mariadb/mysys/crc32/crc32_arm64.c
Anson Chung 215fab68db Perform simple fixes for cppcheck findings
Rectify cases of mismatched brackets and address
possible cases of division by zero by checking if
the denominator is zero before dividing.

No functional changes were made.

All new code of the whole pull request, including one or several
files that are either new files or modified ones, are contributed
under the BSD-new license. I am contributing on behalf of my
employer Amazon Web Services, Inc.
2024-07-08 10:51:48 +01:00

380 lines
11 KiB
C

#include <my_global.h>
#include <string.h>
#include <stdint.h>
#include <stddef.h>
typedef unsigned (*my_crc32_t)(unsigned, const void *, size_t);
#ifdef HAVE_ARMV8_CRC
# ifdef HAVE_ARMV8_CRYPTO
static unsigned crc32c_aarch64_pmull(unsigned, const void *, size_t);
# endif
# ifdef __APPLE__
# include <sys/sysctl.h>
int crc32_aarch64_available(void)
{
int ret;
size_t len = sizeof(ret);
if (sysctlbyname("hw.optional.armv8_crc32", &ret, &len, NULL, 0) == -1)
return 0;
return ret;
}
my_crc32_t crc32c_aarch64_available(void)
{
# ifdef HAVE_ARMV8_CRYPTO
if (crc32_aarch64_available())
return crc32c_aarch64_pmull;
# endif
return NULL;
}
# else
# include <sys/auxv.h>
# ifdef __FreeBSD__
static unsigned long getauxval(unsigned int key)
{
unsigned long val;
if (elf_aux_info(key, (void *)&val, (int)sizeof(val) != 0))
return 0ul;
return val;
}
# else
# include <asm/hwcap.h>
# endif
# ifndef HWCAP_CRC32
# define HWCAP_CRC32 (1 << 7)
# endif
# ifndef HWCAP_PMULL
# define HWCAP_PMULL (1 << 4)
# endif
/* ARM made crc32 default from ARMv8.1 but optional in ARMv8A
* Runtime check API.
*/
int crc32_aarch64_available(void)
{
unsigned long auxv= getauxval(AT_HWCAP);
return (auxv & HWCAP_CRC32) != 0;
}
# endif
# ifndef __APPLE__
static unsigned crc32c_aarch64(unsigned, const void *, size_t);
my_crc32_t crc32c_aarch64_available(void)
{
unsigned long auxv= getauxval(AT_HWCAP);
if (!(auxv & HWCAP_CRC32))
return NULL;
# ifdef HAVE_ARMV8_CRYPTO
/* Raspberry Pi 4 supports crc32 but doesn't support pmull (MDEV-23030). */
if (auxv & HWCAP_PMULL)
return crc32c_aarch64_pmull;
# endif
return crc32c_aarch64;
}
# endif
const char *crc32c_aarch64_impl(my_crc32_t c)
{
# ifdef HAVE_ARMV8_CRYPTO
if (c == crc32c_aarch64_pmull)
return "Using ARMv8 crc32 + pmull instructions";
# endif
# ifndef __APPLE__
if (c == crc32c_aarch64)
return "Using ARMv8 crc32 instructions";
# endif
return NULL;
}
#endif /* HAVE_ARMV8_CRC */
#ifndef HAVE_ARMV8_CRC_CRYPTO_INTRINSICS
/* Request crc extension capabilities from the assembler */
asm(".arch_extension crc");
# ifdef HAVE_ARMV8_CRYPTO
/* crypto extension */
asm(".arch_extension crypto");
# endif
#define CRC32CX(crc, value) __asm__("crc32cx %w[c], %w[c], %x[v]":[c]"+r"(crc):[v]"r"(value))
#define CRC32CW(crc, value) __asm__("crc32cw %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
#define CRC32CH(crc, value) __asm__("crc32ch %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
#define CRC32CB(crc, value) __asm__("crc32cb %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
#define CRC32X(crc, value) __asm__("crc32x %w[c], %w[c], %x[v]":[c]"+r"(crc):[v]"r"(value))
#define CRC32W(crc, value) __asm__("crc32w %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
#define CRC32H(crc, value) __asm__("crc32h %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
#define CRC32B(crc, value) __asm__("crc32b %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
#define CRC32C3X8(buffer, ITR) \
__asm__("crc32cx %w[c1], %w[c1], %x[v]":[c1]"+r"(crc1):[v]"r"(*((const uint64_t *)buffer + 42*1 + (ITR))));\
__asm__("crc32cx %w[c2], %w[c2], %x[v]":[c2]"+r"(crc2):[v]"r"(*((const uint64_t *)buffer + 42*2 + (ITR))));\
__asm__("crc32cx %w[c0], %w[c0], %x[v]":[c0]"+r"(crc0):[v]"r"(*((const uint64_t *)buffer + 42*0 + (ITR))));
#else /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */
/* Intrinsics header*/
#include <arm_acle.h>
#include <arm_neon.h>
#define CRC32CX(crc, value) (crc) = __crc32cd((crc), (value))
#define CRC32CW(crc, value) (crc) = __crc32cw((crc), (value))
#define CRC32CH(crc, value) (crc) = __crc32ch((crc), (value))
#define CRC32CB(crc, value) (crc) = __crc32cb((crc), (value))
#define CRC32X(crc, value) (crc) = __crc32d((crc), (value))
#define CRC32W(crc, value) (crc) = __crc32w((crc), (value))
#define CRC32H(crc, value) (crc) = __crc32h((crc), (value))
#define CRC32B(crc, value) (crc) = __crc32b((crc), (value))
#define CRC32C3X8(buffer, ITR) \
crc1 = __crc32cd(crc1, *((const uint64_t *)buffer + 42*1 + (ITR)));\
crc2 = __crc32cd(crc2, *((const uint64_t *)buffer + 42*2 + (ITR)));\
crc0 = __crc32cd(crc0, *((const uint64_t *)buffer + 42*0 + (ITR)));
#endif /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */
#define CRC32C7X3X8(buffer, ITR) do {\
CRC32C3X8(buffer, ((ITR) * 7 + 0)) \
CRC32C3X8(buffer, ((ITR) * 7 + 1)) \
CRC32C3X8(buffer, ((ITR) * 7 + 2)) \
CRC32C3X8(buffer, ((ITR) * 7 + 3)) \
CRC32C3X8(buffer, ((ITR) * 7 + 4)) \
CRC32C3X8(buffer, ((ITR) * 7 + 5)) \
CRC32C3X8(buffer, ((ITR) * 7 + 6)) \
} while(0)
#define PREF4X64L1(buffer, PREF_OFFSET, ITR) \
__asm__("PRFM PLDL1KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 0)*64));\
__asm__("PRFM PLDL1KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 1)*64));\
__asm__("PRFM PLDL1KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 2)*64));\
__asm__("PRFM PLDL1KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 3)*64));
#define PREF1KL1(buffer, PREF_OFFSET) \
PREF4X64L1(buffer,(PREF_OFFSET), 0) \
PREF4X64L1(buffer,(PREF_OFFSET), 4) \
PREF4X64L1(buffer,(PREF_OFFSET), 8) \
PREF4X64L1(buffer,(PREF_OFFSET), 12)
#define PREF4X64L2(buffer, PREF_OFFSET, ITR) \
__asm__("PRFM PLDL2KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 0)*64));\
__asm__("PRFM PLDL2KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 1)*64));\
__asm__("PRFM PLDL2KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 2)*64));\
__asm__("PRFM PLDL2KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 3)*64));
#define PREF1KL2(buffer, PREF_OFFSET) \
PREF4X64L2(buffer,(PREF_OFFSET), 0) \
PREF4X64L2(buffer,(PREF_OFFSET), 4) \
PREF4X64L2(buffer,(PREF_OFFSET), 8) \
PREF4X64L2(buffer,(PREF_OFFSET), 12)
#ifndef __APPLE__
static unsigned crc32c_aarch64(unsigned crc, const void *buf, size_t len)
{
int64_t length= (int64_t)len;
const unsigned char *buffer= buf;
crc^= 0xffffffff;
while ((length-= sizeof(uint64_t)) >= 0)
{
CRC32CX(crc, *(uint64_t *)buffer);
buffer+= sizeof(uint64_t);
}
/* The following is more efficient than the straight loop */
if (length & sizeof(uint32_t))
{
CRC32CW(crc, *(uint32_t *)buffer);
buffer+= sizeof(uint32_t);
}
if (length & sizeof(uint16_t))
{
CRC32CH(crc, *(uint16_t *)buffer);
buffer+= sizeof(uint16_t);
}
if (length & sizeof(uint8_t))
CRC32CB(crc, *buffer);
return ~crc;
}
#endif
#ifdef HAVE_ARMV8_CRYPTO
static unsigned crc32c_aarch64_pmull(unsigned crc, const void *buf, size_t len)
{
int64_t length= (int64_t)len;
const unsigned char *buffer= buf;
crc^= 0xffffffff;
/* Crypto extension Support
* Parallel computation with 1024 Bytes (per block)
* Intrinsics Support
*/
# ifdef HAVE_ARMV8_CRC_CRYPTO_INTRINSICS
/* Process per block size of 1024 Bytes
* A block size = 8 + 42*3*sizeof(uint64_t) + 8
*/
for (const poly64_t k1= 0xe417f38a, k2= 0x8f158014; (length-= 1024) >= 0; )
{
uint32_t crc0, crc1, crc2;
uint64_t t0, t1;
/* Prefetch 3*1024 data for avoiding L2 cache miss */
PREF1KL2(buffer, 1024*3);
/* Do first 8 bytes here for better pipelining */
crc0= __crc32cd(crc, *(const uint64_t *)buffer);
crc1= 0;
crc2= 0;
buffer+= sizeof(uint64_t);
/* Process block inline
* Process crc0 last to avoid dependency with above
*/
CRC32C7X3X8(buffer, 0);
CRC32C7X3X8(buffer, 1);
CRC32C7X3X8(buffer, 2);
CRC32C7X3X8(buffer, 3);
CRC32C7X3X8(buffer, 4);
CRC32C7X3X8(buffer, 5);
buffer+= 42*3*sizeof(uint64_t);
/* Prefetch data for following block to avoid L1 cache miss */
PREF1KL1(buffer, 1024);
/* Last 8 bytes
* Merge crc0 and crc1 into crc2
* crc1 multiply by K2
* crc0 multiply by K1
*/
t1= (uint64_t)vmull_p64(crc1, k2);
t0= (uint64_t)vmull_p64(crc0, k1);
crc= __crc32cd(crc2, *(const uint64_t *)buffer);
crc1= __crc32cd(0, t1);
crc^= crc1;
crc0= __crc32cd(0, t0);
crc^= crc0;
buffer+= sizeof(uint64_t);
}
# else /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */
/*No intrinsics*/
__asm__("mov x16, #0xf38a \n\t"
"movk x16, #0xe417, lsl 16 \n\t"
"mov v1.2d[0], x16 \n\t"
"mov x16, #0x8014 \n\t"
"movk x16, #0x8f15, lsl 16 \n\t"
"mov v0.2d[0], x16 \n\t"
:::"x16");
while ((length-= 1024) >= 0)
{
uint32_t crc0, crc1, crc2;
PREF1KL2(buffer, 1024*3);
__asm__("crc32cx %w[c0], %w[c], %x[v]\n\t"
:[c0]"=r"(crc0):[c]"r"(crc), [v]"r"(*(const uint64_t *)buffer):);
crc1= 0;
crc2= 0;
buffer+= sizeof(uint64_t);
CRC32C7X3X8(buffer, 0);
CRC32C7X3X8(buffer, 1);
CRC32C7X3X8(buffer, 2);
CRC32C7X3X8(buffer, 3);
CRC32C7X3X8(buffer, 4);
CRC32C7X3X8(buffer, 5);
buffer+= 42*3*sizeof(uint64_t);
PREF1KL1(buffer, 1024);
__asm__("mov v2.2d[0], %x[c1] \n\t"
"pmull v2.1q, v2.1d, v0.1d \n\t"
"mov v3.2d[0], %x[c0] \n\t"
"pmull v3.1q, v3.1d, v1.1d \n\t"
"crc32cx %w[c], %w[c2], %x[v] \n\t"
"mov %x[c1], v2.2d[0] \n\t"
"crc32cx %w[c1], wzr, %x[c1] \n\t"
"eor %w[c], %w[c], %w[c1] \n\t"
"mov %x[c0], v3.2d[0] \n\t"
"crc32cx %w[c0], wzr, %x[c0] \n\t"
"eor %w[c], %w[c], %w[c0] \n\t"
:[c1]"+r"(crc1), [c0]"+r"(crc0), [c2]"+r"(crc2), [c]"+r"(crc)
:[v]"r"(*((const uint64_t *)buffer)));
buffer+= sizeof(uint64_t);
}
# endif /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */
/* Done if Input data size is aligned with 1024 */
length+= 1024;
if (length)
{
while ((length-= sizeof(uint64_t)) >= 0)
{
CRC32CX(crc, *(uint64_t *)buffer);
buffer+= sizeof(uint64_t);
}
/* The following is more efficient than the straight loop */
if (length & sizeof(uint32_t))
{
CRC32CW(crc, *(uint32_t *)buffer);
buffer+= sizeof(uint32_t);
}
if (length & sizeof(uint16_t))
{
CRC32CH(crc, *(uint16_t *)buffer);
buffer+= sizeof(uint16_t);
}
if (length & sizeof(uint8_t))
CRC32CB(crc, *buffer);
}
return ~crc;
}
#endif /* HAVE_ARMV8_CRYPTO */
/* There are multiple approaches to calculate crc.
Approach-1: Process 8 bytes then 4 bytes then 2 bytes and then 1 bytes
Approach-2: Process 8 bytes and remaining workload using 1 bytes
Apporach-3: Process 64 bytes at once by issuing 8 crc call and remaining
using 8/1 combination.
Based on micro-benchmark testing we found that Approach-2 works best especially
given small chunk of variable data. */
unsigned int crc32_aarch64(unsigned int crc, const void *buf, size_t len)
{
const uint8_t *buf1= buf;
const uint64_t *buf8= (const uint64_t *) (((uintptr_t) buf + 7) & ~7);
crc= ~crc;
/* if start pointer is not 8 bytes aligned */
while ((buf1 != (const uint8_t *) buf8) && len)
{
CRC32B(crc, *buf1++);
len--;
}
for (; len >= 8; len-= 8)
CRC32X(crc, *buf8++);
buf1= (const uint8_t *) buf8;
while (len--)
CRC32B(crc, *buf1++);
return ~crc;
}