | 
						|
 | 
						|
  SYNOPSIS
 | 
						|
    join_tab_execution_startup()
 | 
						|
      tab  Join tab to perform startup actions for
 | 
						|
 | 
						|
  DESCRIPTION
 | 
						|
    Join tab execution startup function. This is different from
 | 
						|
    tab->read_first_record in the regard that this has actions that are to be
 | 
						|
    done once per join execution.
 | 
						|
 | 
						|
    Currently there are only two possible startup functions, so we have them
 | 
						|
    both here inside if (...) branches. In future we could switch to function
 | 
						|
    pointers.
 | 
						|
 | 
						|
  TODO: consider moving this together with JOIN_TAB::preread_init
 | 
						|
  
 | 
						|
  RETURN 
 | 
						|
    NESTED_LOOP_OK - OK
 | 
						|
    NESTED_LOOP_ERROR| NESTED_LOOP_KILLED - Error, abort the join execution
 | 
						|
*/
 | 
						|
 | 
						|
enum_nested_loop_state join_tab_execution_startup(JOIN_TAB *tab)
 | 
						|
{
 | 
						|
  Item_in_subselect *in_subs;
 | 
						|
  DBUG_ENTER("join_tab_execution_startup");
 | 
						|
  
 | 
						|
  if (tab->table->pos_in_table_list && 
 | 
						|
      (in_subs= tab->table->pos_in_table_list->jtbm_subselect))
 | 
						|
  {
 | 
						|
    /* It's a non-merged SJM nest */
 | 
						|
    DBUG_ASSERT(in_subs->engine->engine_type() ==
 | 
						|
                subselect_engine::HASH_SJ_ENGINE);
 | 
						|
    subselect_hash_sj_engine *hash_sj_engine=
 | 
						|
      ((subselect_hash_sj_engine*)in_subs->engine);
 | 
						|
    if (!hash_sj_engine->is_materialized)
 | 
						|
    {
 | 
						|
      hash_sj_engine->materialize_join->exec();
 | 
						|
      hash_sj_engine->is_materialized= TRUE; 
 | 
						|
 | 
						|
      if (unlikely(hash_sj_engine->materialize_join->error) ||
 | 
						|
          unlikely(tab->join->thd->is_fatal_error))
 | 
						|
        DBUG_RETURN(NESTED_LOOP_ERROR);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (tab->bush_children)
 | 
						|
  {
 | 
						|
    /* It's a merged SJM nest */
 | 
						|
    enum_nested_loop_state rc;
 | 
						|
    SJ_MATERIALIZATION_INFO *sjm= tab->bush_children->start->emb_sj_nest->sj_mat_info;
 | 
						|
 | 
						|
    if (!sjm->materialized)
 | 
						|
    {
 | 
						|
      JOIN *join= tab->join;
 | 
						|
      JOIN_TAB *join_tab= tab->bush_children->start;
 | 
						|
      JOIN_TAB *save_return_tab= join->return_tab;
 | 
						|
      /*
 | 
						|
        Now run the join for the inner tables. The first call is to run the
 | 
						|
        join, the second one is to signal EOF (this is essential for some
 | 
						|
        join strategies, e.g. it will make join buffering flush the records)
 | 
						|
      */
 | 
						|
      if ((rc= sub_select(join, join_tab, FALSE/* no EOF */)) < 0 ||
 | 
						|
          (rc= sub_select(join, join_tab, TRUE/* now EOF */)) < 0)
 | 
						|
      {
 | 
						|
        join->return_tab= save_return_tab;
 | 
						|
        DBUG_RETURN(rc); /* it's NESTED_LOOP_(ERROR|KILLED)*/
 | 
						|
      }
 | 
						|
      join->return_tab= save_return_tab;
 | 
						|
      sjm->materialized= TRUE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DBUG_RETURN(NESTED_LOOP_OK);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Create a dummy temporary table, useful only for the sake of having a 
 | 
						|
  TABLE* object with map,tablenr and maybe_null properties.
 | 
						|
  
 | 
						|
  This is used by non-mergeable semi-join materilization code to handle
 | 
						|
  degenerate cases where materialized subquery produced "Impossible WHERE" 
 | 
						|
  and thus wasn't materialized.
 | 
						|
*/
 | 
						|
 | 
						|
TABLE *create_dummy_tmp_table(THD *thd)
 | 
						|
{
 | 
						|
  DBUG_ENTER("create_dummy_tmp_table");
 | 
						|
  TABLE *table;
 | 
						|
  TMP_TABLE_PARAM sjm_table_param;
 | 
						|
  List<Item> sjm_table_cols;
 | 
						|
  const LEX_CSTRING dummy_name= { STRING_WITH_LEN("dummy") };
 | 
						|
  Item *column_item= new (thd->mem_root) Item_int(thd, 1);
 | 
						|
  if (!column_item)
 | 
						|
    DBUG_RETURN(NULL);
 | 
						|
 | 
						|
  sjm_table_param.init();
 | 
						|
  sjm_table_param.field_count= sjm_table_param.func_count= 1;
 | 
						|
  sjm_table_cols.push_back(column_item, thd->mem_root);
 | 
						|
  if (!(table= create_tmp_table(thd, &sjm_table_param, 
 | 
						|
                                sjm_table_cols, (ORDER*) 0, 
 | 
						|
                                TRUE /* distinct */, 
 | 
						|
                                1, /*save_sum_fields*/
 | 
						|
                                thd->variables.option_bits |
 | 
						|
                                TMP_TABLE_ALL_COLUMNS, 
 | 
						|
                                HA_POS_ERROR /*rows_limit */, 
 | 
						|
                                &dummy_name, TRUE /* Do not open */)))
 | 
						|
  {
 | 
						|
    DBUG_RETURN(NULL);
 | 
						|
  }
 | 
						|
  DBUG_RETURN(table);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  A class that is used to catch one single tuple that is sent to the join
 | 
						|
  output, and save it in Item_cache element(s).
 | 
						|
 | 
						|
  It is very similar to select_singlerow_subselect but doesn't require a 
 | 
						|
  Item_singlerow_subselect item.
 | 
						|
*/
 | 
						|
 | 
						|
class select_value_catcher :public select_subselect
 | 
						|
{
 | 
						|
public:
 | 
						|
  select_value_catcher(THD *thd_arg, Item_subselect *item_arg):
 | 
						|
    select_subselect(thd_arg, item_arg)
 | 
						|
  {}
 | 
						|
  int send_data(List<Item> &items) override;
 | 
						|
  int setup(List<Item> *items);
 | 
						|
  bool assigned;  /* TRUE <=> we've caught a value */
 | 
						|
  uint n_elements; /* How many elements we get */
 | 
						|
  Item_cache **row; /* Array of cache elements */
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
int select_value_catcher::setup(List<Item> *items)
 | 
						|
{
 | 
						|
  assigned= FALSE;
 | 
						|
  n_elements= items->elements;
 | 
						|
 
 | 
						|
  if (!(row= (Item_cache**) thd->alloc(sizeof(Item_cache*) * n_elements)))
 | 
						|
    return TRUE;
 | 
						|
  
 | 
						|
  Item *sel_item;
 | 
						|
  List_iterator<Item> li(*items);
 | 
						|
  for (uint i= 0; (sel_item= li++); i++)
 | 
						|
  {
 | 
						|
    if (!(row[i]= sel_item->get_cache(thd)))
 | 
						|
      return TRUE;
 | 
						|
    row[i]->setup(thd, sel_item);
 | 
						|
  }
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int select_value_catcher::send_data(List<Item> &items)
 | 
						|
{
 | 
						|
  DBUG_ENTER("select_value_catcher::send_data");
 | 
						|
  DBUG_ASSERT(!assigned);
 | 
						|
  DBUG_ASSERT(items.elements == n_elements);
 | 
						|
 | 
						|
  Item *val_item;
 | 
						|
  List_iterator_fast<Item> li(items);
 | 
						|
  for (uint i= 0; (val_item= li++); i++)
 | 
						|
  {
 | 
						|
    row[i]->store(val_item);
 | 
						|
    row[i]->cache_value();
 | 
						|
  }
 | 
						|
  assigned= TRUE;
 | 
						|
  DBUG_RETURN(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  @brief
 | 
						|
    Attach conditions to already optimized condition
 | 
						|
 | 
						|
  @param thd              the thread handle
 | 
						|
  @param cond             the condition to which add new conditions
 | 
						|
  @param cond_eq          IN/OUT the multiple equalities of cond
 | 
						|
  @param new_conds        the list of conditions to be added
 | 
						|
  @param cond_value       the returned value of the condition
 | 
						|
                          if it can be evaluated
 | 
						|
 | 
						|
  @details
 | 
						|
    The method creates new condition through union of cond and
 | 
						|
    the conditions from new_conds list.
 | 
						|
    The method is called after optimize_cond() for cond. The result
 | 
						|
    of the union should be the same as if it was done before the
 | 
						|
    the optimize_cond() call.
 | 
						|
 | 
						|
  @retval otherwise  the created condition
 | 
						|
  @retval NULL       if an error occurs
 | 
						|
*/
 | 
						|
 | 
						|
Item *and_new_conditions_to_optimized_cond(THD *thd, Item *cond,
 | 
						|
                                           COND_EQUAL **cond_eq,
 | 
						|
                                           List<Item> &new_conds,
 | 
						|
                                           Item::cond_result *cond_value)
 | 
						|
{
 | 
						|
  COND_EQUAL new_cond_equal;
 | 
						|
  Item *item;
 | 
						|
  Item_equal *mult_eq;
 | 
						|
  bool is_simplified_cond= false;
 | 
						|
  /* The list where parts of the new condition are stored. */
 | 
						|
  List_iterator<Item> li(new_conds);
 | 
						|
  List_iterator_fast<Item_equal> it(new_cond_equal.current_level);
 | 
						|
 | 
						|
  /*
 | 
						|
    Create multiple equalities from the equalities of the list new_conds.
 | 
						|
    Save the created multiple equalities in new_cond_equal.
 | 
						|
    If multiple equality can't be created or the condition
 | 
						|
    from new_conds list isn't an equality leave it in new_conds
 | 
						|
    list.
 | 
						|
 | 
						|
    The equality can't be converted into the multiple equality if it
 | 
						|
    is a knowingly false or true equality.
 | 
						|
    For example, (3 = 1) equality.
 | 
						|
  */
 | 
						|
  while ((item=li++))
 | 
						|
  {
 | 
						|
    if (item->type() == Item::FUNC_ITEM &&
 | 
						|
        ((Item_func *) item)->functype() == Item_func::EQ_FUNC &&
 | 
						|
        check_simple_equality(thd,
 | 
						|
                             Item::Context(Item::ANY_SUBST,
 | 
						|
                             ((Item_func_eq *)item)->compare_type_handler(),
 | 
						|
                             ((Item_func_eq *)item)->compare_collation()),
 | 
						|
                             ((Item_func *)item)->arguments()[0],
 | 
						|
                             ((Item_func *)item)->arguments()[1],
 | 
						|
                             &new_cond_equal))
 | 
						|
      li.remove();
 | 
						|
  }
 | 
						|
 | 
						|
  it.rewind();
 | 
						|
  if (cond && cond->type() == Item::COND_ITEM &&
 | 
						|
      ((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      Case when cond is an AND-condition.
 | 
						|
      Union AND-condition cond, created multiple equalities from
 | 
						|
      new_cond_equal and remaining conditions from new_conds.
 | 
						|
    */
 | 
						|
    COND_EQUAL *cond_equal= &((Item_cond_and *) cond)->m_cond_equal;
 | 
						|
    List<Item_equal> *cond_equalities= &cond_equal->current_level;
 | 
						|
    List<Item> *and_args= ((Item_cond_and *)cond)->argument_list();
 | 
						|
 | 
						|
    /*
 | 
						|
      Disjoin multiple equalities of cond.
 | 
						|
      Merge these multiple equalities with the multiple equalities of
 | 
						|
      new_cond_equal. Save the result in new_cond_equal.
 | 
						|
      Check if after the merge some multiple equalities are knowingly
 | 
						|
      true or false.
 | 
						|
    */
 | 
						|
    and_args->disjoin((List<Item> *) cond_equalities);
 | 
						|
    while ((mult_eq= it++))
 | 
						|
    {
 | 
						|
      mult_eq->upper_levels= 0;
 | 
						|
      mult_eq->merge_into_list(thd, cond_equalities, false, false);
 | 
						|
    }
 | 
						|
    List_iterator_fast<Item_equal> ei(*cond_equalities);
 | 
						|
    while ((mult_eq= ei++))
 | 
						|
    {
 | 
						|
      if (mult_eq->const_item() && !mult_eq->val_bool())
 | 
						|
        is_simplified_cond= true;
 | 
						|
      else
 | 
						|
      {
 | 
						|
        mult_eq->unfix_fields();
 | 
						|
        if (mult_eq->fix_fields(thd, NULL))
 | 
						|
          return NULL;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    li.rewind();
 | 
						|
    while ((item=li++))
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        There still can be some equalities at not top level of new_conds
 | 
						|
        conditions that are not transformed into multiple equalities.
 | 
						|
        To transform them build_item_equal() is called.
 | 
						|
 | 
						|
        Examples of not top level equalities:
 | 
						|
 | 
						|
        1. (t1.a = 3) OR (t1.b > 5)
 | 
						|
            (t1.a = 3) - not top level equality.
 | 
						|
            It is inside OR condition
 | 
						|
 | 
						|
        2. ((t3.d = t3.c) AND (t3.c < 15)) OR (t3.d > 1)
 | 
						|
           (t1.d = t3.c) - not top level equality.
 | 
						|
           It is inside AND condition which is a part of OR condition
 | 
						|
      */
 | 
						|
      if (item->type() == Item::COND_ITEM &&
 | 
						|
          ((Item_cond *)item)->functype() == Item_func::COND_OR_FUNC)
 | 
						|
      {
 | 
						|
        item= item->build_equal_items(thd,
 | 
						|
                                      &((Item_cond_and *) cond)->m_cond_equal,
 | 
						|
                                      false, NULL);
 | 
						|
      }
 | 
						|
      and_args->push_back(item, thd->mem_root);
 | 
						|
    }
 | 
						|
    and_args->append((List<Item> *) cond_equalities);
 | 
						|
    *cond_eq= &((Item_cond_and *) cond)->m_cond_equal;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      Case when cond isn't an AND-condition or is NULL.
 | 
						|
      There can be several cases:
 | 
						|
 | 
						|
      1. cond is a multiple equality.
 | 
						|
         In this case merge cond with the multiple equalities of
 | 
						|
         new_cond_equal.
 | 
						|
         Create new condition from the created multiple equalities
 | 
						|
         and new_conds list conditions.
 | 
						|
      2. cond is NULL
 | 
						|
         Create new condition from new_conds list conditions
 | 
						|
         and multiple equalities from new_cond_equal.
 | 
						|
      3. Otherwise
 | 
						|
         Create new condition through union of cond, conditions from new_conds
 | 
						|
         list and created multiple equalities from new_cond_equal.
 | 
						|
    */
 | 
						|
    List<Item> new_conds_list;
 | 
						|
    /* Flag is set to true if cond is a multiple equality */
 | 
						|
    bool is_mult_eq= (cond && cond->type() == Item::FUNC_ITEM &&
 | 
						|
        ((Item_func*) cond)->functype() == Item_func::MULT_EQUAL_FUNC);
 | 
						|
 | 
						|
    /*
 | 
						|
      If cond is non-empty and is not multiple equality save it as
 | 
						|
      a part of a new condition.
 | 
						|
    */
 | 
						|
    if (cond && !is_mult_eq &&
 | 
						|
        new_conds_list.push_back(cond, thd->mem_root))
 | 
						|
      return NULL;
 | 
						|
 | 
						|
    /*
 | 
						|
      If cond is a multiple equality merge it with new_cond_equal
 | 
						|
      multiple equalities.
 | 
						|
    */
 | 
						|
    if (is_mult_eq)
 | 
						|
    {
 | 
						|
      Item_equal *eq_cond= (Item_equal *)cond;
 | 
						|
      eq_cond->upper_levels= 0;
 | 
						|
      eq_cond->merge_into_list(thd, &new_cond_equal.current_level,
 | 
						|
                               false, false);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
      Fix created multiple equalities and check if they are knowingly
 | 
						|
      true or false.
 | 
						|
    */
 | 
						|
    List_iterator_fast<Item_equal> ei(new_cond_equal.current_level);
 | 
						|
    while ((mult_eq=ei++))
 | 
						|
    {
 | 
						|
      if (mult_eq->const_item() && !mult_eq->val_bool())
 | 
						|
        is_simplified_cond= true;
 | 
						|
      else
 | 
						|
      {
 | 
						|
        mult_eq->unfix_fields();
 | 
						|
        if (mult_eq->fix_fields(thd, NULL))
 | 
						|
          return NULL;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
      Create AND condition if new condition will have two or
 | 
						|
      more elements.
 | 
						|
    */
 | 
						|
    Item_cond_and *and_cond= 0;
 | 
						|
    COND_EQUAL *inherited= 0;
 | 
						|
    if (new_conds_list.elements +
 | 
						|
        new_conds.elements +
 | 
						|
        new_cond_equal.current_level.elements > 1)
 | 
						|
    {
 | 
						|
      and_cond= new (thd->mem_root) Item_cond_and(thd);
 | 
						|
      and_cond->m_cond_equal.copy(new_cond_equal);
 | 
						|
      inherited= &and_cond->m_cond_equal;
 | 
						|
    }
 | 
						|
 | 
						|
    li.rewind();
 | 
						|
    while ((item=li++))
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        Look for the comment in the case when cond is an
 | 
						|
        AND condition above the build_equal_items() call.
 | 
						|
      */
 | 
						|
      if (item->type() == Item::COND_ITEM &&
 | 
						|
          ((Item_cond *)item)->functype() == Item_func::COND_OR_FUNC)
 | 
						|
      {
 | 
						|
        item= item->build_equal_items(thd, inherited, false, NULL);
 | 
						|
      }
 | 
						|
      new_conds_list.push_back(item, thd->mem_root);
 | 
						|
    }
 | 
						|
    new_conds_list.append((List<Item> *)&new_cond_equal.current_level);
 | 
						|
 | 
						|
    if (and_cond)
 | 
						|
    {
 | 
						|
      and_cond->argument_list()->append(&new_conds_list);
 | 
						|
      cond= (Item *)and_cond;
 | 
						|
      *cond_eq= &((Item_cond_and *) cond)->m_cond_equal;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      List_iterator_fast<Item> iter(new_conds_list);
 | 
						|
      cond= iter++;
 | 
						|
      if (cond->type() == Item::FUNC_ITEM &&
 | 
						|
          ((Item_func *)cond)->functype() == Item_func::MULT_EQUAL_FUNC)
 | 
						|
      {
 | 
						|
        if (!(*cond_eq))
 | 
						|
          *cond_eq= new COND_EQUAL();
 | 
						|
        (*cond_eq)->copy(new_cond_equal);
 | 
						|
      }
 | 
						|
      else
 | 
						|
        *cond_eq= 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!cond)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  if (*cond_eq)
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      The multiple equalities are attached only to the upper level
 | 
						|
      of AND-condition cond.
 | 
						|
      Push them down to the bottom levels of cond AND-condition if needed.
 | 
						|
    */
 | 
						|
    propagate_new_equalities(thd, cond,
 | 
						|
                             &(*cond_eq)->current_level,
 | 
						|
                             0,
 | 
						|
                             &is_simplified_cond);
 | 
						|
    cond= cond->propagate_equal_fields(thd,
 | 
						|
                                       Item::Context_boolean(),
 | 
						|
                                       *cond_eq);
 | 
						|
    cond->update_used_tables();
 | 
						|
  }
 | 
						|
  /* Check if conds has knowingly true or false parts. */
 | 
						|
  if (cond &&
 | 
						|
      !is_simplified_cond &&
 | 
						|
      cond->walk(&Item::is_simplified_cond_processor, 0, 0))
 | 
						|
    is_simplified_cond= true;
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
    If it was found that there are some knowingly true or false equalities
 | 
						|
    remove them  from cond and set cond_value to the appropriate value.
 | 
						|
  */
 | 
						|
  if (cond && is_simplified_cond)
 | 
						|
    cond= cond->remove_eq_conds(thd, cond_value, true);
 | 
						|
 | 
						|
  if (cond && cond->fix_fields_if_needed(thd, NULL))
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  return cond;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  @brief  Materialize a degenerate jtbm semi join
 | 
						|
 | 
						|
  @param thd        thread handler
 | 
						|
  @param tbl        table list for the target jtbm semi join table
 | 
						|
  @param subq_pred  IN subquery predicate with the degenerate jtbm semi join
 | 
						|
  @param eq_list    IN/OUT the list where to add produced equalities
 | 
						|
 | 
						|
  @details
 | 
						|
    The method materializes the degenerate jtbm semi join for the
 | 
						|
    subquery from the IN subquery predicate subq_pred taking table
 | 
						|
    as the target for materialization.
 | 
						|
    Any degenerate table is guaranteed to produce 0 or 1 record.
 | 
						|
    Examples of both cases:
 | 
						|
 | 
						|
    select * from ot where col in (select ... from it where 2>3)
 | 
						|
    select * from ot where col in (select MY_MIN(it.key) from it)
 | 
						|
 | 
						|
    in this case, there is no necessity to create a temp.table for
 | 
						|
    materialization.
 | 
						|
    We now just need to
 | 
						|
    1. Check whether 1 or 0 records are produced, setup this as a
 | 
						|
       constant join tab.
 | 
						|
    2. Create a dummy temporary table, because all of the join
 | 
						|
       optimization code relies on TABLE object being present.
 | 
						|
 | 
						|
    In the case when materialization produces one row the function
 | 
						|
    additionally creates equalities between the expressions from the
 | 
						|
    left part of the IN subquery predicate and the corresponding
 | 
						|
    columns of the produced row. These equalities are added to the
 | 
						|
    list eq_list. They are supposed to be conjuncted with the condition
 | 
						|
    of the WHERE clause.
 | 
						|
 | 
						|
  @retval TRUE   if an error occurs
 | 
						|
  @retval FALSE  otherwise
 | 
						|
*/
 | 
						|
 | 
						|
bool execute_degenerate_jtbm_semi_join(THD *thd,
 | 
						|
                                       TABLE_LIST *tbl,
 | 
						|
                                       Item_in_subselect *subq_pred,
 | 
						|
                                       List<Item> &eq_list)
 | 
						|
{
 | 
						|
  DBUG_ENTER("execute_degenerate_jtbm_semi_join");
 | 
						|
  select_value_catcher *new_sink;
 | 
						|
 | 
						|
  DBUG_ASSERT(subq_pred->engine->engine_type() ==
 | 
						|
              subselect_engine::SINGLE_SELECT_ENGINE);
 | 
						|
  subselect_single_select_engine *engine=
 | 
						|
    (subselect_single_select_engine*)subq_pred->engine;
 | 
						|
  if (!(new_sink= new (thd->mem_root) select_value_catcher(thd, subq_pred)))
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
  if (new_sink->setup(&engine->select_lex->join->fields_list) ||
 | 
						|
      engine->select_lex->join->change_result(new_sink, NULL) ||
 | 
						|
      engine->exec())
 | 
						|
  {
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
  }
 | 
						|
  subq_pred->is_jtbm_const_tab= TRUE;
 | 
						|
 | 
						|
  if (new_sink->assigned)
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      Subselect produced one row, which is saved in new_sink->row.
 | 
						|
      Save "left_expr[i] == row[i]" equalities into the eq_list.
 | 
						|
    */
 | 
						|
    subq_pred->jtbm_const_row_found= TRUE;
 | 
						|
 | 
						|
    Item *eq_cond;
 | 
						|
    Item *left_exp= subq_pred->left_exp();
 | 
						|
    uint ncols= left_exp->cols();
 | 
						|
    for (uint i= 0; i < ncols; i++)
 | 
						|
    {
 | 
						|
      eq_cond=
 | 
						|
        new (thd->mem_root) Item_func_eq(thd,
 | 
						|
                                         left_exp->element_index(i),
 | 
						|
                                         new_sink->row[i]);
 | 
						|
      if (!eq_cond || eq_cond->fix_fields(thd, NULL) ||
 | 
						|
          eq_list.push_back(eq_cond, thd->mem_root))
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    /* Subselect produced no rows. Just set the flag */
 | 
						|
    subq_pred->jtbm_const_row_found= FALSE;
 | 
						|
  }
 | 
						|
 | 
						|
  TABLE *dummy_table;
 | 
						|
  if (!(dummy_table= create_dummy_tmp_table(thd)))
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
  tbl->table= dummy_table;
 | 
						|
  tbl->table->pos_in_table_list= tbl;
 | 
						|
  /*
 | 
						|
    Note: the table created above may be freed by:
 | 
						|
    1. JOIN_TAB::cleanup(), when the parent join is a regular join.
 | 
						|
    2. cleanup_empty_jtbm_semi_joins(), when the parent join is a
 | 
						|
       degenerate join (e.g. one with "Impossible where").
 | 
						|
  */
 | 
						|
  setup_table_map(tbl->table, tbl, tbl->jtbm_table_no);
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  @brief
 | 
						|
    Execute degenerate jtbm semi joins before optimize_cond() for parent
 | 
						|
 | 
						|
  @param join       the parent join for jtbm semi joins
 | 
						|
  @param join_list  the list of tables where jtbm semi joins are processed
 | 
						|
  @param eq_list    IN/OUT the list where to add equalities produced after
 | 
						|
                    materialization of single-row degenerate jtbm semi joins
 | 
						|
 | 
						|
  @details
 | 
						|
    The method traverses join_list trying to find any degenerate jtbm semi
 | 
						|
    joins for subqueries of IN predicates. For each degenerate jtbm
 | 
						|
    semi join execute_degenerate_jtbm_semi_join() is called. As a result
 | 
						|
    of this call new equalities that substitute for single-row materialized
 | 
						|
    jtbm semi join are added to eq_list.
 | 
						|
 | 
						|
    In the case when a table is nested in another table 'nested_join' the
 | 
						|
    method is recursively called for the join_list of the 'nested_join' trying
 | 
						|
    to find in the list any degenerate jtbm semi joins. Currently a jtbm semi
 | 
						|
    join may occur in a mergeable semi join nest.
 | 
						|
 | 
						|
  @retval TRUE   if an error occurs
 | 
						|
  @retval FALSE  otherwise
 | 
						|
*/
 | 
						|
 | 
						|
bool setup_degenerate_jtbm_semi_joins(JOIN *join,
 | 
						|
                                      List<TABLE_LIST> *join_list,
 | 
						|
				      List<Item> &eq_list)
 | 
						|
{
 | 
						|
  TABLE_LIST *table;
 | 
						|
  NESTED_JOIN *nested_join;
 | 
						|
  List_iterator<TABLE_LIST> li(*join_list);
 | 
						|
  THD *thd= join->thd;
 | 
						|
  DBUG_ENTER("setup_degenerate_jtbm_semi_joins");
 | 
						|
 | 
						|
  while ((table= li++))
 | 
						|
  {
 | 
						|
    Item_in_subselect *subq_pred;
 | 
						|
 | 
						|
    if ((subq_pred= table->jtbm_subselect))
 | 
						|
    {
 | 
						|
      JOIN *subq_join= subq_pred->unit->first_select()->join;
 | 
						|
 | 
						|
      if (!subq_join->tables_list || !subq_join->table_count)
 | 
						|
      {
 | 
						|
        if (execute_degenerate_jtbm_semi_join(thd,
 | 
						|
                                              table,
 | 
						|
                                              subq_pred,
 | 
						|
                                              eq_list))
 | 
						|
          DBUG_RETURN(TRUE);
 | 
						|
        join->is_orig_degenerated= true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if ((nested_join= table->nested_join))
 | 
						|
    {
 | 
						|
      if (setup_degenerate_jtbm_semi_joins(join,
 | 
						|
                                           &nested_join->join_list,
 | 
						|
                                           eq_list))
 | 
						|
	DBUG_RETURN(TRUE);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  @brief
 | 
						|
    Optimize jtbm semi joins for materialization
 | 
						|
 | 
						|
  @param join       the parent join for jtbm semi joins
 | 
						|
  @param join_list  the list of TABLE_LIST objects where jtbm semi join
 | 
						|
                    can occur
 | 
						|
  @param eq_list    IN/OUT the list where to add produced equalities
 | 
						|
 | 
						|
  @details
 | 
						|
    This method is called by the optimizer after the call of
 | 
						|
    optimize_cond() for parent select.
 | 
						|
    The method traverses join_list trying to find any jtbm semi joins for
 | 
						|
    subqueries from IN predicates and optimizes them.
 | 
						|
    After the optimization some of jtbm semi joins may become degenerate.
 | 
						|
    For example the subquery 'SELECT MAX(b) FROM t2' from the query
 | 
						|
 | 
						|
    SELECT * FROM t1 WHERE 4 IN (SELECT MAX(b) FROM t2);
 | 
						|
 | 
						|
    will become degenerate if there is an index on t2.b.
 | 
						|
    If a subquery becomes degenerate it is handled by the function
 | 
						|
    execute_degenerate_jtbm_semi_join().
 | 
						|
 | 
						|
    Otherwise the method creates a temporary table in which the subquery
 | 
						|
    of the jtbm semi join will be materialied.
 | 
						|
 | 
						|
    The function saves the equalities between all pairs of the expressions
 | 
						|
    from the left part of the IN subquery predicate and the corresponding
 | 
						|
    columns of the subquery from the predicate in eq_list appending them
 | 
						|
    to the list. The equalities of eq_list will be later conjucted with the
 | 
						|
    condition of the WHERE clause.
 | 
						|
 | 
						|
    In the case when a table is nested in another table 'nested_join' the
 | 
						|
    method is recursively called for the join_list of the 'nested_join' trying
 | 
						|
    to find in the list any degenerate jtbm semi joins. Currently a jtbm semi
 | 
						|
    join may occur in a mergeable semi join nest.
 | 
						|
 | 
						|
  @retval TRUE   if an error occurs
 | 
						|
  @retval FALSE  otherwise
 | 
						|
*/
 | 
						|
 | 
						|
bool setup_jtbm_semi_joins(JOIN *join, List<TABLE_LIST> *join_list,
 | 
						|
                           List<Item> &eq_list)
 | 
						|
{
 | 
						|
  TABLE_LIST *table;
 | 
						|
  NESTED_JOIN *nested_join;
 | 
						|
  List_iterator<TABLE_LIST> li(*join_list);
 | 
						|
  THD *thd= join->thd;
 | 
						|
  DBUG_ENTER("setup_jtbm_semi_joins");
 | 
						|
 | 
						|
  while ((table= li++))
 | 
						|
  {
 | 
						|
    Item_in_subselect *subq_pred;
 | 
						|
    
 | 
						|
    if ((subq_pred= table->jtbm_subselect))
 | 
						|
    {
 | 
						|
      double rows;
 | 
						|
      double read_time;
 | 
						|
 | 
						|
      /*
 | 
						|
        Perform optimization of the subquery, so that we know estimated
 | 
						|
        - cost of materialization process 
 | 
						|
        - how many records will be in the materialized temp.table
 | 
						|
      */
 | 
						|
      if (subq_pred->optimize(&rows, &read_time))
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
 | 
						|
      subq_pred->jtbm_read_time= read_time;
 | 
						|
      subq_pred->jtbm_record_count=rows;
 | 
						|
      JOIN *subq_join= subq_pred->unit->first_select()->join;
 | 
						|
 | 
						|
      if (!subq_join->tables_list || !subq_join->table_count)
 | 
						|
      {
 | 
						|
        if (!join->is_orig_degenerated &&
 | 
						|
            execute_degenerate_jtbm_semi_join(thd, table, subq_pred,
 | 
						|
                                               eq_list))
 | 
						|
          DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        DBUG_ASSERT(subq_pred->test_set_strategy(SUBS_MATERIALIZATION));
 | 
						|
        subq_pred->is_jtbm_const_tab= FALSE;
 | 
						|
        subselect_hash_sj_engine *hash_sj_engine=
 | 
						|
          ((subselect_hash_sj_engine*)subq_pred->engine);
 | 
						|
        
 | 
						|
        table->table= hash_sj_engine->tmp_table;
 | 
						|
        table->table->pos_in_table_list= table;
 | 
						|
 | 
						|
        setup_table_map(table->table, table, table->jtbm_table_no);
 | 
						|
 | 
						|
        List_iterator<Item> li(*hash_sj_engine->semi_join_conds->argument_list());
 | 
						|
        Item *item;
 | 
						|
        while ((item=li++))
 | 
						|
        {
 | 
						|
          item->update_used_tables();
 | 
						|
          if (eq_list.push_back(item, thd->mem_root))
 | 
						|
            DBUG_RETURN(TRUE);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      table->table->maybe_null= MY_TEST(join->mixed_implicit_grouping);
 | 
						|
    }
 | 
						|
    if ((nested_join= table->nested_join))
 | 
						|
    {
 | 
						|
      if (setup_jtbm_semi_joins(join, &nested_join->join_list, eq_list))
 | 
						|
        DBUG_RETURN(TRUE);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Cleanup non-merged semi-joins (JBMs) that have empty.
 | 
						|
 | 
						|
  This function is to cleanups for a special case:  
 | 
						|
  Consider a query like 
 | 
						|
 | 
						|
    select * from t1 where 1=2 AND t1.col IN (select max(..) ... having 1=2)
 | 
						|
 | 
						|
  For this query, optimization of subquery will short-circuit, and 
 | 
						|
  setup_jtbm_semi_joins() will call create_dummy_tmp_table() so that we have
 | 
						|
  empty, constant temp.table to stand in as materialized temp. table.
 | 
						|
 | 
						|
  Now, suppose that the upper join is also found to be degenerate. In that
 | 
						|
  case, no JOIN_TAB array will be produced, and hence, JOIN::cleanup() will
 | 
						|
  have a problem with cleaning up empty JTBMs (non-empty ones are cleaned up
 | 
						|
  through Item::cleanup() calls).
 | 
						|
*/
 | 
						|
 | 
						|
void cleanup_empty_jtbm_semi_joins(JOIN *join, List<TABLE_LIST> *join_list)
 | 
						|
{
 | 
						|
  List_iterator<TABLE_LIST> li(*join_list);
 | 
						|
  TABLE_LIST *table;
 | 
						|
  while ((table= li++))
 | 
						|
  {
 | 
						|
    if ((table->jtbm_subselect && table->jtbm_subselect->is_jtbm_const_tab))
 | 
						|
    {
 | 
						|
      if (table->table)
 | 
						|
      {
 | 
						|
        free_tmp_table(join->thd, table->table);
 | 
						|
        table->table= NULL;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else if (table->nested_join && table->sj_subq_pred)
 | 
						|
    {
 | 
						|
      cleanup_empty_jtbm_semi_joins(join, &table->nested_join->join_list);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  Choose an optimal strategy to execute an IN/ALL/ANY subquery predicate
 | 
						|
  based on cost.
 | 
						|
 | 
						|
  @param join_tables  the set of tables joined in the subquery
 | 
						|
 | 
						|
  @notes
 | 
						|
  The method chooses between the materialization and IN=>EXISTS rewrite
 | 
						|
  strategies for the execution of a non-flattened subquery IN predicate.
 | 
						|
  The cost-based decision is made as follows:
 | 
						|
 | 
						|
  1. compute materialize_strategy_cost based on the unmodified subquery
 | 
						|
  2. reoptimize the subquery taking into account the IN-EXISTS predicates
 | 
						|
  3. compute in_exists_strategy_cost based on the reoptimized plan
 | 
						|
  4. compare and set the cheaper strategy
 | 
						|
     if (materialize_strategy_cost >= in_exists_strategy_cost)
 | 
						|
       in_strategy = MATERIALIZATION
 | 
						|
     else
 | 
						|
       in_strategy = IN_TO_EXISTS
 | 
						|
  5. if in_strategy = MATERIALIZATION and it is not possible to initialize it
 | 
						|
       revert to IN_TO_EXISTS
 | 
						|
  6. if (in_strategy == MATERIALIZATION)
 | 
						|
       revert the subquery plan to the original one before reoptimizing
 | 
						|
     else
 | 
						|
       inject the IN=>EXISTS predicates into the new EXISTS subquery plan
 | 
						|
 | 
						|
  The implementation itself is a bit more complicated because it takes into
 | 
						|
  account two more factors:
 | 
						|
  - whether the user allowed both strategies through an optimizer_switch, and
 | 
						|
  - if materialization was the cheaper strategy, whether it can be executed
 | 
						|
    or not.
 | 
						|
 | 
						|
  @retval FALSE     success.
 | 
						|
  @retval TRUE      error occurred.
 | 
						|
*/
 | 
						|
 | 
						|
bool JOIN::choose_subquery_plan(table_map join_tables)
 | 
						|
{
 | 
						|
  enum_reopt_result reopt_result= REOPT_NONE;
 | 
						|
  Item_in_subselect *in_subs;
 | 
						|
 | 
						|
  /*
 | 
						|
    IN/ALL/ANY optimizations are not applicable for so called fake select
 | 
						|
    (this select exists only to filter results of union if it is needed).
 | 
						|
  */
 | 
						|
  if (select_lex == select_lex->master_unit()->fake_select_lex)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  if (is_in_subquery())
 | 
						|
  {
 | 
						|
    in_subs= unit->item->get_IN_subquery();
 | 
						|
    if (in_subs->create_in_to_exists_cond(this))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  /* A strategy must be chosen earlier. */
 | 
						|
  DBUG_ASSERT(in_subs->has_strategy());
 | 
						|
  DBUG_ASSERT(in_to_exists_where || in_to_exists_having);
 | 
						|
  DBUG_ASSERT(!in_to_exists_where || in_to_exists_where->fixed());
 | 
						|
  DBUG_ASSERT(!in_to_exists_having || in_to_exists_having->fixed());
 | 
						|
 | 
						|
  /* The original QEP of the subquery. */
 | 
						|
  Join_plan_state save_qep(table_count);
 | 
						|
 | 
						|
  /*
 | 
						|
    Compute and compare the costs of materialization and in-exists if both
 | 
						|
    strategies are possible and allowed by the user (checked during the prepare
 | 
						|
    phase.
 | 
						|
  */
 | 
						|
  if (in_subs->test_strategy(SUBS_MATERIALIZATION) &&
 | 
						|
      in_subs->test_strategy(SUBS_IN_TO_EXISTS))
 | 
						|
  {
 | 
						|
    JOIN *outer_join;
 | 
						|
    JOIN *inner_join= this;
 | 
						|
    /* Number of unique value combinations filtered by the IN predicate. */
 | 
						|
    double outer_lookup_keys;
 | 
						|
    /* Cost and row count of the unmodified subquery. */
 | 
						|
    double inner_read_time_1, inner_record_count_1;
 | 
						|
    /* Cost of the subquery with injected IN-EXISTS predicates. */
 | 
						|
    double inner_read_time_2;
 | 
						|
    /* The cost to compute IN via materialization. */
 | 
						|
    double materialize_strategy_cost;
 | 
						|
    /* The cost of the IN->EXISTS strategy. */
 | 
						|
    double in_exists_strategy_cost;
 | 
						|
    double dummy;
 | 
						|
 | 
						|
    /*
 | 
						|
      A. Estimate the number of rows of the outer table that will be filtered
 | 
						|
      by the IN predicate.
 | 
						|
    */
 | 
						|
    outer_join= unit->outer_select() ? unit->outer_select()->join : NULL;
 | 
						|
    /*
 | 
						|
      Get the cost of the outer join if:
 | 
						|
      (1) It has at least one table, and
 | 
						|
      (2) It has been already optimized (if there is no join_tab, then the
 | 
						|
          outer join has not been optimized yet).
 | 
						|
    */
 | 
						|
    if (outer_join && outer_join->table_count > 0 && // (1)
 | 
						|
        outer_join->join_tab &&                      // (2)
 | 
						|
        !in_subs->const_item())
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        TODO:
 | 
						|
        Currently outer_lookup_keys is computed as the number of rows in
 | 
						|
        the partial join including the JOIN_TAB where the IN predicate is
 | 
						|
        pushed to. In the general case this is a gross overestimate because
 | 
						|
        due to caching we are interested only in the number of unique keys.
 | 
						|
        The search key may be formed by columns from much fewer than all
 | 
						|
        tables in the partial join. Example:
 | 
						|
        select * from t1, t2 where t1.c1 = t2.key AND t2.c2 IN (select ...);
 | 
						|
        If the join order: t1, t2, the number of unique lookup keys is ~ to
 | 
						|
        the number of unique values t2.c2 in the partial join t1 join t2.
 | 
						|
      */
 | 
						|
      outer_join->get_partial_cost_and_fanout(in_subs->get_join_tab_idx(),
 | 
						|
                                              table_map(-1),
 | 
						|
                                              &dummy,
 | 
						|
                                              &outer_lookup_keys);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        TODO: outer_join can be NULL for DELETE statements.
 | 
						|
        How to compute its cost?
 | 
						|
      */
 | 
						|
      outer_lookup_keys= 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
      B. Estimate the cost and number of records of the subquery both
 | 
						|
      unmodified, and with injected IN->EXISTS predicates.
 | 
						|
    */
 | 
						|
    inner_read_time_1= inner_join->best_read;
 | 
						|
    inner_record_count_1= inner_join->join_record_count;
 | 
						|
 | 
						|
    if (in_to_exists_where && const_tables != table_count)
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        Re-optimize and cost the subquery taking into account the IN-EXISTS
 | 
						|
        conditions.
 | 
						|
      */
 | 
						|
      reopt_result= reoptimize(in_to_exists_where, join_tables, &save_qep);
 | 
						|
      if (reopt_result == REOPT_ERROR)
 | 
						|
        return TRUE;
 | 
						|
 | 
						|
      /* Get the cost of the modified IN-EXISTS plan. */
 | 
						|
      inner_read_time_2= inner_join->best_read;
 | 
						|
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      /* Reoptimization would not produce any better plan. */
 | 
						|
      inner_read_time_2= inner_read_time_1;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
      C. Compute execution costs.
 | 
						|
    */
 | 
						|
    /* C.1 Compute the cost of the materialization strategy. */
 | 
						|
    //uint rowlen= get_tmp_table_rec_length(unit->first_select()->item_list);
 | 
						|
    uint rowlen= get_tmp_table_rec_length(ref_ptrs, 
 | 
						|
                                          select_lex->item_list.elements);
 | 
						|
    /* The cost of writing one row into the temporary table. */
 | 
						|
    double write_cost= get_tmp_table_write_cost(thd, inner_record_count_1,
 | 
						|
                                                rowlen);
 | 
						|
    /* The cost of a lookup into the unique index of the materialized table. */
 | 
						|
    double lookup_cost= get_tmp_table_lookup_cost(thd, inner_record_count_1,
 | 
						|
                                                  rowlen);
 | 
						|
    /*
 | 
						|
      The cost of executing the subquery and storing its result in an indexed
 | 
						|
      temporary table.
 | 
						|
    */
 | 
						|
    double materialization_cost= COST_ADD(inner_read_time_1,
 | 
						|
                                          COST_MULT(write_cost,
 | 
						|
                                                    inner_record_count_1));
 | 
						|
 | 
						|
    materialize_strategy_cost= COST_ADD(materialization_cost,
 | 
						|
                                        COST_MULT(outer_lookup_keys,
 | 
						|
                                                  lookup_cost));
 | 
						|
 | 
						|
    /* C.2 Compute the cost of the IN=>EXISTS strategy. */
 | 
						|
    in_exists_strategy_cost= COST_MULT(outer_lookup_keys, inner_read_time_2);
 | 
						|
 | 
						|
    /* C.3 Compare the costs and choose the cheaper strategy. */
 | 
						|
    if (materialize_strategy_cost >= in_exists_strategy_cost)
 | 
						|
      in_subs->set_strategy(SUBS_IN_TO_EXISTS);
 | 
						|
    else
 | 
						|
      in_subs->set_strategy(SUBS_MATERIALIZATION);
 | 
						|
 | 
						|
    DBUG_PRINT("info",
 | 
						|
               ("mat_strategy_cost: %.2f, mat_cost: %.2f, write_cost: %.2f, lookup_cost: %.2f",
 | 
						|
                materialize_strategy_cost, materialization_cost, write_cost, lookup_cost));
 | 
						|
    DBUG_PRINT("info",
 | 
						|
               ("inx_strategy_cost: %.2f, inner_read_time_2: %.2f",
 | 
						|
                in_exists_strategy_cost, inner_read_time_2));
 | 
						|
    DBUG_PRINT("info",("outer_lookup_keys: %.2f", outer_lookup_keys));
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
    If (1) materialization is a possible strategy based on semantic analysis
 | 
						|
    during the prepare phase, then if
 | 
						|
      (2) it is more expensive than the IN->EXISTS transformation, and
 | 
						|
      (3) it is not possible to create usable indexes for the materialization
 | 
						|
          strategy,
 | 
						|
      fall back to IN->EXISTS.
 | 
						|
    otherwise
 | 
						|
      use materialization.
 | 
						|
  */
 | 
						|
  if (in_subs->test_strategy(SUBS_MATERIALIZATION) &&
 | 
						|
      in_subs->setup_mat_engine())
 | 
						|
  {
 | 
						|
    /*
 | 
						|
      If materialization was the cheaper or the only user-selected strategy,
 | 
						|
      but it is not possible to execute it due to limitations in the
 | 
						|
      implementation, fall back to IN-TO-EXISTS.
 | 
						|
    */
 | 
						|
    in_subs->set_strategy(SUBS_IN_TO_EXISTS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (in_subs->test_strategy(SUBS_MATERIALIZATION))
 | 
						|
  {
 | 
						|
    /* Restore the original query plan used for materialization. */
 | 
						|
    if (reopt_result == REOPT_NEW_PLAN)
 | 
						|
      restore_query_plan(&save_qep);
 | 
						|
 | 
						|
    in_subs->unit->uncacheable&= ~UNCACHEABLE_DEPENDENT_INJECTED;
 | 
						|
    select_lex->uncacheable&= ~UNCACHEABLE_DEPENDENT_INJECTED;
 | 
						|
 | 
						|
    /*
 | 
						|
      Reset the "LIMIT 1" set in Item_exists_subselect::fix_length_and_dec.
 | 
						|
      TODO:
 | 
						|
      Currently we set the subquery LIMIT to infinity, and this is correct
 | 
						|
      because we forbid at parse time LIMIT inside IN subqueries (see
 | 
						|
      Item_in_subselect::test_limit). However, once we allow this, here
 | 
						|
      we should set the correct limit if given in the query.
 | 
						|
    */
 | 
						|
    in_subs->unit->global_parameters()->limit_params.select_limit= NULL;
 | 
						|
    in_subs->unit->set_limit(unit->global_parameters());
 | 
						|
    /*
 | 
						|
      Set the limit of this JOIN object as well, because normally its being
 | 
						|
      set in the beginning of JOIN::optimize, which was already done.
 | 
						|
    */
 | 
						|
    select_limit= in_subs->unit->lim.get_select_limit();
 | 
						|
  }
 | 
						|
  else if (in_subs->test_strategy(SUBS_IN_TO_EXISTS))
 | 
						|
  {
 | 
						|
    if (reopt_result == REOPT_NONE && in_to_exists_where &&
 | 
						|
        const_tables != table_count)
 | 
						|
    {
 | 
						|
      /*
 | 
						|
        The subquery was not reoptimized with the newly injected IN-EXISTS
 | 
						|
        conditions either because the user allowed only the IN-EXISTS strategy,
 | 
						|
        or because materialization was not possible based on semantic analysis.
 | 
						|
      */
 | 
						|
      reopt_result= reoptimize(in_to_exists_where, join_tables, NULL);
 | 
						|
      if (reopt_result == REOPT_ERROR)
 | 
						|
        return TRUE;
 | 
						|
    }
 | 
						|
 | 
						|
    if (in_subs->inject_in_to_exists_cond(this))
 | 
						|
      return TRUE;
 | 
						|
    /*
 | 
						|
      If the injected predicate is correlated the IN->EXISTS transformation
 | 
						|
      make the subquery dependent.
 | 
						|
    */
 | 
						|
    if ((in_to_exists_where &&
 | 
						|
         in_to_exists_where->used_tables() & OUTER_REF_TABLE_BIT) ||
 | 
						|
        (in_to_exists_having &&
 | 
						|
         in_to_exists_having->used_tables() & OUTER_REF_TABLE_BIT))
 | 
						|
    {
 | 
						|
      in_subs->unit->uncacheable|= UNCACHEABLE_DEPENDENT_INJECTED;
 | 
						|
      select_lex->uncacheable|= UNCACHEABLE_DEPENDENT_INJECTED;
 | 
						|
    }
 | 
						|
    select_limit= 1;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    DBUG_ASSERT(FALSE);
 | 
						|
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  Choose a query plan for a table-less subquery.
 | 
						|
 | 
						|
  @notes
 | 
						|
 | 
						|
  @retval FALSE     success.
 | 
						|
  @retval TRUE      error occurred.
 | 
						|
*/
 | 
						|
 | 
						|
bool JOIN::choose_tableless_subquery_plan()
 | 
						|
{
 | 
						|
  DBUG_ASSERT(!tables_list || !table_count);
 | 
						|
  if (unit->item)
 | 
						|
  {
 | 
						|
    DBUG_ASSERT(unit->item->type() == Item::SUBSELECT_ITEM);
 | 
						|
    Item_subselect *subs_predicate= unit->item;
 | 
						|
 | 
						|
    /*
 | 
						|
      If the optimizer determined that his query has an empty result,
 | 
						|
      in most cases the subquery predicate is a known constant value -
 | 
						|
      either of TRUE, FALSE or NULL. The implementation of
 | 
						|
      Item_subselect::no_rows_in_result() determines which one.
 | 
						|
    */
 | 
						|
    if (zero_result_cause)
 | 
						|
    {
 | 
						|
      if (!implicit_grouping)
 | 
						|
      {
 | 
						|
        /*
 | 
						|
          Both group by queries and non-group by queries without aggregate
 | 
						|
          functions produce empty subquery result. There is no need to further
 | 
						|
          rewrite the subquery because it will not be executed at all.
 | 
						|
        */
 | 
						|
        exec_const_cond= 0;
 | 
						|
        return FALSE;
 | 
						|
      }
 | 
						|
 | 
						|
      /* @todo
 | 
						|
         A further optimization is possible when a non-group query with
 | 
						|
         MIN/MAX/COUNT is optimized by opt_sum_query. Then, if there are
 | 
						|
         only MIN/MAX functions over an empty result set, the subquery
 | 
						|
         result is a NULL value/row, thus the value of subs_predicate is
 | 
						|
         NULL.
 | 
						|
      */
 | 
						|
    }
 | 
						|
    
 | 
						|
    /*
 | 
						|
      For IN subqueries, use IN->EXISTS transfomation, unless the subquery 
 | 
						|
      has been converted to a JTBM semi-join. In that case, just leave
 | 
						|
      everything as-is, setup_jtbm_semi_joins() has special handling for cases
 | 
						|
      like this.
 | 
						|
    */
 | 
						|
    Item_in_subselect *in_subs;
 | 
						|
    in_subs= subs_predicate->get_IN_subquery();
 | 
						|
    if (in_subs &&
 | 
						|
        !(subs_predicate->substype() == Item_subselect::IN_SUBS &&
 | 
						|
          in_subs->is_jtbm_merged))
 | 
						|
    {
 | 
						|
      in_subs->set_strategy(SUBS_IN_TO_EXISTS);
 | 
						|
      if (in_subs->create_in_to_exists_cond(this) ||
 | 
						|
          in_subs->inject_in_to_exists_cond(this))
 | 
						|
        return TRUE;
 | 
						|
      tmp_having= having;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  exec_const_cond= zero_result_cause ? 0 : conds;
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool Item::pushable_equality_checker_for_subquery(uchar *arg)
 | 
						|
{
 | 
						|
  return
 | 
						|
  get_corresponding_field_pair(this,
 | 
						|
                               ((Item *)arg)->get_IN_subquery()->
 | 
						|
                                 corresponding_fields);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Checks if 'item' or some item equal to it is equal to the field from
 | 
						|
  some Field_pair of 'pair_list' and returns matching Field_pair or
 | 
						|
  NULL if the matching Field_pair wasn't found.
 | 
						|
*/
 | 
						|
 | 
						|
Field_pair *find_matching_field_pair(Item *item, List<Field_pair> pair_list)
 | 
						|
{
 | 
						|
  Field_pair *field_pair= get_corresponding_field_pair(item, pair_list);
 | 
						|
  if (field_pair)
 | 
						|
    return field_pair;
 | 
						|
 | 
						|
  Item_equal *item_equal= item->get_item_equal();
 | 
						|
  if (item_equal)
 | 
						|
  {
 | 
						|
    Item_equal_fields_iterator it(*item_equal);
 | 
						|
    Item *equal_item;
 | 
						|
    while ((equal_item= it++))
 | 
						|
    {
 | 
						|
      if (equal_item->const_item())
 | 
						|
        continue;
 | 
						|
      field_pair= get_corresponding_field_pair(equal_item, pair_list);
 | 
						|
      if (field_pair)
 | 
						|
        return field_pair;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool Item_field::excl_dep_on_in_subq_left_part(Item_in_subselect *subq_pred)
 | 
						|
{
 | 
						|
  if (find_matching_field_pair(((Item *) this), subq_pred->corresponding_fields))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool Item_direct_view_ref::excl_dep_on_in_subq_left_part(Item_in_subselect *subq_pred)
 | 
						|
{
 | 
						|
  if (item_equal)
 | 
						|
  {
 | 
						|
    DBUG_ASSERT(real_item()->type() == Item::FIELD_ITEM);
 | 
						|
    if (get_corresponding_field_pair(((Item *)this), subq_pred->corresponding_fields))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return (*ref)->excl_dep_on_in_subq_left_part(subq_pred);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool Item_equal::excl_dep_on_in_subq_left_part(Item_in_subselect *subq_pred)
 | 
						|
{
 | 
						|
  Item *left_item = get_const();
 | 
						|
  Item_equal_fields_iterator it(*this);
 | 
						|
  Item *item;
 | 
						|
  if (!left_item)
 | 
						|
  {
 | 
						|
    while ((item=it++))
 | 
						|
    {
 | 
						|
      if (item->excl_dep_on_in_subq_left_part(subq_pred))
 | 
						|
      {
 | 
						|
        left_item= item;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!left_item)
 | 
						|
    return false;
 | 
						|
  while ((item=it++))
 | 
						|
  {
 | 
						|
    if (item->excl_dep_on_in_subq_left_part(subq_pred))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  @brief
 | 
						|
    Get corresponding item from the select of the right part of IN subquery
 | 
						|
 | 
						|
  @param thd        the thread handle
 | 
						|
  @param item       the item from the left part of subq_pred for which
 | 
						|
                    corresponding item should be found
 | 
						|
  @param subq_pred  the IN subquery predicate
 | 
						|
 | 
						|
  @details
 | 
						|
    This method looks through the fields of the select of the right part of
 | 
						|
    the IN subquery predicate subq_pred trying to find the corresponding
 | 
						|
    item 'new_item' for item. If item has equal items it looks through
 | 
						|
    the fields of the select of the right part of subq_pred for each equal
 | 
						|
    item trying to find the corresponding item.
 | 
						|
    The method assumes that the given item is either a field item or
 | 
						|
    a reference to a field item.
 | 
						|
 | 
						|
  @retval <item*>  reference to the corresponding item
 | 
						|
  @retval NULL     if item was not found
 | 
						|
*/
 | 
						|
 | 
						|
static
 | 
						|
Item *get_corresponding_item(THD *thd, Item *item,
 | 
						|
                             Item_in_subselect *subq_pred)
 | 
						|
{
 | 
						|
  DBUG_ASSERT(item->type() == Item::FIELD_ITEM ||
 | 
						|
              (item->type() == Item::REF_ITEM &&
 | 
						|
              ((Item_ref *) item)->ref_type() == Item_ref::VIEW_REF));
 | 
						|
 | 
						|
  Field_pair *field_pair;
 | 
						|
  Item_equal *item_equal= item->get_item_equal();
 | 
						|
 | 
						|
  if (item_equal)
 | 
						|
  {
 | 
						|
    Item_equal_fields_iterator it(*item_equal);
 | 
						|
    Item *equal_item;
 | 
						|
    while ((equal_item= it++))
 | 
						|
    {
 | 
						|
      field_pair=
 | 
						|
        get_corresponding_field_pair(equal_item, subq_pred->corresponding_fields);
 | 
						|
      if (field_pair)
 | 
						|
        return field_pair->corresponding_item;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    field_pair=
 | 
						|
        get_corresponding_field_pair(item, subq_pred->corresponding_fields);
 | 
						|
    if (field_pair)
 | 
						|
        return field_pair->corresponding_item;
 | 
						|
  }
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Item *Item_field::in_subq_field_transformer_for_where(THD *thd, uchar *arg)
 | 
						|
{
 | 
						|
  Item_in_subselect *subq_pred= ((Item *)arg)->get_IN_subquery();
 | 
						|
  Item *producing_item= get_corresponding_item(thd, this, subq_pred);
 | 
						|
  if (producing_item)
 | 
						|
    return producing_item->build_clone(thd);
 | 
						|
  return this;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Item *Item_direct_view_ref::in_subq_field_transformer_for_where(THD *thd,
 | 
						|
                                                                uchar *arg)
 | 
						|
{
 | 
						|
  if (item_equal)
 | 
						|
  {
 | 
						|
    Item_in_subselect *subq_pred= ((Item *)arg)->get_IN_subquery();
 | 
						|
    Item *producing_item= get_corresponding_item(thd, this, subq_pred);
 | 
						|
    DBUG_ASSERT (producing_item != NULL);
 | 
						|
    return producing_item->build_clone(thd);
 | 
						|
  }
 | 
						|
  return this;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  @brief
 | 
						|
    Transforms item so it can be pushed into the IN subquery HAVING clause
 | 
						|
 | 
						|
  @param thd        the thread handle
 | 
						|
  @param in_item    the item for which pushable item should be created
 | 
						|
  @param subq_pred  the IN subquery predicate
 | 
						|
 | 
						|
  @details
 | 
						|
    This method finds for in_item that is a field from the left part of the
 | 
						|
    IN subquery predicate subq_pred its corresponding item from the right part
 | 
						|
    of subq_pred.
 | 
						|
    If corresponding item is found, a shell for this item is created.
 | 
						|
    This shell can be pushed into the HAVING part of subq_pred select.
 | 
						|
 | 
						|
  @retval <item*>  reference to the created corresponding item shell for in_item
 | 
						|
  @retval NULL     if mistake occurs
 | 
						|
*/
 | 
						|
 | 
						|
static Item*
 | 
						|
get_corresponding_item_for_in_subq_having(THD *thd, Item *in_item,
 | 
						|
                                          Item_in_subselect *subq_pred)
 | 
						|
{
 | 
						|
  Item *new_item= get_corresponding_item(thd, in_item, subq_pred);
 | 
						|
 | 
						|
  if (new_item)
 | 
						|
  {
 | 
						|
    Item_ref *ref=
 | 
						|
      new (thd->mem_root) Item_ref(thd,
 | 
						|
                                   &subq_pred->unit->first_select()->context,
 | 
						|
                                   new_item->name);
 | 
						|
    if (!ref)
 | 
						|
      DBUG_ASSERT(0);
 | 
						|
    return ref;
 | 
						|
  }
 | 
						|
  return new_item;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Item *Item_field::in_subq_field_transformer_for_having(THD *thd, uchar *arg)
 | 
						|
{
 | 
						|
  DBUG_ASSERT(((Item *)arg)->get_IN_subquery());
 | 
						|
  return get_corresponding_item_for_in_subq_having(thd, this,
 | 
						|
                                                   (Item_in_subselect *)arg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Item *Item_direct_view_ref::in_subq_field_transformer_for_having(THD *thd,
 | 
						|
                                                                 uchar *arg)
 | 
						|
{
 | 
						|
  if (!item_equal)
 | 
						|
    return this;
 | 
						|
  else
 | 
						|
  {
 | 
						|
    DBUG_ASSERT(((Item *)arg)->get_IN_subquery());
 | 
						|
    Item *new_item= get_corresponding_item_for_in_subq_having(thd, this,
 | 
						|
                                                    (Item_in_subselect *)arg);
 | 
						|
    if (!new_item)
 | 
						|
      return this;
 | 
						|
    return new_item;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  @brief
 | 
						|
    Find fields that are used in the GROUP BY of the select
 | 
						|
 | 
						|
  @param thd            the thread handle
 | 
						|
  @param sel            the select of the IN subquery predicate
 | 
						|
  @param fields         fields of the left part of the IN subquery predicate
 | 
						|
  @param grouping_list  GROUP BY clause
 | 
						|
 | 
						|
  @details
 | 
						|
    This method traverses fields which are used in the GROUP BY of
 | 
						|
    sel and saves them with their corresponding items from fields.
 | 
						|
*/
 | 
						|
 | 
						|
bool grouping_fields_in_the_in_subq_left_part(THD *thd,
 | 
						|
                                              st_select_lex *sel,
 | 
						|
                                              List<Field_pair> *fields,
 | 
						|
                                              ORDER *grouping_list)
 | 
						|
{
 | 
						|
  DBUG_ENTER("grouping_fields_in_the_in_subq_left_part");
 | 
						|
  sel->grouping_tmp_fields.empty();
 | 
						|
  List_iterator<Field_pair> it(*fields);
 | 
						|
  Field_pair *item;
 | 
						|
  while ((item= it++))
 | 
						|
  {
 | 
						|
    for (ORDER *ord= grouping_list; ord; ord= ord->next)
 | 
						|
    {
 | 
						|
      if ((*ord->item)->eq(item->corresponding_item, 0))
 | 
						|
      {
 | 
						|
        if (sel->grouping_tmp_fields.push_back(item, thd->mem_root))
 | 
						|
          DBUG_RETURN(TRUE);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  @brief
 | 
						|
    Extract condition that can be pushed into select of this IN subquery
 | 
						|
 | 
						|
  @param thd   the thread handle
 | 
						|
  @param cond  current condition
 | 
						|
 | 
						|
  @details
 | 
						|
    This function builds the most restrictive condition depending only on
 | 
						|
    the list of fields of the left part of this IN subquery predicate
 | 
						|
    (directly or indirectly through equality) that can be extracted from the
 | 
						|
    given condition cond and pushes it into this IN subquery.
 | 
						|
 | 
						|
    Example of the transformation:
 | 
						|
 | 
						|
    SELECT * FROM t1
 | 
						|
    WHERE a>3 AND b>10 AND
 | 
						|
          (a,b) IN (SELECT x,MAX(y) FROM t2 GROUP BY x);
 | 
						|
 | 
						|
    =>
 | 
						|
 | 
						|
    SELECT * FROM t1
 | 
						|
    WHERE a>3 AND b>10 AND
 | 
						|
          (a,b) IN (SELECT x,max(y)
 | 
						|
                    FROM t2
 | 
						|
                    WHERE x>3
 | 
						|
                    GROUP BY x
 | 
						|
                    HAVING MAX(y)>10);
 | 
						|
 | 
						|
 | 
						|
    In details:
 | 
						|
    1. Check what pushable formula can be extracted from cond
 | 
						|
    2. Build a clone PC of the formula that can be extracted
 | 
						|
       (the clone is built only if the extracted formula is a AND subformula
 | 
						|
        of cond or conjunction of such subformulas)
 | 
						|
    3. If there is no HAVING clause prepare PC to be conjuncted with
 | 
						|
       WHERE clause of this subquery. Otherwise do 4-7.
 | 
						|
    4. Check what formula PC_where can be extracted from PC to be pushed
 | 
						|
       into the WHERE clause of the subquery
 | 
						|
    5. Build PC_where and if PC_where is a conjunct(s) of PC remove it from PC
 | 
						|
       getting PC_having
 | 
						|
    6. Prepare PC_where to be conjuncted with the WHERE clause of
 | 
						|
       the IN subquery
 | 
						|
    7. Prepare PC_having to be conjuncted with the HAVING clause of
 | 
						|
       the IN subquery
 | 
						|
 | 
						|
  @note
 | 
						|
    This method is similar to pushdown_cond_for_derived()
 | 
						|
 | 
						|
  @retval TRUE   if an error occurs
 | 
						|
  @retval FALSE  otherwise
 | 
						|
*/
 | 
						|
 | 
						|
bool Item_in_subselect::pushdown_cond_for_in_subquery(THD *thd, Item *cond)
 | 
						|
{
 | 
						|
  DBUG_ENTER("Item_in_subselect::pushdown_cond_for_in_subquery");
 | 
						|
  Item *remaining_cond= NULL;
 | 
						|
 | 
						|
  if (!cond)
 | 
						|
    DBUG_RETURN(FALSE);
 | 
						|
 | 
						|
  st_select_lex *sel = unit->first_select();
 | 
						|
 | 
						|
  if (is_jtbm_const_tab)
 | 
						|
    DBUG_RETURN(FALSE);
 | 
						|
 | 
						|
  if (!sel->cond_pushdown_is_allowed())
 | 
						|
    DBUG_RETURN(FALSE);
 | 
						|
 | 
						|
  /*
 | 
						|
    Create a list of Field_pair items for this IN subquery.
 | 
						|
    It consists of the pairs of fields from the left part of this IN subquery
 | 
						|
    predicate 'left_part' and the respective fields from the select of the
 | 
						|
    right part of the IN subquery 'sel' (the field from left_part with the
 | 
						|
    corresponding field from the sel projection list).
 | 
						|
    Attach this list to the IN subquery.
 | 
						|
  */
 | 
						|
  corresponding_fields.empty();
 | 
						|
  List_iterator_fast<Item> it(sel->join->fields_list);
 | 
						|
  Item *item;
 | 
						|
  for (uint i= 0; i < left_expr->cols(); i++)
 | 
						|
  {
 | 
						|
    item= it++;
 | 
						|
    Item *elem= left_expr->element_index(i);
 | 
						|
 | 
						|
    if (elem->real_item()->type() != Item::FIELD_ITEM)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (corresponding_fields.push_back(
 | 
						|
          new Field_pair(((Item_field *)(elem->real_item()))->field,
 | 
						|
                                         item)))
 | 
						|
      DBUG_RETURN(TRUE);
 | 
						|
  }
 | 
						|
 | 
						|
  /* 1. Check what pushable formula can be extracted from cond */
 | 
						|
  Item *extracted_cond;
 | 
						|
  cond->check_pushable_cond(&Item::pushable_cond_checker_for_subquery,
 | 
						|
                            (uchar *)this);
 | 
						|
  /* 2. Build a clone PC of the formula that can be extracted */
 | 
						|
  extracted_cond=
 | 
						|
    cond->build_pushable_cond(thd,
 | 
						|
                              &Item::pushable_equality_checker_for_subquery,
 | 
						|
                              (uchar *)this);
 | 
						|
  /* Nothing to push */
 | 
						|
  if (!extracted_cond)
 | 
						|
  {
 | 
						|
    DBUG_RETURN(FALSE);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Collect fields that are used in the GROUP BY of sel */
 | 
						|
  st_select_lex *save_curr_select= thd->lex->current_select;
 | 
						|
  if (sel->have_window_funcs())
 | 
						|
  {
 | 
						|
    if (sel->group_list.first || sel->join->implicit_grouping)
 | 
						|
      goto exit;
 | 
						|
    ORDER *common_partition_fields=
 | 
						|
       sel->find_common_window_func_partition_fields(thd);
 | 
						|
    if (!common_partition_fields)
 | 
						|
      goto exit;
 | 
						|
 | 
						|
    if (grouping_fields_in_the_in_subq_left_part(thd, sel, &corresponding_fields,
 | 
						|
                                                 common_partition_fields))
 | 
						|
      DBUG_RETURN(TRUE);
 | 
						|
  }
 | 
						|
  else if (grouping_fields_in_the_in_subq_left_part(thd, sel,
 | 
						|
                                                    &corresponding_fields,
 | 
						|
                                                    sel->group_list.first))
 | 
						|
    DBUG_RETURN(TRUE);
 | 
						|
 | 
						|
  /* Do 4-6 */
 | 
						|
  sel->pushdown_cond_into_where_clause(thd, extracted_cond,
 | 
						|
                                    &remaining_cond,
 | 
						|
                                    &Item::in_subq_field_transformer_for_where,
 | 
						|
                                    (uchar *) this);
 | 
						|
  if (!remaining_cond)
 | 
						|
    goto exit;
 | 
						|
  /*
 | 
						|
    7. Prepare PC_having to be conjuncted with the HAVING clause of
 | 
						|
       the IN subquery
 | 
						|
  */
 | 
						|
  remaining_cond=
 | 
						|
    remaining_cond->transform(thd,
 | 
						|
                              &Item::in_subq_field_transformer_for_having,
 | 
						|
                              (uchar *)this);
 | 
						|
  if (!remaining_cond ||
 | 
						|
      remaining_cond->walk(&Item::cleanup_excluding_const_fields_processor,
 | 
						|
                           0, 0))
 | 
						|
    goto exit;
 | 
						|
 | 
						|
  mark_or_conds_to_avoid_pushdown(remaining_cond);
 | 
						|
 | 
						|
  sel->cond_pushed_into_having= remaining_cond;
 | 
						|
 | 
						|
exit:
 | 
						|
  thd->lex->current_select= save_curr_select;
 | 
						|
  DBUG_RETURN(FALSE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  @brief
 | 
						|
    Check if a table is a SJM Scan table
 | 
						|
 | 
						|
  @retval
 | 
						|
    TRUE     SJM scan table
 | 
						|
    FALSE    Otherwise
 | 
						|
*/
 | 
						|
bool TABLE_LIST::is_sjm_scan_table()
 | 
						|
{
 | 
						|
  return is_active_sjm() && sj_mat_info->is_sj_scan;
 | 
						|
}
 |