mariadb/storage/tokudb/PerconaFT/util/tests/test-rwlock.cc
Sergei Golubchik 2c8c652978 5.6.26-74.0
2015-10-26 12:57:57 +01:00

402 lines
14 KiB
C++

/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.
Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License, version 3,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
======= */
#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."
// Here are some timing numbers:
// (Note: The not-quite-working version with cas can be found in r22519 of https://svn.tokutek.com/tokudb/toku/tokudb.2825/) It's about as fast as "Best cas".)
//
// On ramie (2.53GHz E5540)
// Best nop time= 1.074300ns
// Best cas time= 8.595600ns
// Best mutex time= 19.340201ns
// Best rwlock time= 34.024799ns
// Best util rwlock time= 38.680500ns
// Best prelocked time= 2.148700ns
// Best fair rwlock time= 45.127600ns
// On laptop
// Best nop time= 2.876000ns
// Best cas time= 15.362500ns
// Best mutex time= 51.951498ns
// Best rwlock time= 97.721201ns
// Best util rwlock time=110.456800ns
// Best prelocked time= 4.240100ns
// Best fair rwlock time=113.119102ns
//
// Analysis: If the mutex can be prelocked (as cachetable does, it uses the same mutex for the cachetable and for the condition variable protecting the cache table)
// then you can save quite a bit. What does the cachetable do?
// During pin: (In the common case:) It grabs the mutex, grabs a read lock, and releases the mutex.
// During unpin: It grabs the mutex, unlocks the rwlock lock in the pair, and releases the mutex.
// Both actions must acquire a cachetable lock during that time, so definitely saves time to do it that way.
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/time.h>
#include <sys/types.h>
#include <toku_portability.h>
#include <toku_assert.h>
#include <portability/toku_atomic.h>
#include <portability/toku_pthread.h>
#include <portability/toku_time.h>
#include <util/frwlock.h>
#include <util/rwlock.h>
#include "rwlock_condvar.h"
static int verbose=1;
static int timing_only=0;
static void parse_args (int argc, const char *argv[]) {
const char *progname = argv[0];
argc--; argv++;
while (argc>0) {
if (strcmp(argv[0], "-v")==0) {
verbose++;
} else if (strcmp(argv[0], "-q")==0) {
verbose--;
} else if (strcmp(argv[0], "--timing-only")==0) {
timing_only=1;
} else {
fprintf(stderr, "Usage: %s {-q}* {-v}* {--timing-only}\n", progname);
exit(1);
}
argc--; argv++;
}
}
static const int T=6;
static const int N=10000000;
static double best_nop_time=1e12;
static double best_fcall_time=1e12;
static double best_cas_time=1e12;
static double best_mutex_time=1e12;
static double best_rwlock_time=1e12;
static double best_util_time=1e12;
static double best_prelocked_time=1e12;
static double best_frwlock_time=1e12;
static double best_frwlock_prelocked_time=1e12;
static double mind(double a, double b) { if (a<b) return a; else return b; }
#if 0
// gcc 4.4.4 (fedora 12) doesn't introduce memory barriers on these writes, so I think that volatile is not enough for sequential consistency.
// Intel guarantees that writes are seen in the same order as they were performed on one processor. But if there were two processors, funny things could happen.
volatile int sc_a, sc_b;
void sequential_consistency (void) {
sc_a = 1;
sc_b = 0;
}
#endif
// Declaring val to be volatile produces essentially identical code as putting the asm volatile memory statements in.
// gcc is not introducing memory barriers to force sequential consistency on volatile memory writes.
// That's probably good enough for us, since we'll have a barrier instruction anywhere it matters.
volatile int val = 0;
static void time_nop (void) __attribute((__noinline__)); // don't want it inline, because it messes up timing.
static void time_nop (void) {
struct timeval start,end;
for (int t=0; t<T; t++) {
gettimeofday(&start, NULL);
for (int i=0; i<N; i++) {
if (val!=0) abort();
val=1;
//__asm__ volatile ("" : : : "memory");
val=0;
//__asm__ volatile ("" : : : "memory");
}
gettimeofday(&end, NULL);
double diff = 1e9*toku_tdiff(&end, &start)/N;
if (verbose>1)
fprintf(stderr, "nop = %.6fns/(lock+unlock)\n", diff);
best_nop_time=mind(best_nop_time,diff);
}
}
// This function is defined so we can measure the cost of a function call.
int fcall_nop (int i) __attribute__((__noinline__));
int fcall_nop (int i) {
return i;
}
void time_fcall (void) __attribute((__noinline__));
void time_fcall (void) {
struct timeval start,end;
for (int t=0; t<T; t++) {
gettimeofday(&start, NULL);
for (int i=0; i<N; i++) {
fcall_nop(i);
}
gettimeofday(&end, NULL);
double diff = 1e9*toku_tdiff(&end, &start)/N;
if (verbose>1)
fprintf(stderr, "fcall = %.6fns/(lock+unlock)\n", diff);
best_fcall_time=mind(best_fcall_time,diff);
}
}
void time_cas (void) __attribute__((__noinline__));
void time_cas (void) {
volatile int64_t tval = 0;
struct timeval start,end;
for (int t=0; t<T; t++) {
gettimeofday(&start, NULL);
for (int i=0; i<N; i++) {
{ int r = toku_sync_val_compare_and_swap(&tval, 0, 1); assert(r==0); }
{ int r = toku_sync_val_compare_and_swap(&tval, 1, 0); assert(r==1); }
}
gettimeofday(&end, NULL);
double diff = 1e9*toku_tdiff(&end, &start)/N;
if (verbose>1)
fprintf(stderr, "cas = %.6fns/(lock+unlock)\n", diff);
best_cas_time=mind(best_cas_time,diff);
}
}
void time_pthread_mutex (void) __attribute__((__noinline__));
void time_pthread_mutex (void) {
pthread_mutex_t mutex;
{ int r = pthread_mutex_init(&mutex, NULL); assert(r==0); }
struct timeval start,end;
pthread_mutex_lock(&mutex);
pthread_mutex_unlock(&mutex);
for (int t=0; t<T; t++) {
gettimeofday(&start, NULL);
for (int i=0; i<N; i++) {
pthread_mutex_lock(&mutex);
pthread_mutex_unlock(&mutex);
}
gettimeofday(&end, NULL);
double diff = 1e9*toku_tdiff(&end, &start)/N;
if (verbose>1)
fprintf(stderr, "pthread_mutex = %.6fns/(lock+unlock)\n", diff);
best_mutex_time=mind(best_mutex_time,diff);
}
{ int r = pthread_mutex_destroy(&mutex); assert(r==0); }
}
void time_pthread_rwlock (void) __attribute__((__noinline__));
void time_pthread_rwlock (void) {
pthread_rwlock_t mutex;
{ int r = pthread_rwlock_init(&mutex, NULL); assert(r==0); }
struct timeval start,end;
pthread_rwlock_rdlock(&mutex);
pthread_rwlock_unlock(&mutex);
for (int t=0; t<T; t++) {
gettimeofday(&start, NULL);
for (int i=0; i<N; i++) {
pthread_rwlock_rdlock(&mutex);
pthread_rwlock_unlock(&mutex);
}
gettimeofday(&end, NULL);
double diff = 1e9*toku_tdiff(&end, &start)/N;
if (verbose>1)
fprintf(stderr, "pthread_rwlock(r) = %.6fns/(lock+unlock)\n", diff);
best_rwlock_time=mind(best_rwlock_time,diff);
}
{ int r = pthread_rwlock_destroy(&mutex); assert(r==0); }
}
static void util_rwlock_lock (RWLOCK rwlock, toku_mutex_t *mutex) {
toku_mutex_lock(mutex);
rwlock_read_lock(rwlock, mutex);
toku_mutex_unlock(mutex);
}
static void util_rwlock_unlock (RWLOCK rwlock, toku_mutex_t *mutex) {
toku_mutex_lock(mutex);
rwlock_read_unlock(rwlock);
toku_mutex_unlock(mutex);
}
// Time the read lock that's in util/rwlock.h
void time_util_rwlock (void) __attribute((__noinline__));
void time_util_rwlock (void) {
struct rwlock rwlock;
toku_mutex_t external_mutex;
toku_mutex_init(&external_mutex, NULL);
rwlock_init(&rwlock);
struct timeval start,end;
util_rwlock_lock(&rwlock, &external_mutex);
util_rwlock_unlock(&rwlock, &external_mutex);
for (int t=0; t<T; t++) {
gettimeofday(&start, NULL);
for (int i=0; i<N; i++) {
util_rwlock_lock(&rwlock, &external_mutex);
util_rwlock_unlock(&rwlock, &external_mutex);
}
gettimeofday(&end, NULL);
double diff = 1e9*toku_tdiff(&end, &start)/N;
if (verbose>1)
fprintf(stderr, "util_rwlock(r) = %.6fns/(lock+unlock)\n", diff);
best_util_time=mind(best_util_time,diff);
}
rwlock_destroy(&rwlock);
toku_mutex_destroy(&external_mutex);
}
// Time the read lock that's in util/rwlock.h, assuming the mutex is already held.
void time_util_prelocked_rwlock (void) __attribute__((__noinline__));
void time_util_prelocked_rwlock (void) {
struct rwlock rwlock;
toku_mutex_t external_mutex;
toku_mutex_init(&external_mutex, NULL);
toku_mutex_lock(&external_mutex);
rwlock_init(&rwlock);
struct timeval start,end;
rwlock_read_lock(&rwlock, &external_mutex);
rwlock_read_unlock(&rwlock);
for (int t=0; t<T; t++) {
gettimeofday(&start, NULL);
for (int i=0; i<N; i++) {
rwlock_read_lock(&rwlock, &external_mutex);
rwlock_read_unlock(&rwlock);
}
gettimeofday(&end, NULL);
double diff = 1e9*toku_tdiff(&end, &start)/N;
if (verbose>1)
fprintf(stderr, "pre_util_rwlock(r) = %.6fns/(lock+unlock)\n", diff);
best_prelocked_time=mind(best_prelocked_time,diff);
}
rwlock_destroy(&rwlock);
toku_mutex_unlock(&external_mutex);
toku_mutex_destroy(&external_mutex);
}
void time_frwlock_prelocked(void) __attribute__((__noinline__));
void time_frwlock_prelocked(void) {
toku_mutex_t external_mutex;
toku_mutex_init(&external_mutex, NULL);
struct timeval start,end;
toku::frwlock x;
x.init(&external_mutex);
toku_mutex_lock(&external_mutex);
bool got_lock;
x.read_lock();
x.read_unlock();
got_lock = x.try_read_lock();
invariant(got_lock);
x.read_unlock();
x.write_lock(true);
x.write_unlock();
got_lock = x.try_write_lock(true);
invariant(got_lock);
x.write_unlock();
for (int t=0; t<T; t++) {
gettimeofday(&start, NULL);
for (int i=0; i<N; i++) {
x.read_lock();
x.read_unlock();
}
gettimeofday(&end, NULL);
double diff = 1e9*toku_tdiff(&end, &start)/N;
if (verbose>1)
fprintf(stderr, "frwlock_prelocked = %.6fns/(lock+unlock)\n", diff);
best_frwlock_prelocked_time=mind(best_frwlock_prelocked_time,diff);
}
x.deinit();
toku_mutex_unlock(&external_mutex);
toku_mutex_destroy(&external_mutex);
}
void time_frwlock(void) __attribute__((__noinline__));
void time_frwlock(void) {
toku_mutex_t external_mutex;
toku_mutex_init(&external_mutex, NULL);
struct timeval start,end;
toku::frwlock x;
x.init(&external_mutex);
toku_mutex_lock(&external_mutex);
x.read_lock();
x.read_unlock();
toku_mutex_unlock(&external_mutex);
for (int t=0; t<T; t++) {
gettimeofday(&start, NULL);
for (int i=0; i<N; i++) {
toku_mutex_lock(&external_mutex);
x.read_lock();
toku_mutex_unlock(&external_mutex);
toku_mutex_lock(&external_mutex);
x.read_unlock();
toku_mutex_unlock(&external_mutex);
}
gettimeofday(&end, NULL);
double diff = 1e9*toku_tdiff(&end, &start)/N;
if (verbose>1)
fprintf(stderr, "frwlock = %.6fns/(lock+unlock)\n", diff);
best_frwlock_time=mind(best_frwlock_time,diff);
}
x.deinit();
toku_mutex_destroy(&external_mutex);
}
int main (int argc, const char *argv[]) {
parse_args(argc, argv);
if (timing_only) {
if (1) { // to make it easy to only time the templated frwlock
time_nop();
time_fcall();
time_cas();
time_pthread_mutex();
time_pthread_rwlock();
time_util_rwlock();
time_util_prelocked_rwlock();
}
time_frwlock();
time_frwlock_prelocked();
if (verbose>0) {
if (1) { // to make it easy to only time the templated frwlock
printf("// Best nop time=%10.6fns\n", best_nop_time);
printf("// Best fcall time=%10.6fns\n", best_fcall_time);
printf("// Best cas time=%10.6fns\n", best_cas_time);
printf("// Best mutex time=%10.6fns\n", best_mutex_time);
printf("// Best rwlock time=%10.6fns\n", best_rwlock_time);
printf("// Best util rwlock time=%10.6fns\n", best_util_time);
printf("// Best prelocked time=%10.6fns\n", best_prelocked_time);
}
printf("// Best frwlock time=%10.6fns\n", best_frwlock_time);
printf("// Best frwlock_pre time=%10.6fns\n", best_frwlock_prelocked_time);
}
}
return 0;
}