mirror of
https://github.com/MariaDB/server.git
synced 2025-02-05 13:22:17 +01:00
![Marko Mäkelä](/assets/img/avatar_default.png)
Under unknown circumstances, the SQL layer may wrongly disregard an invocation of thd_mark_transaction_to_rollback() when an InnoDB transaction had been aborted (rolled back) due to one of the following errors: * HA_ERR_LOCK_DEADLOCK * HA_ERR_RECORD_CHANGED (if innodb_snapshot_isolation=ON) * HA_ERR_LOCK_WAIT_TIMEOUT (if innodb_rollback_on_timeout=ON) Such an error used to cause a crash of InnoDB during transaction commit. These changes aim to catch and report the error earlier, so that not only this crash can be avoided but also the original root cause be found and fixed more easily later. The idea of this fix is from Michael 'Monty' Widenius. HA_ERR_ROLLBACK: A new error code that will be translated into ER_ROLLBACK_ONLY, signalling that the current transaction has been aborted and the only allowed action is ROLLBACK. trx_t::state: Add TRX_STATE_ABORTED that is like TRX_STATE_NOT_STARTED, but noting that the transaction had been rolled back and aborted. trx_t::is_started(): Replaces trx_is_started(). ha_innobase: Check the transaction state in various places. Simplify the logic around SAVEPOINT. ha_innobase::is_valid_trx(): Replaces ha_innobase::is_read_only(). The InnoDB logic around transaction savepoints, commit, and rollback was unnecessarily complex and might have contributed to this inconsistency. So, we are simplifying that logic as well. trx_savept_t: Replace with const undo_no_t*. When we rollback to a savepoint, all we need to know is the number of undo log records that must survive. trx_named_savept_t, DB_NO_SAVEPOINT: Remove. We can store undo_no_t directly in the space allocated at innobase_hton->savepoint_offset. fts_trx_create(): Do not copy previous savepoints. fts_savepoint_rollback(): If a savepoint was not found, roll back everything after the default savepoint of fts_trx_create(). The test innodb_fts.savepoint is extended to cover this code. Reviewed by: Vladislav Lesin Tested by: Matthias Leich
1309 lines
35 KiB
C++
1309 lines
35 KiB
C++
/*****************************************************************************
|
|
|
|
Copyright (c) 2007, 2015, Oracle and/or its affiliates. All Rights Reserved.
|
|
Copyright (c) 2017, 2021, MariaDB Corporation.
|
|
|
|
This program is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free Software
|
|
Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
|
|
|
|
*****************************************************************************/
|
|
|
|
/**************************************************//**
|
|
@file trx/trx0i_s.cc
|
|
INFORMATION SCHEMA innodb_trx, innodb_locks and
|
|
innodb_lock_waits tables fetch code.
|
|
|
|
The code below fetches information needed to fill those
|
|
3 dynamic tables and uploads it into a "transactions
|
|
table cache" for later retrieval.
|
|
|
|
Created July 17, 2007 Vasil Dimov
|
|
*******************************************************/
|
|
|
|
#include "trx0i_s.h"
|
|
#include "buf0buf.h"
|
|
#include "dict0dict.h"
|
|
#include "ha0storage.h"
|
|
#include "hash0hash.h"
|
|
#include "lock0iter.h"
|
|
#include "lock0lock.h"
|
|
#include "mem0mem.h"
|
|
#include "page0page.h"
|
|
#include "rem0rec.h"
|
|
#include "row0row.h"
|
|
#include "srv0srv.h"
|
|
#include "trx0sys.h"
|
|
#include "que0que.h"
|
|
#include "trx0purge.h"
|
|
#include "sql_class.h"
|
|
|
|
/** Initial number of rows in the table cache */
|
|
#define TABLE_CACHE_INITIAL_ROWSNUM 1024
|
|
|
|
/** @brief The maximum number of chunks to allocate for a table cache.
|
|
|
|
The rows of a table cache are stored in a set of chunks. When a new
|
|
row is added a new chunk is allocated if necessary. Assuming that the
|
|
first one is 1024 rows (TABLE_CACHE_INITIAL_ROWSNUM) and each
|
|
subsequent is N/2 where N is the number of rows we have allocated till
|
|
now, then 39th chunk would accommodate 1677416425 rows and all chunks
|
|
would accommodate 3354832851 rows. */
|
|
#define MEM_CHUNKS_IN_TABLE_CACHE 39
|
|
|
|
/** Memory limit passed to ha_storage_put_memlim().
|
|
@param cache hash storage
|
|
@return maximum allowed allocation size */
|
|
#define MAX_ALLOWED_FOR_STORAGE(cache) \
|
|
(TRX_I_S_MEM_LIMIT \
|
|
- (cache)->mem_allocd)
|
|
|
|
/** Memory limit in table_cache_create_empty_row().
|
|
@param cache hash storage
|
|
@return maximum allowed allocation size */
|
|
#define MAX_ALLOWED_FOR_ALLOC(cache) \
|
|
(TRX_I_S_MEM_LIMIT \
|
|
- (cache)->mem_allocd \
|
|
- ha_storage_get_size((cache)->storage))
|
|
|
|
/** Memory for each table in the intermediate buffer is allocated in
|
|
separate chunks. These chunks are considered to be concatenated to
|
|
represent one flat array of rows. */
|
|
struct i_s_mem_chunk_t {
|
|
ulint offset; /*!< offset, in number of rows */
|
|
ulint rows_allocd; /*!< the size of this chunk, in number
|
|
of rows */
|
|
void* base; /*!< start of the chunk */
|
|
};
|
|
|
|
/** This represents one table's cache. */
|
|
struct i_s_table_cache_t {
|
|
ulint rows_used; /*!< number of used rows */
|
|
ulint rows_allocd; /*!< number of allocated rows */
|
|
ulint row_size; /*!< size of a single row */
|
|
i_s_mem_chunk_t chunks[MEM_CHUNKS_IN_TABLE_CACHE]; /*!< array of
|
|
memory chunks that stores the
|
|
rows */
|
|
};
|
|
|
|
/** This structure describes the intermediate buffer */
|
|
struct trx_i_s_cache_t {
|
|
srw_lock rw_lock; /*!< read-write lock protecting this */
|
|
Atomic_relaxed<ulonglong> last_read;
|
|
/*!< last time the cache was read;
|
|
measured in nanoseconds */
|
|
i_s_table_cache_t innodb_trx; /*!< innodb_trx table */
|
|
i_s_table_cache_t innodb_locks; /*!< innodb_locks table */
|
|
i_s_table_cache_t innodb_lock_waits;/*!< innodb_lock_waits table */
|
|
/** the hash table size is LOCKS_HASH_CELLS_NUM * sizeof(void*) bytes */
|
|
#define LOCKS_HASH_CELLS_NUM 10000
|
|
hash_table_t locks_hash; /*!< hash table used to eliminate
|
|
duplicate entries in the
|
|
innodb_locks table */
|
|
/** Initial size of the cache storage */
|
|
#define CACHE_STORAGE_INITIAL_SIZE 1024
|
|
/** Number of hash cells in the cache storage */
|
|
#define CACHE_STORAGE_HASH_CELLS 2048
|
|
ha_storage_t* storage; /*!< storage for external volatile
|
|
data that may become unavailable
|
|
when we release
|
|
lock_sys.latch */
|
|
ulint mem_allocd; /*!< the amount of memory
|
|
allocated with mem_alloc*() */
|
|
bool is_truncated; /*!< this is true if the memory
|
|
limit was hit and thus the data
|
|
in the cache is truncated */
|
|
|
|
/** Adds an element.
|
|
@param lock element to be added
|
|
@param heap_no record lock heap number, or 0xFFFF for table lock
|
|
@return the existing or added lock
|
|
@retval nullptr if memory cannot be allocated */
|
|
i_s_locks_row_t *add(const lock_t &lock, uint16_t heap_no) noexcept;
|
|
};
|
|
|
|
/** This is the intermediate buffer where data needed to fill the
|
|
INFORMATION SCHEMA tables is fetched and later retrieved by the C++
|
|
code in handler/i_s.cc. */
|
|
static trx_i_s_cache_t trx_i_s_cache_static;
|
|
/** This is the intermediate buffer where data needed to fill the
|
|
INFORMATION SCHEMA tables is fetched and later retrieved by the C++
|
|
code in handler/i_s.cc. */
|
|
trx_i_s_cache_t* trx_i_s_cache = &trx_i_s_cache_static;
|
|
|
|
/** @return the heap number of a record lock
|
|
@retval 0xFFFF for table locks */
|
|
static uint16_t wait_lock_get_heap_no(const lock_t *lock)
|
|
{
|
|
return !lock->is_table()
|
|
? static_cast<uint16_t>(lock_rec_find_set_bit(lock))
|
|
: uint16_t{0xFFFF};
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Initializes the members of a table cache. */
|
|
static
|
|
void
|
|
table_cache_init(
|
|
/*=============*/
|
|
i_s_table_cache_t* table_cache, /*!< out: table cache */
|
|
size_t row_size) /*!< in: the size of a
|
|
row */
|
|
{
|
|
ulint i;
|
|
|
|
table_cache->rows_used = 0;
|
|
table_cache->rows_allocd = 0;
|
|
table_cache->row_size = row_size;
|
|
|
|
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
|
|
|
|
/* the memory is actually allocated in
|
|
table_cache_create_empty_row() */
|
|
table_cache->chunks[i].base = NULL;
|
|
}
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Frees a table cache. */
|
|
static
|
|
void
|
|
table_cache_free(
|
|
/*=============*/
|
|
i_s_table_cache_t* table_cache) /*!< in/out: table cache */
|
|
{
|
|
ulint i;
|
|
|
|
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
|
|
|
|
/* the memory is actually allocated in
|
|
table_cache_create_empty_row() */
|
|
if (table_cache->chunks[i].base) {
|
|
ut_free(table_cache->chunks[i].base);
|
|
table_cache->chunks[i].base = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Returns an empty row from a table cache. The row is allocated if no more
|
|
empty rows are available. The number of used rows is incremented.
|
|
If the memory limit is hit then NULL is returned and nothing is
|
|
allocated.
|
|
@return empty row, or NULL if out of memory */
|
|
static
|
|
void*
|
|
table_cache_create_empty_row(
|
|
/*=========================*/
|
|
i_s_table_cache_t* table_cache, /*!< in/out: table cache */
|
|
trx_i_s_cache_t* cache) /*!< in/out: cache to record
|
|
how many bytes are
|
|
allocated */
|
|
{
|
|
ulint i;
|
|
void* row;
|
|
|
|
ut_a(table_cache->rows_used <= table_cache->rows_allocd);
|
|
|
|
if (table_cache->rows_used == table_cache->rows_allocd) {
|
|
|
|
/* rows_used == rows_allocd means that new chunk needs
|
|
to be allocated: either no more empty rows in the
|
|
last allocated chunk or nothing has been allocated yet
|
|
(rows_num == rows_allocd == 0); */
|
|
|
|
i_s_mem_chunk_t* chunk;
|
|
ulint req_bytes;
|
|
ulint got_bytes;
|
|
ulint req_rows;
|
|
ulint got_rows;
|
|
|
|
/* find the first not allocated chunk */
|
|
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
|
|
|
|
if (table_cache->chunks[i].base == NULL) {
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* i == MEM_CHUNKS_IN_TABLE_CACHE means that all chunks
|
|
have been allocated :-X */
|
|
ut_a(i < MEM_CHUNKS_IN_TABLE_CACHE);
|
|
|
|
/* allocate the chunk we just found */
|
|
|
|
if (i == 0) {
|
|
|
|
/* first chunk, nothing is allocated yet */
|
|
req_rows = TABLE_CACHE_INITIAL_ROWSNUM;
|
|
} else {
|
|
|
|
/* Memory is increased by the formula
|
|
new = old + old / 2; We are trying not to be
|
|
aggressive here (= using the common new = old * 2)
|
|
because the allocated memory will not be freed
|
|
until InnoDB exit (it is reused). So it is better
|
|
to once allocate the memory in more steps, but
|
|
have less unused/wasted memory than to use less
|
|
steps in allocation (which is done once in a
|
|
lifetime) but end up with lots of unused/wasted
|
|
memory. */
|
|
req_rows = table_cache->rows_allocd / 2;
|
|
}
|
|
req_bytes = req_rows * table_cache->row_size;
|
|
|
|
if (req_bytes > MAX_ALLOWED_FOR_ALLOC(cache)) {
|
|
|
|
return(NULL);
|
|
}
|
|
|
|
chunk = &table_cache->chunks[i];
|
|
|
|
got_bytes = req_bytes;
|
|
chunk->base = ut_malloc_nokey(req_bytes);
|
|
|
|
got_rows = got_bytes / table_cache->row_size;
|
|
|
|
cache->mem_allocd += got_bytes;
|
|
|
|
#if 0
|
|
printf("allocating chunk %d req bytes=%lu, got bytes=%lu,"
|
|
" row size=%lu,"
|
|
" req rows=%lu, got rows=%lu\n",
|
|
i, req_bytes, got_bytes,
|
|
table_cache->row_size,
|
|
req_rows, got_rows);
|
|
#endif
|
|
|
|
chunk->rows_allocd = got_rows;
|
|
|
|
table_cache->rows_allocd += got_rows;
|
|
|
|
/* adjust the offset of the next chunk */
|
|
if (i < MEM_CHUNKS_IN_TABLE_CACHE - 1) {
|
|
|
|
table_cache->chunks[i + 1].offset
|
|
= chunk->offset + chunk->rows_allocd;
|
|
}
|
|
|
|
/* return the first empty row in the newly allocated
|
|
chunk */
|
|
row = chunk->base;
|
|
} else {
|
|
|
|
char* chunk_start;
|
|
ulint offset;
|
|
|
|
/* there is an empty row, no need to allocate new
|
|
chunks */
|
|
|
|
/* find the first chunk that contains allocated but
|
|
empty/unused rows */
|
|
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
|
|
|
|
if (table_cache->chunks[i].offset
|
|
+ table_cache->chunks[i].rows_allocd
|
|
> table_cache->rows_used) {
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* i == MEM_CHUNKS_IN_TABLE_CACHE means that all chunks
|
|
are full, but
|
|
table_cache->rows_used != table_cache->rows_allocd means
|
|
exactly the opposite - there are allocated but
|
|
empty/unused rows :-X */
|
|
ut_a(i < MEM_CHUNKS_IN_TABLE_CACHE);
|
|
|
|
chunk_start = (char*) table_cache->chunks[i].base;
|
|
offset = table_cache->rows_used
|
|
- table_cache->chunks[i].offset;
|
|
|
|
row = chunk_start + offset * table_cache->row_size;
|
|
}
|
|
|
|
table_cache->rows_used++;
|
|
|
|
return(row);
|
|
}
|
|
|
|
#ifdef UNIV_DEBUG
|
|
/*******************************************************************//**
|
|
Validates a row in the locks cache.
|
|
@return TRUE if valid */
|
|
static
|
|
ibool
|
|
i_s_locks_row_validate(
|
|
/*===================*/
|
|
const i_s_locks_row_t* row) /*!< in: row to validate */
|
|
{
|
|
ut_ad(row->lock_mode);
|
|
ut_ad(row->lock_table != NULL);
|
|
ut_ad(row->lock_table_id != 0);
|
|
|
|
if (!row->lock_index) {
|
|
/* table lock */
|
|
ut_ad(!row->lock_data);
|
|
ut_ad(row->lock_page == page_id_t(0, 0));
|
|
ut_ad(!row->lock_rec);
|
|
} else {
|
|
/* record lock */
|
|
/* row->lock_data == NULL if buf_page_try_get() == NULL */
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/*******************************************************************//**
|
|
Fills i_s_trx_row_t object.
|
|
If memory can not be allocated then FALSE is returned.
|
|
@return FALSE if allocation fails */
|
|
static
|
|
ibool
|
|
fill_trx_row(
|
|
/*=========*/
|
|
i_s_trx_row_t* row, /*!< out: result object
|
|
that's filled */
|
|
const trx_t* trx, /*!< in: transaction to
|
|
get data from */
|
|
const i_s_locks_row_t* requested_lock_row,/*!< in: pointer to the
|
|
corresponding row in
|
|
innodb_locks if trx is
|
|
waiting or NULL if trx
|
|
is not waiting */
|
|
trx_i_s_cache_t* cache) /*!< in/out: cache into
|
|
which to copy volatile
|
|
strings */
|
|
{
|
|
const char* s;
|
|
|
|
lock_sys.assert_locked();
|
|
|
|
const lock_t* wait_lock = trx->lock.wait_lock;
|
|
|
|
row->trx_id = trx->id;
|
|
row->trx_started = trx->start_time;
|
|
if (trx->in_rollback) {
|
|
row->trx_state = "ROLLING BACK";
|
|
} else if (trx->state == TRX_STATE_COMMITTED_IN_MEMORY) {
|
|
row->trx_state = "COMMITTING";
|
|
} else if (wait_lock) {
|
|
row->trx_state = "LOCK WAIT";
|
|
} else {
|
|
row->trx_state = "RUNNING";
|
|
}
|
|
|
|
row->requested_lock_row = requested_lock_row;
|
|
ut_ad(requested_lock_row == NULL
|
|
|| i_s_locks_row_validate(requested_lock_row));
|
|
|
|
ut_ad(!wait_lock == !requested_lock_row);
|
|
|
|
const my_hrtime_t suspend_time= trx->lock.suspend_time;
|
|
row->trx_wait_started = wait_lock ? hrtime_to_time(suspend_time) : 0;
|
|
|
|
row->trx_weight = static_cast<uintmax_t>(TRX_WEIGHT(trx));
|
|
|
|
if (trx->mysql_thd == NULL) {
|
|
/* For internal transactions e.g., purge and transactions
|
|
being recovered at startup there is no associated MySQL
|
|
thread data structure. */
|
|
row->trx_mysql_thread_id = 0;
|
|
row->trx_query = NULL;
|
|
goto thd_done;
|
|
}
|
|
|
|
row->trx_mysql_thread_id = thd_get_thread_id(trx->mysql_thd);
|
|
|
|
char query[TRX_I_S_TRX_QUERY_MAX_LEN + 1];
|
|
if (size_t stmt_len = thd_query_safe(trx->mysql_thd, query,
|
|
sizeof query)) {
|
|
row->trx_query = static_cast<const char*>(
|
|
ha_storage_put_memlim(
|
|
cache->storage, query, stmt_len + 1,
|
|
MAX_ALLOWED_FOR_STORAGE(cache)));
|
|
|
|
row->trx_query_cs = thd_charset(trx->mysql_thd);
|
|
|
|
if (row->trx_query == NULL) {
|
|
|
|
return(FALSE);
|
|
}
|
|
} else {
|
|
|
|
row->trx_query = NULL;
|
|
}
|
|
|
|
thd_done:
|
|
row->trx_operation_state = trx->op_info;
|
|
|
|
row->trx_tables_in_use = trx->n_mysql_tables_in_use;
|
|
|
|
row->trx_tables_locked = lock_number_of_tables_locked(&trx->lock);
|
|
|
|
/* These are protected by lock_sys.latch (which we are holding)
|
|
and sometimes also trx->mutex. */
|
|
|
|
row->trx_lock_structs = UT_LIST_GET_LEN(trx->lock.trx_locks);
|
|
|
|
row->trx_lock_memory_bytes = mem_heap_get_size(trx->lock.lock_heap);
|
|
|
|
row->trx_rows_locked = trx->lock.n_rec_locks;
|
|
|
|
row->trx_rows_modified = trx->undo_no;
|
|
|
|
row->trx_isolation_level = trx->isolation_level;
|
|
|
|
row->trx_unique_checks = (ibool) trx->check_unique_secondary;
|
|
|
|
row->trx_foreign_key_checks = (ibool) trx->check_foreigns;
|
|
|
|
s = trx->detailed_error;
|
|
|
|
if (s != NULL && s[0] != '\0') {
|
|
|
|
TRX_I_S_STRING_COPY(s,
|
|
row->trx_foreign_key_error,
|
|
TRX_I_S_TRX_FK_ERROR_MAX_LEN, cache);
|
|
|
|
if (row->trx_foreign_key_error == NULL) {
|
|
|
|
return(FALSE);
|
|
}
|
|
} else {
|
|
row->trx_foreign_key_error = NULL;
|
|
}
|
|
|
|
row->trx_is_read_only = trx->read_only;
|
|
|
|
row->trx_is_autocommit_non_locking = trx->is_autocommit_non_locking();
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Format the nth field of "rec" and put it in "buf". The result is always
|
|
NUL-terminated. Returns the number of bytes that were written to "buf"
|
|
(including the terminating NUL).
|
|
@return end of the result */
|
|
static
|
|
ulint
|
|
put_nth_field(
|
|
/*==========*/
|
|
char* buf, /*!< out: buffer */
|
|
ulint buf_size,/*!< in: buffer size in bytes */
|
|
ulint n, /*!< in: number of field */
|
|
const dict_index_t* index, /*!< in: index */
|
|
const rec_t* rec, /*!< in: record */
|
|
const rec_offs* offsets)/*!< in: record offsets, returned
|
|
by rec_get_offsets() */
|
|
{
|
|
const byte* data;
|
|
ulint data_len;
|
|
dict_field_t* dict_field;
|
|
ulint ret;
|
|
|
|
ut_ad(rec_offs_validate(rec, NULL, offsets));
|
|
|
|
if (buf_size == 0) {
|
|
|
|
return(0);
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
if (n > 0) {
|
|
/* we must append ", " before the actual data */
|
|
|
|
if (buf_size < 3) {
|
|
|
|
buf[0] = '\0';
|
|
return(1);
|
|
}
|
|
|
|
memcpy(buf, ", ", 3);
|
|
|
|
buf += 2;
|
|
buf_size -= 2;
|
|
ret += 2;
|
|
}
|
|
|
|
/* now buf_size >= 1 */
|
|
|
|
data = rec_get_nth_field(rec, offsets, n, &data_len);
|
|
|
|
dict_field = dict_index_get_nth_field(index, n);
|
|
|
|
ret += row_raw_format((const char*) data, data_len,
|
|
dict_field, buf, buf_size);
|
|
|
|
return(ret);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Fills the "lock_data" member of i_s_locks_row_t object.
|
|
If memory can not be allocated then FALSE is returned.
|
|
@return FALSE if allocation fails */
|
|
static
|
|
ibool
|
|
fill_lock_data(
|
|
/*===========*/
|
|
const char** lock_data,/*!< out: "lock_data" to fill */
|
|
const lock_t* lock, /*!< in: lock used to find the data */
|
|
ulint heap_no,/*!< in: rec num used to find the data */
|
|
trx_i_s_cache_t* cache) /*!< in/out: cache where to store
|
|
volatile data */
|
|
{
|
|
ut_a(!lock->is_table());
|
|
|
|
switch (heap_no) {
|
|
case PAGE_HEAP_NO_INFIMUM:
|
|
case PAGE_HEAP_NO_SUPREMUM:
|
|
*lock_data = ha_storage_put_str_memlim(
|
|
cache->storage,
|
|
heap_no == PAGE_HEAP_NO_INFIMUM
|
|
? "infimum pseudo-record"
|
|
: "supremum pseudo-record",
|
|
MAX_ALLOWED_FOR_STORAGE(cache));
|
|
return(*lock_data != NULL);
|
|
}
|
|
|
|
mtr_t mtr;
|
|
|
|
const buf_block_t* block;
|
|
const page_t* page;
|
|
const rec_t* rec;
|
|
ulint n_fields;
|
|
mem_heap_t* heap;
|
|
rec_offs offsets_onstack[REC_OFFS_NORMAL_SIZE];
|
|
rec_offs* offsets;
|
|
char buf[TRX_I_S_LOCK_DATA_MAX_LEN];
|
|
ulint buf_used;
|
|
ulint i;
|
|
|
|
mtr_start(&mtr);
|
|
|
|
block = buf_page_try_get(lock->un_member.rec_lock.page_id, &mtr);
|
|
|
|
if (block == NULL) {
|
|
|
|
*lock_data = NULL;
|
|
|
|
mtr_commit(&mtr);
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
page = reinterpret_cast<const page_t*>(buf_block_get_frame(block));
|
|
|
|
rec_offs_init(offsets_onstack);
|
|
offsets = offsets_onstack;
|
|
|
|
rec = page_find_rec_with_heap_no(page, heap_no);
|
|
|
|
const dict_index_t* index = lock->index;
|
|
ut_ad(index->is_primary() || !dict_index_is_online_ddl(index));
|
|
|
|
n_fields = dict_index_get_n_unique(index);
|
|
|
|
ut_a(n_fields > 0);
|
|
|
|
heap = NULL;
|
|
offsets = rec_get_offsets(rec, index, offsets, index->n_core_fields,
|
|
n_fields, &heap);
|
|
|
|
/* format and store the data */
|
|
|
|
buf_used = 0;
|
|
for (i = 0; i < n_fields; i++) {
|
|
|
|
buf_used += put_nth_field(
|
|
buf + buf_used, sizeof(buf) - buf_used,
|
|
i, index, rec, offsets) - 1;
|
|
}
|
|
|
|
*lock_data = (const char*) ha_storage_put_memlim(
|
|
cache->storage, buf, buf_used + 1,
|
|
MAX_ALLOWED_FOR_STORAGE(cache));
|
|
|
|
if (heap != NULL) {
|
|
|
|
/* this means that rec_get_offsets() has created a new
|
|
heap and has stored offsets in it; check that this is
|
|
really the case and free the heap */
|
|
ut_a(offsets != offsets_onstack);
|
|
mem_heap_free(heap);
|
|
}
|
|
|
|
mtr_commit(&mtr);
|
|
|
|
if (*lock_data == NULL) {
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/** @return the table of a lock */
|
|
static const dict_table_t *lock_get_table(const lock_t &lock)
|
|
{
|
|
if (lock.is_table())
|
|
return lock.un_member.tab_lock.table;
|
|
ut_ad(lock.index->is_primary() || !dict_index_is_online_ddl(lock.index));
|
|
return lock.index->table;
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Fills i_s_locks_row_t object. Returns its first argument.
|
|
If memory can not be allocated then FALSE is returned.
|
|
@return false if allocation fails */
|
|
static bool fill_locks_row(
|
|
i_s_locks_row_t* row, /*!< out: result object that's filled */
|
|
const lock_t* lock, /*!< in: lock to get data from */
|
|
uint16_t heap_no,/*!< in: lock's record number
|
|
or 0 if the lock
|
|
is a table lock */
|
|
trx_i_s_cache_t* cache) /*!< in/out: cache into which to copy
|
|
volatile strings */
|
|
{
|
|
row->lock_trx_id = lock->trx->id;
|
|
const bool is_gap_lock = lock->is_gap();
|
|
ut_ad(!is_gap_lock || !lock->is_table());
|
|
switch (lock->mode()) {
|
|
case LOCK_S:
|
|
row->lock_mode = uint8_t(1 + is_gap_lock);
|
|
break;
|
|
case LOCK_X:
|
|
row->lock_mode = uint8_t(3 + is_gap_lock);
|
|
break;
|
|
case LOCK_IS:
|
|
row->lock_mode = uint8_t(5 + is_gap_lock);
|
|
break;
|
|
case LOCK_IX:
|
|
row->lock_mode = uint8_t(7 + is_gap_lock);
|
|
break;
|
|
case LOCK_AUTO_INC:
|
|
row->lock_mode = 9;
|
|
break;
|
|
default:
|
|
ut_ad("unknown lock mode" == 0);
|
|
row->lock_mode = 0;
|
|
}
|
|
|
|
const dict_table_t* table= lock_get_table(*lock);
|
|
|
|
row->lock_table = ha_storage_put_str_memlim(
|
|
cache->storage, table->name.m_name,
|
|
MAX_ALLOWED_FOR_STORAGE(cache));
|
|
|
|
/* memory could not be allocated */
|
|
if (row->lock_table == NULL) {
|
|
|
|
return false;
|
|
}
|
|
|
|
if (!lock->is_table()) {
|
|
row->lock_index = ha_storage_put_str_memlim(
|
|
cache->storage, lock->index->name,
|
|
MAX_ALLOWED_FOR_STORAGE(cache));
|
|
|
|
/* memory could not be allocated */
|
|
if (row->lock_index == NULL) {
|
|
|
|
return false;
|
|
}
|
|
|
|
row->lock_page = lock->un_member.rec_lock.page_id;
|
|
row->lock_rec = heap_no;
|
|
|
|
if (!fill_lock_data(&row->lock_data, lock, heap_no, cache)) {
|
|
|
|
/* memory could not be allocated */
|
|
return false;
|
|
}
|
|
} else {
|
|
row->lock_index = NULL;
|
|
|
|
row->lock_page = page_id_t(0, 0);
|
|
row->lock_rec = 0;
|
|
|
|
row->lock_data = NULL;
|
|
}
|
|
|
|
row->lock_table_id = table->id;
|
|
|
|
row->next = nullptr;
|
|
ut_ad(i_s_locks_row_validate(row));
|
|
|
|
return true;
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Fills i_s_lock_waits_row_t object. Returns its first argument.
|
|
@return result object that's filled */
|
|
static
|
|
i_s_lock_waits_row_t*
|
|
fill_lock_waits_row(
|
|
/*================*/
|
|
i_s_lock_waits_row_t* row, /*!< out: result object
|
|
that's filled */
|
|
const i_s_locks_row_t* requested_lock_row,/*!< in: pointer to the
|
|
relevant requested lock
|
|
row in innodb_locks */
|
|
const i_s_locks_row_t* blocking_lock_row)/*!< in: pointer to the
|
|
relevant blocking lock
|
|
row in innodb_locks */
|
|
{
|
|
ut_ad(i_s_locks_row_validate(requested_lock_row));
|
|
ut_ad(i_s_locks_row_validate(blocking_lock_row));
|
|
|
|
row->requested_lock_row = requested_lock_row;
|
|
row->blocking_lock_row = blocking_lock_row;
|
|
|
|
return(row);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Calculates a hash fold for a lock. For a record lock the fold is
|
|
calculated from 4 elements, which uniquely identify a lock at a given
|
|
point in time: transaction id, space id, page number, record number.
|
|
For a table lock the fold is table's id.
|
|
@return fold */
|
|
static
|
|
ulint
|
|
fold_lock(
|
|
/*======*/
|
|
const lock_t& lock, /*!< in: lock object to fold */
|
|
uint16_t heap_no)/*!< in: lock's record number
|
|
or 0xFFFF if the lock
|
|
is a table lock */
|
|
{
|
|
ut_ad((heap_no == 0xFFFF) == lock.is_table());
|
|
if (heap_no == 0xFFFF)
|
|
return ulint(lock.un_member.tab_lock.table->id);
|
|
char buf[8 + 8];
|
|
memcpy(buf, &lock.trx->id, 8);
|
|
memcpy(buf + 8, &lock.un_member.rec_lock.page_id, 8);
|
|
return my_crc32c(heap_no, buf, sizeof buf);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Adds new element to the locks cache, enlarging it if necessary.
|
|
Returns a pointer to the added row. If the row is already present then
|
|
no row is added and a pointer to the existing row is returned.
|
|
If row can not be allocated then NULL is returned.
|
|
@return row */
|
|
i_s_locks_row_t *
|
|
trx_i_s_cache_t::add(const lock_t &lock, uint16_t heap_no) noexcept
|
|
{
|
|
ut_ad(lock.is_table() == (heap_no == 0xFFFF));
|
|
i_s_locks_row_t** after= reinterpret_cast<i_s_locks_row_t**>
|
|
(&locks_hash.cell_get(fold_lock(lock, heap_no))->node);
|
|
while (i_s_locks_row_t *row= *after)
|
|
{
|
|
ut_ad(i_s_locks_row_validate(row));
|
|
if (row->lock_trx_id == lock.trx->id &&
|
|
(heap_no == 0xFFFF
|
|
? row->lock_table_id == lock.un_member.tab_lock.table->id
|
|
: (row->lock_rec == heap_no &&
|
|
row->lock_page == lock.un_member.rec_lock.page_id)))
|
|
return row;
|
|
after= &row->next;
|
|
}
|
|
i_s_locks_row_t *dst_row= static_cast<i_s_locks_row_t*>
|
|
(table_cache_create_empty_row(&innodb_locks, this));
|
|
if (dst_row)
|
|
{
|
|
if (!fill_locks_row(dst_row, &lock, heap_no, this))
|
|
{
|
|
innodb_locks.rows_used--;
|
|
dst_row= nullptr;
|
|
}
|
|
else
|
|
{
|
|
*after= dst_row;
|
|
ut_ad(i_s_locks_row_validate(dst_row));
|
|
}
|
|
}
|
|
|
|
return dst_row;
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Adds new pair of locks to the lock waits cache.
|
|
If memory can not be allocated then FALSE is returned.
|
|
@return FALSE if allocation fails */
|
|
static
|
|
ibool
|
|
add_lock_wait_to_cache(
|
|
/*===================*/
|
|
trx_i_s_cache_t* cache, /*!< in/out: cache */
|
|
const i_s_locks_row_t* requested_lock_row,/*!< in: pointer to the
|
|
relevant requested lock
|
|
row in innodb_locks */
|
|
const i_s_locks_row_t* blocking_lock_row)/*!< in: pointer to the
|
|
relevant blocking lock
|
|
row in innodb_locks */
|
|
{
|
|
i_s_lock_waits_row_t* dst_row;
|
|
|
|
dst_row = (i_s_lock_waits_row_t*)
|
|
table_cache_create_empty_row(&cache->innodb_lock_waits,
|
|
cache);
|
|
|
|
/* memory could not be allocated */
|
|
if (dst_row == NULL) {
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
fill_lock_waits_row(dst_row, requested_lock_row, blocking_lock_row);
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Adds transaction's relevant (important) locks to cache.
|
|
If the transaction is waiting, then the wait lock is added to
|
|
innodb_locks and a pointer to the added row is returned in
|
|
requested_lock_row, otherwise requested_lock_row is set to NULL.
|
|
If rows can not be allocated then FALSE is returned and the value of
|
|
requested_lock_row is undefined.
|
|
@return FALSE if allocation fails */
|
|
static
|
|
ibool
|
|
add_trx_relevant_locks_to_cache(
|
|
/*============================*/
|
|
trx_i_s_cache_t* cache, /*!< in/out: cache */
|
|
const trx_t* trx, /*!< in: transaction */
|
|
i_s_locks_row_t** requested_lock_row)/*!< out: pointer to the
|
|
requested lock row, or NULL or
|
|
undefined */
|
|
{
|
|
lock_sys.assert_locked();
|
|
|
|
/* If transaction is waiting we add the wait lock and all locks
|
|
from another transactions that are blocking the wait lock. */
|
|
if (const lock_t *wait_lock = trx->lock.wait_lock) {
|
|
|
|
const lock_t* curr_lock;
|
|
i_s_locks_row_t* blocking_lock_row;
|
|
lock_queue_iterator_t iter;
|
|
|
|
uint16_t heap_no = wait_lock_get_heap_no(wait_lock);
|
|
|
|
/* add the requested lock */
|
|
*requested_lock_row = cache->add(*wait_lock, heap_no);
|
|
|
|
/* memory could not be allocated */
|
|
if (*requested_lock_row == NULL) {
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
/* then iterate over the locks before the wait lock and
|
|
add the ones that are blocking it */
|
|
|
|
lock_queue_iterator_reset(&iter, wait_lock, ULINT_UNDEFINED);
|
|
|
|
for (curr_lock = lock_queue_iterator_get_prev(&iter);
|
|
curr_lock != NULL;
|
|
curr_lock = lock_queue_iterator_get_prev(&iter)) {
|
|
|
|
if (lock_has_to_wait(wait_lock, curr_lock)) {
|
|
|
|
/* add the lock that is
|
|
blocking wait_lock */
|
|
blocking_lock_row = cache->add(*curr_lock,
|
|
heap_no);
|
|
|
|
/* memory could not be allocated */
|
|
if (blocking_lock_row == NULL) {
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
/* add the relation between both locks
|
|
to innodb_lock_waits */
|
|
if (!add_lock_wait_to_cache(
|
|
cache, *requested_lock_row,
|
|
blocking_lock_row)) {
|
|
|
|
/* memory could not be allocated */
|
|
return(FALSE);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
|
|
*requested_lock_row = NULL;
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/** The minimum time that a cache must not be updated after it has been
|
|
read for the last time; measured in nanoseconds. We use this technique
|
|
to ensure that SELECTs which join several INFORMATION SCHEMA tables read
|
|
the same version of the cache. */
|
|
#define CACHE_MIN_IDLE_TIME_NS 100000000 /* 0.1 sec */
|
|
|
|
/*******************************************************************//**
|
|
Checks if the cache can safely be updated.
|
|
@return whether the cache can be updated */
|
|
static bool can_cache_be_updated(trx_i_s_cache_t* cache)
|
|
{
|
|
/* cache->last_read is only updated when a shared rw lock on the
|
|
whole cache is being held (see trx_i_s_cache_end_read()) and
|
|
we are currently holding an exclusive rw lock on the cache.
|
|
So it is not possible for last_read to be updated while we are
|
|
reading it. */
|
|
return my_interval_timer() - cache->last_read > CACHE_MIN_IDLE_TIME_NS;
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Declare a cache empty, preparing it to be filled up. Not all resources
|
|
are freed because they can be reused. */
|
|
static
|
|
void
|
|
trx_i_s_cache_clear(
|
|
/*================*/
|
|
trx_i_s_cache_t* cache) /*!< out: cache to clear */
|
|
{
|
|
cache->innodb_trx.rows_used = 0;
|
|
cache->innodb_locks.rows_used = 0;
|
|
cache->innodb_lock_waits.rows_used = 0;
|
|
|
|
cache->locks_hash.clear();
|
|
|
|
ha_storage_empty(&cache->storage);
|
|
}
|
|
|
|
|
|
/**
|
|
Add transactions to innodb_trx's cache.
|
|
|
|
We also add all locks that are relevant to each transaction into
|
|
innodb_locks' and innodb_lock_waits' caches.
|
|
*/
|
|
|
|
static void fetch_data_into_cache_low(trx_i_s_cache_t *cache, const trx_t *trx)
|
|
{
|
|
i_s_locks_row_t *requested_lock_row;
|
|
|
|
#ifdef UNIV_DEBUG
|
|
{
|
|
const auto state= trx->state;
|
|
|
|
if (trx->is_autocommit_non_locking())
|
|
{
|
|
ut_ad(trx->read_only);
|
|
ut_ad(!trx->is_recovered);
|
|
ut_ad(trx->mysql_thd);
|
|
ut_ad(state == TRX_STATE_NOT_STARTED || state == TRX_STATE_ACTIVE);
|
|
}
|
|
else
|
|
ut_ad(state == TRX_STATE_ACTIVE ||
|
|
state == TRX_STATE_PREPARED ||
|
|
state == TRX_STATE_PREPARED_RECOVERED ||
|
|
state == TRX_STATE_COMMITTED_IN_MEMORY);
|
|
}
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
if (add_trx_relevant_locks_to_cache(cache, trx, &requested_lock_row))
|
|
{
|
|
if (i_s_trx_row_t *trx_row= reinterpret_cast<i_s_trx_row_t*>(
|
|
table_cache_create_empty_row(&cache->innodb_trx, cache)))
|
|
{
|
|
if (fill_trx_row(trx_row, trx, requested_lock_row, cache))
|
|
return;
|
|
--cache->innodb_trx.rows_used;
|
|
}
|
|
}
|
|
|
|
/* memory could not be allocated */
|
|
cache->is_truncated= true;
|
|
}
|
|
|
|
|
|
/**
|
|
Fetches the data needed to fill the 3 INFORMATION SCHEMA tables into the
|
|
table cache buffer. Cache must be locked for write.
|
|
*/
|
|
|
|
static void fetch_data_into_cache(trx_i_s_cache_t *cache)
|
|
{
|
|
LockMutexGuard g{SRW_LOCK_CALL};
|
|
trx_i_s_cache_clear(cache);
|
|
|
|
/* Capture the state of transactions */
|
|
trx_sys.trx_list.for_each([cache](trx_t &trx) {
|
|
if (!cache->is_truncated && trx.state != TRX_STATE_NOT_STARTED &&
|
|
&trx != (purge_sys.query ? purge_sys.query->trx : nullptr))
|
|
{
|
|
trx.mutex_lock();
|
|
if (trx.is_started())
|
|
fetch_data_into_cache_low(cache, &trx);
|
|
trx.mutex_unlock();
|
|
}
|
|
});
|
|
cache->is_truncated= false;
|
|
}
|
|
|
|
|
|
/*******************************************************************//**
|
|
Update the transactions cache if it has not been read for some time.
|
|
Called from handler/i_s.cc.
|
|
@return 0 - fetched, 1 - not */
|
|
int
|
|
trx_i_s_possibly_fetch_data_into_cache(
|
|
/*===================================*/
|
|
trx_i_s_cache_t* cache) /*!< in/out: cache */
|
|
{
|
|
if (!can_cache_be_updated(cache)) {
|
|
|
|
return(1);
|
|
}
|
|
|
|
/* We need to read trx_sys and record/table lock queues */
|
|
fetch_data_into_cache(cache);
|
|
|
|
/* update cache last read time */
|
|
cache->last_read = my_interval_timer();
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Returns TRUE if the data in the cache is truncated due to the memory
|
|
limit posed by TRX_I_S_MEM_LIMIT.
|
|
@return TRUE if truncated */
|
|
bool
|
|
trx_i_s_cache_is_truncated(
|
|
/*=======================*/
|
|
trx_i_s_cache_t* cache) /*!< in: cache */
|
|
{
|
|
return(cache->is_truncated);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Initialize INFORMATION SCHEMA trx related cache. */
|
|
void
|
|
trx_i_s_cache_init(
|
|
/*===============*/
|
|
trx_i_s_cache_t* cache) /*!< out: cache to init */
|
|
{
|
|
/* The latching is done in the following order:
|
|
acquire trx_i_s_cache_t::rw_lock, rwlock
|
|
acquire exclusive lock_sys.latch
|
|
release exclusive lock_sys.latch
|
|
release trx_i_s_cache_t::rw_lock
|
|
acquire trx_i_s_cache_t::rw_lock, rdlock
|
|
release trx_i_s_cache_t::rw_lock */
|
|
|
|
cache->rw_lock.SRW_LOCK_INIT(trx_i_s_cache_lock_key);
|
|
|
|
cache->last_read = 0;
|
|
|
|
table_cache_init(&cache->innodb_trx, sizeof(i_s_trx_row_t));
|
|
table_cache_init(&cache->innodb_locks, sizeof(i_s_locks_row_t));
|
|
table_cache_init(&cache->innodb_lock_waits,
|
|
sizeof(i_s_lock_waits_row_t));
|
|
|
|
cache->locks_hash.create(LOCKS_HASH_CELLS_NUM);
|
|
|
|
cache->storage = ha_storage_create(CACHE_STORAGE_INITIAL_SIZE,
|
|
CACHE_STORAGE_HASH_CELLS);
|
|
|
|
cache->mem_allocd = 0;
|
|
|
|
cache->is_truncated = false;
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Free the INFORMATION SCHEMA trx related cache. */
|
|
void
|
|
trx_i_s_cache_free(
|
|
/*===============*/
|
|
trx_i_s_cache_t* cache) /*!< in, own: cache to free */
|
|
{
|
|
cache->rw_lock.destroy();
|
|
|
|
cache->locks_hash.free();
|
|
ha_storage_free(cache->storage);
|
|
table_cache_free(&cache->innodb_trx);
|
|
table_cache_free(&cache->innodb_locks);
|
|
table_cache_free(&cache->innodb_lock_waits);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Issue a shared/read lock on the tables cache. */
|
|
void
|
|
trx_i_s_cache_start_read(
|
|
/*=====================*/
|
|
trx_i_s_cache_t* cache) /*!< in: cache */
|
|
{
|
|
cache->rw_lock.rd_lock(SRW_LOCK_CALL);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Release a shared/read lock on the tables cache. */
|
|
void
|
|
trx_i_s_cache_end_read(
|
|
/*===================*/
|
|
trx_i_s_cache_t* cache) /*!< in: cache */
|
|
{
|
|
cache->last_read = my_interval_timer();
|
|
cache->rw_lock.rd_unlock();
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Issue an exclusive/write lock on the tables cache. */
|
|
void
|
|
trx_i_s_cache_start_write(
|
|
/*======================*/
|
|
trx_i_s_cache_t* cache) /*!< in: cache */
|
|
{
|
|
cache->rw_lock.wr_lock(SRW_LOCK_CALL);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Release an exclusive/write lock on the tables cache. */
|
|
void
|
|
trx_i_s_cache_end_write(
|
|
/*====================*/
|
|
trx_i_s_cache_t* cache) /*!< in: cache */
|
|
{
|
|
cache->rw_lock.wr_unlock();
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Selects a INFORMATION SCHEMA table cache from the whole cache.
|
|
@return table cache */
|
|
static
|
|
i_s_table_cache_t*
|
|
cache_select_table(
|
|
/*===============*/
|
|
trx_i_s_cache_t* cache, /*!< in: whole cache */
|
|
enum i_s_table table) /*!< in: which table */
|
|
{
|
|
switch (table) {
|
|
case I_S_INNODB_TRX:
|
|
return &cache->innodb_trx;
|
|
case I_S_INNODB_LOCKS:
|
|
return &cache->innodb_locks;
|
|
case I_S_INNODB_LOCK_WAITS:
|
|
return &cache->innodb_lock_waits;
|
|
}
|
|
|
|
ut_error;
|
|
return NULL;
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Retrieves the number of used rows in the cache for a given
|
|
INFORMATION SCHEMA table.
|
|
@return number of rows */
|
|
ulint
|
|
trx_i_s_cache_get_rows_used(
|
|
/*========================*/
|
|
trx_i_s_cache_t* cache, /*!< in: cache */
|
|
enum i_s_table table) /*!< in: which table */
|
|
{
|
|
i_s_table_cache_t* table_cache;
|
|
|
|
table_cache = cache_select_table(cache, table);
|
|
|
|
return(table_cache->rows_used);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Retrieves the nth row (zero-based) in the cache for a given
|
|
INFORMATION SCHEMA table.
|
|
@return row */
|
|
void*
|
|
trx_i_s_cache_get_nth_row(
|
|
/*======================*/
|
|
trx_i_s_cache_t* cache, /*!< in: cache */
|
|
enum i_s_table table, /*!< in: which table */
|
|
ulint n) /*!< in: row number */
|
|
{
|
|
i_s_table_cache_t* table_cache;
|
|
ulint i;
|
|
void* row;
|
|
|
|
table_cache = cache_select_table(cache, table);
|
|
|
|
ut_a(n < table_cache->rows_used);
|
|
|
|
row = NULL;
|
|
|
|
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
|
|
|
|
if (table_cache->chunks[i].offset
|
|
+ table_cache->chunks[i].rows_allocd > n) {
|
|
|
|
row = (char*) table_cache->chunks[i].base
|
|
+ (n - table_cache->chunks[i].offset)
|
|
* table_cache->row_size;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ut_a(row != NULL);
|
|
|
|
return(row);
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Crafts a lock id string from a i_s_locks_row_t object. Returns its
|
|
second argument. This function aborts if there is not enough space in
|
|
lock_id. Be sure to provide at least TRX_I_S_LOCK_ID_MAX_LEN + 1 if you
|
|
want to be 100% sure that it will not abort.
|
|
@return resulting lock id */
|
|
char*
|
|
trx_i_s_create_lock_id(
|
|
/*===================*/
|
|
const i_s_locks_row_t* row, /*!< in: innodb_locks row */
|
|
char* lock_id,/*!< out: resulting lock_id */
|
|
ulint lock_id_size)/*!< in: size of the lock id
|
|
buffer */
|
|
{
|
|
int res_len;
|
|
|
|
/* please adjust TRX_I_S_LOCK_ID_MAX_LEN if you change this */
|
|
|
|
if (row->lock_index) {
|
|
/* record lock */
|
|
res_len = snprintf(lock_id, lock_id_size,
|
|
TRX_ID_FMT
|
|
":%u:%u:%u",
|
|
row->lock_trx_id, row->lock_page.space(),
|
|
row->lock_page.page_no(), row->lock_rec);
|
|
} else {
|
|
/* table lock */
|
|
res_len = snprintf(lock_id, lock_id_size,
|
|
TRX_ID_FMT":" UINT64PF,
|
|
row->lock_trx_id,
|
|
row->lock_table_id);
|
|
}
|
|
|
|
/* the typecast is safe because snprintf(3) never returns
|
|
negative result */
|
|
ut_a(res_len >= 0);
|
|
ut_a((ulint) res_len < lock_id_size);
|
|
|
|
return(lock_id);
|
|
}
|