mariadb/sql/structs.h
2024-08-29 07:47:29 +03:00

1035 lines
29 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#ifndef STRUCTS_INCLUDED
#define STRUCTS_INCLUDED
/* Copyright (c) 2000, 2010, Oracle and/or its affiliates.
Copyright (c) 2009, 2019, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
/* The old structures from unireg */
#include "sql_plugin.h" /* plugin_ref */
#include "sql_const.h" /* MAX_REFLENGTH */
#include "my_time.h" /* enum_mysql_timestamp_type */
#include "thr_lock.h" /* thr_lock_type */
#include "my_base.h" /* ha_rows, ha_key_alg */
#include <mysql_com.h> /* USERNAME_LENGTH */
#include "sql_bitmap.h"
#include "lex_charset.h"
struct TABLE;
class Type_handler;
class Field;
class Index_statistics;
struct Lex_ident_cli_st;
class THD;
/* Array index type for table.field[] */
typedef uint16 field_index_t;
typedef struct st_date_time_format {
uchar positions[8];
char time_separator; /* Separator between hour and minute */
uint flag; /* For future */
LEX_CSTRING format;
} DATE_TIME_FORMAT;
typedef struct st_keyfile_info { /* used with ha_info() */
uchar ref[MAX_REFLENGTH]; /* Pointer to current row */
uchar dupp_ref[MAX_REFLENGTH]; /* Pointer to dupp row */
uint ref_length; /* Length of ref (1-8) */
uint block_size; /* index block size */
File filenr; /* (uniq) filenr for table */
ha_rows records; /* Records i datafilen */
ha_rows deleted; /* Deleted records */
ulonglong data_file_length; /* Length off data file */
ulonglong max_data_file_length; /* Length off data file */
ulonglong index_file_length;
ulonglong max_index_file_length;
ulonglong delete_length; /* Free bytes */
ulonglong auto_increment_value;
int errkey,sortkey; /* Last errorkey and sorted by */
time_t create_time; /* When table was created */
time_t check_time;
time_t update_time;
ulong mean_rec_length; /* physical reclength */
} KEYFILE_INFO;
typedef struct st_key_part_info { /* Info about a key part */
Field *field; /* the Field object for the indexed
prefix of the original table Field.
NOT necessarily the original Field */
uint offset; /* Offset in record (from 0) */
uint null_offset; /* Offset to null_bit in record */
/* Length of key part in bytes, excluding NULL flag and length bytes */
uint length;
/*
Number of bytes required to store the keypart value. This may be
different from the "length" field as it also counts
- possible NULL-flag byte (see HA_KEY_NULL_LENGTH)
- possible HA_KEY_BLOB_LENGTH bytes needed to store actual value length.
*/
uint store_length;
uint16 key_type;
field_index_t fieldnr; /* Fieldnr begins counting from 1 */
uint16 key_part_flag; /* 0 or HA_REVERSE_SORT */
uint8 type;
uint8 null_bit; /* Position to null_bit */
} KEY_PART_INFO ;
class engine_option_value;
struct ha_index_option_struct;
typedef struct st_key {
uint key_length; /* total length of user defined key parts */
ulong flags; /* dupp key and pack flags */
uint user_defined_key_parts; /* How many key_parts */
uint usable_key_parts; /* Should normally be = user_defined_key_parts */
uint ext_key_parts; /* Number of key parts in extended key */
ulong ext_key_flags; /* Flags for extended key */
/*
Parts of primary key that are in the extension of this index.
Example: if this structure describes idx1, which is defined as
INDEX idx1 (pk2, col2)
and pk is defined as:
PRIMARY KEY (pk1, pk2)
then
pk1 is in the extension idx1, ext_key_part_map.is_set(0) == true
pk2 is explicitly present in idx1, it is not in the extension, so
ext_key_part_map.is_set(1) == false
*/
key_part_map ext_key_part_map;
/*
Bitmap of indexes having common parts with this index
(only key parts from key definitions are taken into account)
*/
key_map overlapped;
/* Set of keys constraint correlated with this key */
key_map constraint_correlated;
LEX_CSTRING name;
uint block_size;
enum ha_key_alg algorithm;
/*
The flag is on if statistical data for the index prefixes
has to be taken from the system statistical tables.
*/
bool is_statistics_from_stat_tables;
/*
Note that parser is used when the table is opened for use, and
parser_name is used when the table is being created.
*/
union
{
plugin_ref parser; /* Fulltext [pre]parser */
LEX_CSTRING *parser_name; /* Fulltext [pre]parser name */
};
KEY_PART_INFO *key_part;
/* Unique name for cache; db + \0 + table_name + \0 + key_name + \0 */
uchar *cache_name;
/*
Array of AVG(#records with the same field value) for 1st ... Nth key part.
0 means 'not known'.
For temporary heap tables this member is NULL.
*/
ulong *rec_per_key;
/*
This structure is used for statistical data on the index
that has been read from the statistical table index_stat
*/
Index_statistics *read_stats;
/*
This structure is used for statistical data on the index that
is collected by the function collect_statistics_for_table
*/
Index_statistics *collected_stats;
TABLE *table;
LEX_CSTRING comment;
/** reference to the list of options or NULL */
engine_option_value *option_list;
ha_index_option_struct *option_struct; /* structure with parsed options */
double actual_rec_per_key(uint i) const;
bool without_overlaps;
/*
TRUE if index needs to be ignored
*/
bool is_ignored;
} KEY;
struct st_join_table;
typedef struct st_reginfo { /* Extra info about reg */
struct st_join_table *join_tab; /* Used by SELECT() */
enum thr_lock_type lock_type; /* How database is used */
bool skip_locked;
bool not_exists_optimize;
/*
TRUE <=> range optimizer found that there is no rows satisfying
table conditions.
*/
bool impossible_range;
} REGINFO;
/*
Originally MySQL used MYSQL_TIME structure inside server only, but since
4.1 it's exported to user in the new client API. Define aliases for
new names to keep existing code simple.
*/
typedef enum enum_mysql_timestamp_type timestamp_type;
typedef struct {
ulong year,month,day,hour;
ulonglong minute,second,second_part;
bool neg;
} INTERVAL;
typedef struct st_known_date_time_format {
const char *format_name;
const char *date_format;
const char *datetime_format;
const char *time_format;
} KNOWN_DATE_TIME_FORMAT;
extern const char *show_comp_option_name[];
typedef int *(*update_var)(THD *, struct st_mysql_show_var *);
struct USER_AUTH : public Sql_alloc
{
LEX_CSTRING plugin, auth_str, pwtext;
USER_AUTH *next;
USER_AUTH() : next(NULL)
{
plugin.str= auth_str.str= "";
pwtext.str= NULL;
plugin.length= auth_str.length= pwtext.length= 0;
}
};
struct AUTHID
{
LEX_CSTRING user, host;
void init() { memset(this, 0, sizeof(*this)); }
void copy(MEM_ROOT *root, const LEX_CSTRING *usr, const LEX_CSTRING *host);
bool is_role() const { return user.str[0] && !host.str[0]; }
void set_lex_string(LEX_CSTRING *l, char *buf)
{
if (is_role())
*l= user;
else
{
l->str= buf;
l->length= strxmov(buf, user.str, "@", host.str, NullS) - buf;
}
}
void parse(const char *str, size_t length);
bool read_from_mysql_proc_row(THD *thd, TABLE *table);
};
struct LEX_USER: public AUTHID
{
USER_AUTH *auth;
bool has_auth()
{
return auth && (auth->plugin.length || auth->auth_str.length || auth->pwtext.length);
}
};
/*
This structure specifies the maximum amount of resources which
can be consumed by each account. Zero value of a member means
there is no limit.
*/
typedef struct user_resources {
/* Maximum number of queries/statements per hour. */
uint questions;
/*
Maximum number of updating statements per hour (which statements are
updating is defined by sql_command_flags array).
*/
uint updates;
/* Maximum number of connections established per hour. */
uint conn_per_hour;
/*
Maximum number of concurrent connections. If -1 then no new
connections allowed
*/
int user_conn;
/* Max query timeout */
double max_statement_time;
/*
Values of this enum and specified_limits member are used by the
parser to store which user limits were specified in GRANT statement.
*/
enum {QUERIES_PER_HOUR= 1, UPDATES_PER_HOUR= 2, CONNECTIONS_PER_HOUR= 4,
USER_CONNECTIONS= 8, MAX_STATEMENT_TIME= 16};
uint specified_limits;
} USER_RESOURCES;
/*
This structure is used for counting resources consumed and for checking
them against specified user limits.
*/
typedef struct user_conn {
/*
Pointer to user+host key (pair separated by '\0') defining the entity
for which resources are counted (By default it is user account thus
priv_user/priv_host pair is used. If --old-style-user-limits option
is enabled, resources are counted for each user+host separately).
*/
char *user;
/* Pointer to host part of the key. */
char *host;
/**
The moment of time when per hour counters were reset last time
(i.e. start of "hour" for conn_per_hour, updates, questions counters).
*/
ulonglong reset_utime;
/* Total length of the key. */
uint len;
/* Current amount of concurrent connections for this account. */
int connections;
/*
Current number of connections per hour, number of updating statements
per hour and total number of statements per hour for this account.
*/
uint conn_per_hour, updates, questions;
/* Maximum amount of resources which account is allowed to consume. */
USER_RESOURCES user_resources;
} USER_CONN;
typedef struct st_user_stats
{
char user[MY_MAX(USERNAME_LENGTH, LIST_PROCESS_HOST_LEN) + 1];
// Account name the user is mapped to when this is a user from mapped_user.
// Otherwise, the same value as user.
char priv_user[MY_MAX(USERNAME_LENGTH, LIST_PROCESS_HOST_LEN) + 1];
uint user_name_length;
uint total_connections;
uint total_ssl_connections;
uint concurrent_connections;
time_t connected_time; // in seconds
ha_rows rows_read, rows_sent;
ha_rows rows_updated, rows_deleted, rows_inserted;
ulonglong bytes_received;
ulonglong bytes_sent;
ulonglong binlog_bytes_written;
ulonglong select_commands, update_commands, other_commands;
ulonglong commit_trans, rollback_trans;
ulonglong denied_connections, lost_connections, max_statement_time_exceeded;
ulonglong access_denied_errors;
ulonglong empty_queries;
double busy_time; // in seconds
double cpu_time; // in seconds
} USER_STATS;
typedef struct st_table_stats
{
char table[NAME_LEN * 2 + 2]; // [db] + '\0' + [table] + '\0'
size_t table_name_length;
ulonglong rows_read, rows_changed;
ulonglong rows_changed_x_indexes;
/* Stores enum db_type, but forward declarations cannot be done */
int engine_type;
} TABLE_STATS;
typedef struct st_index_stats
{
// [db] + '\0' + [table] + '\0' + [index] + '\0'
char index[NAME_LEN * 3 + 3];
size_t index_name_length; /* Length of 'index' */
ulonglong rows_read;
} INDEX_STATS;
/* Bits in form->update */
#define REG_MAKE_DUPP 1U /* Make a copy of record when read */
#define REG_NEW_RECORD 2U /* Write a new record if not found */
#define REG_UPDATE 4U /* Uppdate record */
#define REG_DELETE 8U /* Delete found record */
#define REG_PROG 16U /* User is updating database */
#define REG_CLEAR_AFTER_WRITE 32U
#define REG_MAY_BE_UPDATED 64U
#define REG_AUTO_UPDATE 64U /* Used in D-forms for scroll-tables */
#define REG_OVERWRITE 128U
#define REG_SKIP_DUP 256U
/* Bits in form->status */
#define STATUS_NO_RECORD (1U+2U) /* Record isn't usable */
#define STATUS_GARBAGE 1U
#define STATUS_NOT_FOUND 2U /* No record in database when needed */
#define STATUS_NO_PARENT 4U /* Parent record wasn't found */
#define STATUS_NOT_READ 8U /* Record isn't read */
#define STATUS_UPDATED 16U /* Record is updated by formula */
#define STATUS_NULL_ROW 32U /* table->null_row is set */
#define STATUS_DELETED 64U
/*
Such interval is "discrete": it is the set of
{ auto_inc_interval_min + k * increment,
0 <= k <= (auto_inc_interval_values-1) }
Where "increment" is maintained separately by the user of this class (and is
currently only thd->variables.auto_increment_increment).
It mustn't derive from Sql_alloc, because SET INSERT_ID needs to
allocate memory which must stay allocated for use by the next statement.
*/
class Discrete_interval {
private:
ulonglong interval_min;
ulonglong interval_values;
ulonglong interval_max; // excluded bound. Redundant.
public:
Discrete_interval *next; // used when linked into Discrete_intervals_list
void replace(ulonglong start, ulonglong val, ulonglong incr)
{
interval_min= start;
interval_values= val;
interval_max= (val == ULONGLONG_MAX) ? val : start + val * incr;
}
Discrete_interval(ulonglong start, ulonglong val, ulonglong incr) :
next(NULL) { replace(start, val, incr); };
Discrete_interval() : next(NULL) { replace(0, 0, 0); };
ulonglong minimum() const { return interval_min; };
ulonglong values() const { return interval_values; };
ulonglong maximum() const { return interval_max; };
/*
If appending [3,5] to [1,2], we merge both in [1,5] (they should have the
same increment for that, user of the class has to ensure that). That is
just a space optimization. Returns 0 if merge succeeded.
*/
bool merge_if_contiguous(ulonglong start, ulonglong val, ulonglong incr)
{
if (interval_max == start)
{
if (val == ULONGLONG_MAX)
{
interval_values= interval_max= val;
}
else
{
interval_values+= val;
interval_max= start + val * incr;
}
return 0;
}
return 1;
};
};
/* List of Discrete_interval objects */
class Discrete_intervals_list {
private:
Discrete_interval *head;
Discrete_interval *tail;
/*
When many intervals are provided at the beginning of the execution of a
statement (in a replication slave or SET INSERT_ID), "current" points to
the interval being consumed by the thread now (so "current" goes from
"head" to "tail" then to NULL).
*/
Discrete_interval *current;
uint elements; // number of elements
void set_members(Discrete_interval *h, Discrete_interval *t,
Discrete_interval *c, uint el)
{
head= h;
tail= t;
current= c;
elements= el;
}
void operator=(Discrete_intervals_list &); /* prevent use of these */
Discrete_intervals_list(const Discrete_intervals_list &);
public:
Discrete_intervals_list() : head(NULL), current(NULL), elements(0) {};
void empty_no_free()
{
set_members(NULL, NULL, NULL, 0);
}
void empty()
{
for (Discrete_interval *i= head; i;)
{
Discrete_interval *next= i->next;
delete i;
i= next;
}
empty_no_free();
}
void copy_shallow(const Discrete_intervals_list * dli)
{
head= dli->get_head();
tail= dli->get_tail();
current= dli->get_current();
elements= dli->nb_elements();
}
void swap (Discrete_intervals_list * dli)
{
Discrete_interval *h, *t, *c;
uint el;
h= dli->get_head();
t= dli->get_tail();
c= dli->get_current();
el= dli->nb_elements();
dli->copy_shallow(this);
set_members(h, t, c, el);
}
const Discrete_interval* get_next()
{
Discrete_interval *tmp= current;
if (current != NULL)
current= current->next;
return tmp;
}
~Discrete_intervals_list() { empty(); };
bool append(ulonglong start, ulonglong val, ulonglong incr);
bool append(Discrete_interval *interval);
ulonglong minimum() const { return (head ? head->minimum() : 0); };
ulonglong maximum() const { return (head ? tail->maximum() : 0); };
uint nb_elements() const { return elements; }
Discrete_interval* get_head() const { return head; };
Discrete_interval* get_tail() const { return tail; };
Discrete_interval* get_current() const { return current; };
};
/*
DDL options:
- CREATE IF NOT EXISTS
- DROP IF EXISTS
- CREATE LIKE
- REPLACE
*/
struct DDL_options_st
{
public:
enum Options
{
OPT_NONE= 0,
OPT_IF_NOT_EXISTS= 2, // CREATE TABLE IF NOT EXISTS
OPT_LIKE= 4, // CREATE TABLE LIKE
OPT_OR_REPLACE= 16, // CREATE OR REPLACE TABLE
OPT_OR_REPLACE_SLAVE_GENERATED= 32,// REPLACE was added on slave, it was
// not in the original query on master.
OPT_IF_EXISTS= 64,
OPT_CREATE_SELECT= 128 // CREATE ... SELECT
};
private:
Options m_options;
public:
Options create_like_options() const
{
return (DDL_options_st::Options)
(((uint) m_options) & (OPT_IF_NOT_EXISTS | OPT_OR_REPLACE));
}
void init() { m_options= OPT_NONE; }
void init(Options options) { m_options= options; }
void set(Options other)
{
m_options= other;
}
void set(const DDL_options_st other)
{
m_options= other.m_options;
}
bool if_not_exists() const { return m_options & OPT_IF_NOT_EXISTS; }
bool or_replace() const { return m_options & OPT_OR_REPLACE; }
bool or_replace_slave_generated() const
{ return m_options & OPT_OR_REPLACE_SLAVE_GENERATED; }
bool like() const { return m_options & OPT_LIKE; }
bool if_exists() const { return m_options & OPT_IF_EXISTS; }
bool is_create_select() const { return m_options & OPT_CREATE_SELECT; }
void add(const DDL_options_st::Options other)
{
m_options= (Options) ((uint) m_options | (uint) other);
}
void add(const DDL_options_st &other)
{
add(other.m_options);
}
DDL_options_st operator|(const DDL_options_st &other)
{
add(other.m_options);
return *this;
}
DDL_options_st operator|=(DDL_options_st::Options other)
{
add(other);
return *this;
}
};
class DDL_options: public DDL_options_st
{
public:
DDL_options() { init(); }
DDL_options(Options options) { init(options); }
DDL_options(const DDL_options_st &options)
{ DDL_options_st::operator=(options); }
};
struct Lex_length_and_dec_st
{
protected:
uint32 m_length;
uint8 m_dec;
uint8 m_collation_type:LEX_CHARSET_COLLATION_TYPE_BITS;
bool m_has_explicit_length:1;
bool m_has_explicit_dec:1;
bool m_length_overflowed:1;
bool m_dec_overflowed:1;
static_assert(LEX_CHARSET_COLLATION_TYPE_BITS <= 8,
"Lex_length_and_dec_st::m_collation_type bits check");
public:
void reset()
{
m_length= 0;
m_dec= 0;
m_collation_type= 0;
m_has_explicit_length= false;
m_has_explicit_dec= false;
m_length_overflowed= false;
m_dec_overflowed= false;
}
void set_length_only(uint32 length)
{
m_length= length;
m_dec= 0;
m_collation_type= 0;
m_has_explicit_length= true;
m_has_explicit_dec= false;
m_length_overflowed= false;
m_dec_overflowed= false;
}
void set_dec_only(uint8 dec)
{
m_length= 0;
m_dec= dec;
m_collation_type= 0;
m_has_explicit_length= false;
m_has_explicit_dec= true;
m_length_overflowed= false;
m_dec_overflowed= false;
}
void set_length_and_dec(uint32 length, uint8 dec)
{
m_length= length;
m_dec= dec;
m_collation_type= 0;
m_has_explicit_length= true;
m_has_explicit_dec= true;
m_length_overflowed= false;
m_dec_overflowed= false;
}
void set(const char *length, const char *dec);
uint32 length() const
{
return m_length;
}
uint8 dec() const
{
return m_dec;
}
bool has_explicit_length() const
{
return m_has_explicit_length;
}
bool has_explicit_dec() const
{
return m_has_explicit_dec;
}
bool length_overflowed() const
{
return m_length_overflowed;
}
bool dec_overflowed() const
{
return m_dec_overflowed;
}
};
struct Lex_field_type_st: public Lex_length_and_dec_st
{
private:
const Type_handler *m_handler;
CHARSET_INFO *m_ci;
public:
void set(const Type_handler *handler,
Lex_length_and_dec_st length_and_dec,
CHARSET_INFO *cs= NULL)
{
m_handler= handler;
m_ci= cs;
Lex_length_and_dec_st::operator=(length_and_dec);
}
void set(const Type_handler *handler,
const Lex_length_and_dec_st &length_and_dec,
const Lex_column_charset_collation_attrs_st &coll)
{
m_handler= handler;
m_ci= coll.charset_info();
Lex_length_and_dec_st::operator=(length_and_dec);
// Using bit-and to avoid the warning:
// conversion from uint8 to unsigned char:3 may change value
m_collation_type= ((uint8) coll.type()) & LEX_CHARSET_COLLATION_TYPE_MASK;
}
void set(const Type_handler *handler,
const Lex_column_charset_collation_attrs_st &coll)
{
m_handler= handler;
m_ci= coll.charset_info();
Lex_length_and_dec_st::reset();
// Using bit-and to avoid the warning:
// conversion from uint8 to unsigned char:3 may change value
m_collation_type= ((uint8) coll.type()) & LEX_CHARSET_COLLATION_TYPE_MASK;
}
void set(const Type_handler *handler, CHARSET_INFO *cs= NULL)
{
m_handler= handler;
m_ci= cs;
Lex_length_and_dec_st::reset();
}
void set_handler_length_flags(const Type_handler *handler,
const Lex_length_and_dec_st &length,
uint32 flags);
void set_handler_length(const Type_handler *handler, uint32 length)
{
m_handler= handler;
m_ci= NULL;
Lex_length_and_dec_st::set_length_only(length);
}
void set_handler(const Type_handler *handler)
{
m_handler= handler;
}
const Type_handler *type_handler() const { return m_handler; }
CHARSET_INFO *charset_collation() const { return m_ci; }
Lex_column_charset_collation_attrs charset_collation_attrs() const
{
return Lex_column_charset_collation_attrs(m_ci,
(Lex_column_charset_collation_attrs_st::Type)
m_collation_type);
}
};
struct Lex_dyncol_type_st: public Lex_length_and_dec_st
{
private:
int m_type; // enum_dynamic_column_type is not visible here, so use int
CHARSET_INFO *m_ci;
public:
void set(int type, Lex_length_and_dec_st length_and_dec,
CHARSET_INFO *cs= NULL)
{
m_type= type;
m_ci= cs;
Lex_length_and_dec_st::operator=(length_and_dec);
}
void set(int type)
{
m_type= type;
m_ci= NULL;
Lex_length_and_dec_st::reset();
}
void set(int type, CHARSET_INFO *cs)
{
m_type= type;
m_ci= cs;
Lex_length_and_dec_st::reset();
}
bool set(int type, const Lex_column_charset_collation_attrs_st &collation,
CHARSET_INFO *charset)
{
CHARSET_INFO *tmp= collation.resolved_to_character_set(charset);
if (!tmp)
return true;
set(type, tmp);
return false;
}
int dyncol_type() const { return m_type; }
CHARSET_INFO *charset_collation() const { return m_ci; }
};
struct Lex_spblock_handlers_st
{
public:
int hndlrs;
void init(int count) { hndlrs= count; }
};
struct Lex_spblock_st: public Lex_spblock_handlers_st
{
public:
int vars;
int conds;
int curs;
void init()
{
vars= conds= hndlrs= curs= 0;
}
void init_using_vars(uint nvars)
{
vars= nvars;
conds= hndlrs= curs= 0;
}
void join(const Lex_spblock_st &b1, const Lex_spblock_st &b2)
{
vars= b1.vars + b2.vars;
conds= b1.conds + b2.conds;
hndlrs= b1.hndlrs + b2.hndlrs;
curs= b1.curs + b2.curs;
}
};
class Lex_spblock: public Lex_spblock_st
{
public:
Lex_spblock() { init(); }
Lex_spblock(const Lex_spblock_handlers_st &other)
{
vars= conds= curs= 0;
hndlrs= other.hndlrs;
}
};
struct Lex_for_loop_bounds_st
{
public:
class sp_assignment_lex *m_index; // The first iteration value (or cursor)
class sp_assignment_lex *m_target_bound; // The last iteration value
int8 m_direction;
bool m_implicit_cursor;
bool is_for_loop_cursor() const { return m_target_bound == NULL; }
};
class Lex_for_loop_bounds_intrange: public Lex_for_loop_bounds_st
{
public:
Lex_for_loop_bounds_intrange(int8 direction,
class sp_assignment_lex *left_expr,
class sp_assignment_lex *right_expr)
{
m_direction= direction;
m_index= direction > 0 ? left_expr : right_expr;
m_target_bound= direction > 0 ? right_expr : left_expr;
m_implicit_cursor= false;
}
};
struct Lex_for_loop_st
{
public:
class sp_variable *m_index; // The first iteration value (or cursor)
class sp_variable *m_target_bound; // The last iteration value
int m_cursor_offset;
int8 m_direction;
bool m_implicit_cursor;
void init()
{
m_index= 0;
m_target_bound= 0;
m_cursor_offset= 0;
m_direction= 0;
m_implicit_cursor= false;
}
bool is_for_loop_cursor() const { return m_target_bound == NULL; }
bool is_for_loop_explicit_cursor() const
{
return is_for_loop_cursor() && !m_implicit_cursor;
}
};
enum trim_spec { TRIM_LEADING, TRIM_TRAILING, TRIM_BOTH };
struct Lex_trim_st
{
Item *m_remove;
Item *m_source;
trim_spec m_spec;
public:
void set(trim_spec spec, Item *remove, Item *source)
{
m_spec= spec;
m_remove= remove;
m_source= source;
}
void set(trim_spec spec, Item *source)
{
set(spec, NULL, source);
}
Item *make_item_func_trim_std(THD *thd) const;
Item *make_item_func_trim_oracle(THD *thd) const;
};
class Lex_trim: public Lex_trim_st
{
public:
Lex_trim(trim_spec spec, Item *source) { set(spec, source); }
};
class Lex_substring_spec_st
{
public:
Item *m_subject;
Item *m_from;
Item *m_for;
static Lex_substring_spec_st init(Item *subject,
Item *from,
Item *xfor= NULL)
{
Lex_substring_spec_st res;
res.m_subject= subject;
res.m_from= from;
res.m_for= xfor;
return res;
}
};
class st_select_lex;
class Lex_select_lock
{
public:
struct
{
uint defined_lock:1;
uint update_lock:1;
uint defined_timeout:1;
uint skip_locked:1;
};
ulong timeout;
void empty()
{
defined_lock= update_lock= defined_timeout= skip_locked= FALSE;
timeout= 0;
}
void set_to(st_select_lex *sel);
};
class Lex_select_limit
{
public:
/* explicit LIMIT clause was used */
bool explicit_limit;
bool with_ties;
Item *select_limit, *offset_limit;
void clear()
{
explicit_limit= FALSE; // No explicit limit given by user
with_ties= FALSE; // No use of WITH TIES operator
select_limit= NULL; // denotes the default limit = HA_POS_ERROR
offset_limit= NULL; // denotes the default offset = 0
}
};
struct st_order;
class Load_data_param
{
protected:
CHARSET_INFO *m_charset; // Character set of the file
ulonglong m_fixed_length; // Sum of target field lengths for fixed format
bool m_is_fixed_length;
bool m_use_blobs;
public:
Load_data_param(CHARSET_INFO *cs, bool is_fixed_length):
m_charset(cs),
m_fixed_length(0),
m_is_fixed_length(is_fixed_length),
m_use_blobs(false)
{ }
bool add_outvar_field(THD *thd, const Field *field);
bool add_outvar_user_var(THD *thd);
CHARSET_INFO *charset() const { return m_charset; }
bool is_fixed_length() const { return m_is_fixed_length; }
bool use_blobs() const { return m_use_blobs; }
};
class Load_data_outvar
{
public:
virtual ~Load_data_outvar() = default;
virtual bool load_data_set_null(THD *thd, const Load_data_param *param)= 0;
virtual bool load_data_set_value(THD *thd, const char *pos, uint length,
const Load_data_param *param)= 0;
virtual bool load_data_set_no_data(THD *thd, const Load_data_param *param)= 0;
virtual void load_data_print_for_log_event(THD *thd, class String *to) const= 0;
virtual bool load_data_add_outvar(THD *thd, Load_data_param *param) const= 0;
virtual uint load_data_fixed_length() const= 0;
};
class Timeval: public timeval
{
protected:
Timeval() = default;
public:
Timeval(my_time_t sec, ulong usec)
{
tv_sec= sec;
/*
Since tv_usec is not always of type ulong, cast usec parameter
explicitly to uint to avoid compiler warnings about losing
integer precision.
*/
DBUG_ASSERT(usec < 1000000);
tv_usec= (uint)usec;
}
explicit Timeval(const timeval &tv)
:timeval(tv)
{ }
};
#endif /* STRUCTS_INCLUDED */