mariadb/storage/innobase/gis/gis0geo.cc
Marko Mäkelä 8be3794b42 MDEV-21924 Clean up InnoDB GIS record comparison
The extension of the record comparison functions for SPATIAL INDEX in
mysql/mysql-server@b66ad511b6
was suboptimal for multiple reasons:

Some functions used unnecessary temporary variables of the int type,
instead of the more appropriate size_t, causing type mismatch.

Many functions unnecessarily required rec_get_offsets() to be
computed, or a parameter for length, although the size of the
minimum bounding rectangle (MBR) is hard-coded as
SPDIMS * 2 * sizeof(double), or 32 bytes.

In InnoDB SPATIAL INDEX records, there always is a 32-byte key
followed by either a 4-byte child page number or the PRIMARY KEY value.

The length parameters were not properly validated.
The function cmp_geometry_field() was making an incorrect attempt
at checking that the lengths are at least sizeof(double) (8 bytes),
even though the function is accessing up to 32 bytes in both MBR.

Functions that are called from only one compilation unit are defined
in another compilation unit, making the code harder to follow and
potentially slower to execute.

cmp_dtuple_rec_with_gis(): FIXME: Correct the debug assertion
and possibly the function TABLE_SHARE::init_from_binary_frm_image()
or related code, which causes an unexpected length of
DATA_MBR_LEN + 2 bytes to be passed to this function.
2020-03-12 18:13:53 +02:00

650 lines
16 KiB
C++

/*****************************************************************************
Copyright (c) 2013, 2015, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2019, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file gis/gis0geo.cc
InnoDB R-tree related functions.
Created 2013/03/27 Allen Lai and Jimmy Yang
*******************************************************/
#include "page0types.h"
#include "gis0geo.h"
#include "page0cur.h"
#include "ut0rnd.h"
#include "mach0data.h"
#include <spatial.h>
#include <cmath>
/* These definitions are for comparing 2 mbrs. */
/* Check if a intersects b.
Return false if a intersects b, otherwise true. */
#define INTERSECT_CMP(amin, amax, bmin, bmax) \
(((amin) > (bmax)) || ((bmin) > (amax)))
/* Check if b contains a.
Return false if b contains a, otherwise true. */
#define CONTAIN_CMP(amin, amax, bmin, bmax) \
(((bmin) > (amin)) || ((bmax) < (amax)))
/* Check if b is within a.
Return false if b is within a, otherwise true. */
#define WITHIN_CMP(amin, amax, bmin, bmax) \
(((amin) > (bmin)) || ((amax) < (bmax)))
/* Check if a disjoints b.
Return false if a disjoints b, otherwise true. */
#define DISJOINT_CMP(amin, amax, bmin, bmax) \
(((amin) <= (bmax)) && ((bmin) <= (amax)))
/* Check if a equals b.
Return false if equal, otherwise true. */
#define EQUAL_CMP(amin, amax, bmin, bmax) \
(((amin) != (bmin)) || ((amax) != (bmax)))
/****************************************************************
Functions for generating mbr
****************************************************************/
/*************************************************************//**
Add one point stored in wkb to a given mbr.
@return 0 if the point in wkb is valid, otherwise -1. */
static
int
rtree_add_point_to_mbr(
/*===================*/
const uchar** wkb, /*!< in: pointer to wkb,
where point is stored */
const uchar* end, /*!< in: end of wkb. */
uint n_dims, /*!< in: dimensions. */
double* mbr) /*!< in/out: mbr, which
must be of length n_dims * 2. */
{
double ord;
double* mbr_end = mbr + n_dims * 2;
while (mbr < mbr_end) {
if ((*wkb) + sizeof(double) > end) {
return(-1);
}
ord = mach_double_read(*wkb);
(*wkb) += sizeof(double);
if (ord < *mbr) {
*mbr = ord;
}
mbr++;
if (ord > *mbr) {
*mbr = ord;
}
mbr++;
}
return(0);
}
/*************************************************************//**
Get mbr of point stored in wkb.
@return 0 if ok, otherwise -1. */
static
int
rtree_get_point_mbr(
/*================*/
const uchar** wkb, /*!< in: pointer to wkb,
where point is stored. */
const uchar* end, /*!< in: end of wkb. */
uint n_dims, /*!< in: dimensions. */
double* mbr) /*!< in/out: mbr,
must be of length n_dims * 2. */
{
return rtree_add_point_to_mbr(wkb, end, n_dims, mbr);
}
/*************************************************************//**
Get mbr of linestring stored in wkb.
@return 0 if the linestring is valid, otherwise -1. */
static
int
rtree_get_linestring_mbr(
/*=====================*/
const uchar** wkb, /*!< in: pointer to wkb,
where point is stored. */
const uchar* end, /*!< in: end of wkb. */
uint n_dims, /*!< in: dimensions. */
double* mbr) /*!< in/out: mbr,
must be of length n_dims * 2. */
{
uint n_points;
n_points = uint4korr(*wkb);
(*wkb) += 4;
for (; n_points > 0; --n_points) {
/* Add next point to mbr */
if (rtree_add_point_to_mbr(wkb, end, n_dims, mbr)) {
return(-1);
}
}
return(0);
}
/*************************************************************//**
Get mbr of polygon stored in wkb.
@return 0 if the polygon is valid, otherwise -1. */
static
int
rtree_get_polygon_mbr(
/*==================*/
const uchar** wkb, /*!< in: pointer to wkb,
where point is stored. */
const uchar* end, /*!< in: end of wkb. */
uint n_dims, /*!< in: dimensions. */
double* mbr) /*!< in/out: mbr,
must be of length n_dims * 2. */
{
uint n_linear_rings;
uint n_points;
n_linear_rings = uint4korr((*wkb));
(*wkb) += 4;
for (; n_linear_rings > 0; --n_linear_rings) {
n_points = uint4korr((*wkb));
(*wkb) += 4;
for (; n_points > 0; --n_points) {
/* Add next point to mbr */
if (rtree_add_point_to_mbr(wkb, end, n_dims, mbr)) {
return(-1);
}
}
}
return(0);
}
/*************************************************************//**
Get mbr of geometry stored in wkb.
@return 0 if the geometry is valid, otherwise -1. */
static
int
rtree_get_geometry_mbr(
/*===================*/
const uchar** wkb, /*!< in: pointer to wkb,
where point is stored. */
const uchar* end, /*!< in: end of wkb. */
uint n_dims, /*!< in: dimensions. */
double* mbr, /*!< in/out: mbr. */
int top) /*!< in: if it is the top,
which means it's not called
by itself. */
{
int res;
uint wkb_type = 0;
uint n_items;
/* byte_order = *(*wkb); */
++(*wkb);
wkb_type = uint4korr((*wkb));
(*wkb) += 4;
switch ((enum wkbType) wkb_type) {
case wkbPoint:
res = rtree_get_point_mbr(wkb, end, n_dims, mbr);
break;
case wkbLineString:
res = rtree_get_linestring_mbr(wkb, end, n_dims, mbr);
break;
case wkbPolygon:
res = rtree_get_polygon_mbr(wkb, end, n_dims, mbr);
break;
case wkbMultiPoint:
n_items = uint4korr((*wkb));
(*wkb) += 4;
for (; n_items > 0; --n_items) {
/* byte_order = *(*wkb); */
++(*wkb);
(*wkb) += 4;
if (rtree_get_point_mbr(wkb, end, n_dims, mbr)) {
return(-1);
}
}
res = 0;
break;
case wkbMultiLineString:
n_items = uint4korr((*wkb));
(*wkb) += 4;
for (; n_items > 0; --n_items) {
/* byte_order = *(*wkb); */
++(*wkb);
(*wkb) += 4;
if (rtree_get_linestring_mbr(wkb, end, n_dims, mbr)) {
return(-1);
}
}
res = 0;
break;
case wkbMultiPolygon:
n_items = uint4korr((*wkb));
(*wkb) += 4;
for (; n_items > 0; --n_items) {
/* byte_order = *(*wkb); */
++(*wkb);
(*wkb) += 4;
if (rtree_get_polygon_mbr(wkb, end, n_dims, mbr)) {
return(-1);
}
}
res = 0;
break;
case wkbGeometryCollection:
if (!top) {
return(-1);
}
n_items = uint4korr((*wkb));
(*wkb) += 4;
for (; n_items > 0; --n_items) {
if (rtree_get_geometry_mbr(wkb, end, n_dims,
mbr, 0)) {
return(-1);
}
}
res = 0;
break;
default:
res = -1;
}
return(res);
}
/*************************************************************//**
Calculate Minimal Bounding Rectangle (MBR) of the spatial object
stored in "well-known binary representation" (wkb) format.
@return 0 if ok. */
int
rtree_mbr_from_wkb(
/*===============*/
const uchar* wkb, /*!< in: wkb */
uint size, /*!< in: size of wkb. */
uint n_dims, /*!< in: dimensions. */
double* mbr) /*!< in/out: mbr, which must
be of length n_dim2 * 2. */
{
for (uint i = 0; i < n_dims; ++i) {
mbr[i * 2] = DBL_MAX;
mbr[i * 2 + 1] = -DBL_MAX;
}
return rtree_get_geometry_mbr(&wkb, wkb + size, n_dims, mbr, 1);
}
/****************************************************************
Functions for Rtree split
****************************************************************/
/*************************************************************//**
Join 2 mbrs of dimensions n_dim. */
static
void
mbr_join(
/*=====*/
double* a, /*!< in/out: the first mbr,
where the joined result will be. */
const double* b, /*!< in: the second mbr. */
int n_dim) /*!< in: dimensions. */
{
double* end = a + n_dim * 2;
do {
if (a[0] > b[0]) {
a[0] = b[0];
}
if (a[1] < b[1]) {
a[1] = b[1];
}
a += 2;
b += 2;
} while (a != end);
}
/*************************************************************//**
Counts the square of mbr which is the join of a and b. Both a and b
are of dimensions n_dim. */
static
double
mbr_join_square(
/*============*/
const double* a, /*!< in: the first mbr. */
const double* b, /*!< in: the second mbr. */
int n_dim) /*!< in: dimensions. */
{
const double* end = a + n_dim * 2;
double square = 1.0;
do {
square *= std::max(a[1], b[1]) - std::min(a[0], b[0]);
a += 2;
b += 2;
} while (a != end);
/* Check if finite (not infinity or NaN),
so we don't get NaN in calculations */
if (!std::isfinite(square)) {
return DBL_MAX;
}
return square;
}
/*************************************************************//**
Counts the square of mbr of dimension n_dim. */
static
double
count_square(
/*=========*/
const double* a, /*!< in: the mbr. */
int n_dim) /*!< in: dimensions. */
{
const double* end = a + n_dim * 2;
double square = 1.0;
do {
square *= a[1] - a[0];
a += 2;
} while (a != end);
return square;
}
/*************************************************************//**
Copy mbr of dimension n_dim from src to dst. */
inline
static
void
copy_coords(
/*========*/
double* dst, /*!< in/out: destination. */
const double* src, /*!< in: source. */
int)
{
memcpy(dst, src, DATA_MBR_LEN);
}
/*************************************************************//**
Select two nodes to collect group upon */
static
void
pick_seeds(
/*=======*/
rtr_split_node_t* node, /*!< in: split nodes. */
int n_entries, /*!< in: entries number. */
rtr_split_node_t** seed_a, /*!< out: seed 1. */
rtr_split_node_t** seed_b, /*!< out: seed 2. */
int n_dim) /*!< in: dimensions. */
{
rtr_split_node_t* cur1;
rtr_split_node_t* lim1 = node + (n_entries - 1);
rtr_split_node_t* cur2;
rtr_split_node_t* lim2 = node + n_entries;
double max_d = -DBL_MAX;
double d;
*seed_a = node;
*seed_b = node + 1;
for (cur1 = node; cur1 < lim1; ++cur1) {
for (cur2 = cur1 + 1; cur2 < lim2; ++cur2) {
d = mbr_join_square(cur1->coords, cur2->coords, n_dim) -
cur1->square - cur2->square;
if (d > max_d) {
max_d = d;
*seed_a = cur1;
*seed_b = cur2;
}
}
}
}
/*************************************************************//**
Select next node and group where to add. */
static
void
pick_next(
/*======*/
rtr_split_node_t* node, /*!< in: split nodes. */
int n_entries, /*!< in: entries number. */
double* g1, /*!< in: mbr of group 1. */
double* g2, /*!< in: mbr of group 2. */
rtr_split_node_t** choice, /*!< out: the next node.*/
int* n_group, /*!< out: group number.*/
int n_dim) /*!< in: dimensions. */
{
rtr_split_node_t* cur = node;
rtr_split_node_t* end = node + n_entries;
double max_diff = -DBL_MAX;
for (; cur < end; ++cur) {
double diff;
double abs_diff;
if (cur->n_node != 0) {
continue;
}
diff = mbr_join_square(g1, cur->coords, n_dim) -
mbr_join_square(g2, cur->coords, n_dim);
abs_diff = fabs(diff);
if (abs_diff > max_diff) {
max_diff = abs_diff;
/* Introduce some randomness if the record
is identical */
if (diff == 0) {
diff = static_cast<double>(ut_rnd_gen() & 1);
}
*n_group = 1 + (diff > 0);
*choice = cur;
}
}
}
/*************************************************************//**
Mark not-in-group entries as n_group. */
static
void
mark_all_entries(
/*=============*/
rtr_split_node_t* node, /*!< in/out: split nodes. */
int n_entries, /*!< in: entries number. */
int n_group) /*!< in: group number. */
{
rtr_split_node_t* cur = node;
rtr_split_node_t* end = node + n_entries;
for (; cur < end; ++cur) {
if (cur->n_node != 0) {
continue;
}
cur->n_node = n_group;
}
}
/*************************************************************//**
Split rtree node.
Return which group the first rec is in. */
int
split_rtree_node(
/*=============*/
rtr_split_node_t* node, /*!< in: split nodes. */
int n_entries, /*!< in: entries number. */
int all_size, /*!< in: total key's size. */
int key_size, /*!< in: key's size. */
int min_size, /*!< in: minimal group size. */
int size1, /*!< in: size of group. */
int size2, /*!< in: initial group sizes */
double** d_buffer, /*!< in/out: buffer. */
int n_dim, /*!< in: dimensions. */
uchar* first_rec) /*!< in: the first rec. */
{
rtr_split_node_t* cur;
rtr_split_node_t* a = NULL;
rtr_split_node_t* b = NULL;
double* g1 = reserve_coords(d_buffer, n_dim);
double* g2 = reserve_coords(d_buffer, n_dim);
rtr_split_node_t* next = NULL;
int next_node = 0;
int i;
int first_rec_group = 1;
rtr_split_node_t* end = node + n_entries;
if (all_size < min_size * 2) {
return 1;
}
cur = node;
for (; cur < end; ++cur) {
cur->square = count_square(cur->coords, n_dim);
cur->n_node = 0;
}
pick_seeds(node, n_entries, &a, &b, n_dim);
a->n_node = 1;
b->n_node = 2;
copy_coords(g1, a->coords, n_dim);
size1 += key_size;
copy_coords(g2, b->coords, n_dim);
size2 += key_size;
for (i = n_entries - 2; i > 0; --i) {
/* Can't write into group 2 */
if (all_size - (size2 + key_size) < min_size) {
mark_all_entries(node, n_entries, 1);
break;
}
/* Can't write into group 1 */
if (all_size - (size1 + key_size) < min_size) {
mark_all_entries(node, n_entries, 2);
break;
}
pick_next(node, n_entries, g1, g2, &next, &next_node, n_dim);
if (next_node == 1) {
size1 += key_size;
mbr_join(g1, next->coords, n_dim);
} else {
size2 += key_size;
mbr_join(g2, next->coords, n_dim);
}
next->n_node = next_node;
/* Find out where the first rec (of the page) will be at,
and inform the caller */
if (first_rec && first_rec == next->key) {
first_rec_group = next_node;
}
}
return(first_rec_group);
}
/** Compare two minimum bounding rectangles.
@param mode comparison operator
MBR_INTERSECT(a,b) a overlaps b
MBR_CONTAIN(a,b) a contains b
MBR_DISJOINT(a,b) a disjoint b
MBR_WITHIN(a,b) a within b
MBR_EQUAL(a,b) All coordinates of MBRs are equal
MBR_DATA(a,b) Data reference is the same
@param b first MBR
@param a second MBR
@retval 0 if the predicate holds
@retval 1 if the precidate does not hold */
int rtree_key_cmp(page_cur_mode_t mode, const void *b, const void *a)
{
const byte *b_= static_cast<const byte*>(b);
const byte *a_= static_cast<const byte*>(a);
static_assert(DATA_MBR_LEN == SPDIMS * 2 * sizeof(double), "compatibility");
for (auto i = SPDIMS; i--; )
{
double amin= mach_double_read(a_);
double bmin= mach_double_read(b_);
a_+= sizeof(double);
b_+= sizeof(double);
double amax= mach_double_read(a_);
double bmax= mach_double_read(b_);
a_+= sizeof(double);
b_+= sizeof(double);
switch (mode) {
case PAGE_CUR_INTERSECT:
if (INTERSECT_CMP(amin, amax, bmin, bmax))
return 1;
continue;
case PAGE_CUR_CONTAIN:
if (CONTAIN_CMP(amin, amax, bmin, bmax))
return 1;
continue;
case PAGE_CUR_WITHIN:
if (WITHIN_CMP(amin, amax, bmin, bmax))
return 1;
continue;
case PAGE_CUR_MBR_EQUAL:
if (EQUAL_CMP(amin, amax, bmin, bmax))
return 1;
continue;
case PAGE_CUR_DISJOINT:
if (!DISJOINT_CMP(amin, amax, bmin, bmax))
return 0;
if (!i)
return 1;
continue;
case PAGE_CUR_UNSUPP:
case PAGE_CUR_G:
case PAGE_CUR_GE:
case PAGE_CUR_L:
case PAGE_CUR_LE:
case PAGE_CUR_RTREE_LOCATE:
case PAGE_CUR_RTREE_GET_FATHER:
case PAGE_CUR_RTREE_INSERT:
break;
}
ut_ad("unknown comparison operator" == 0);
}
return 0;
}