mariadb/storage/innobase/trx/trx0i_s.cc
Marko Mäkelä ddd7d5d8e3 MDEV-24035 Failing assertion: UT_LIST_GET_LEN(lock.trx_locks) == 0 causing disruption and replication failure
Under unknown circumstances, the SQL layer may wrongly disregard an
invocation of thd_mark_transaction_to_rollback() when an InnoDB
transaction had been aborted (rolled back) due to one of the following errors:
* HA_ERR_LOCK_DEADLOCK
* HA_ERR_RECORD_CHANGED (if innodb_snapshot_isolation=ON)
* HA_ERR_LOCK_WAIT_TIMEOUT (if innodb_rollback_on_timeout=ON)

Such an error used to cause a crash of InnoDB during transaction commit.
These changes aim to catch and report the error earlier, so that not only
this crash can be avoided but also the original root cause be found and
fixed more easily later.

The idea of this fix is from Michael 'Monty' Widenius.

HA_ERR_ROLLBACK: A new error code that will be translated into
ER_ROLLBACK_ONLY, signalling that the current transaction
has been aborted and the only allowed action is ROLLBACK.

trx_t::state: Add TRX_STATE_ABORTED that is like
TRX_STATE_NOT_STARTED, but noting that the transaction had been
rolled back and aborted.

trx_t::is_started(): Replaces trx_is_started().

ha_innobase: Check the transaction state in various places.
Simplify the logic around SAVEPOINT.

ha_innobase::is_valid_trx(): Replaces ha_innobase::is_read_only().

The InnoDB logic around transaction savepoints, commit, and rollback
was unnecessarily complex and might have contributed to this
inconsistency. So, we are simplifying that logic as well.

trx_savept_t: Replace with const undo_no_t*. When we rollback to
a savepoint, all we need to know is the number of undo log records
that must survive.

trx_named_savept_t, DB_NO_SAVEPOINT: Remove. We can store undo_no_t
directly in the space allocated at innobase_hton->savepoint_offset.

fts_trx_create(): Do not copy previous savepoints.

fts_savepoint_rollback(): If a savepoint was not found, roll back
everything after the default savepoint of fts_trx_create().
The test innodb_fts.savepoint is extended to cover this code.

Reviewed by: Vladislav Lesin
Tested by: Matthias Leich
2024-12-12 18:02:00 +02:00

1309 lines
35 KiB
C++

/*****************************************************************************
Copyright (c) 2007, 2015, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2017, 2021, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file trx/trx0i_s.cc
INFORMATION SCHEMA innodb_trx, innodb_locks and
innodb_lock_waits tables fetch code.
The code below fetches information needed to fill those
3 dynamic tables and uploads it into a "transactions
table cache" for later retrieval.
Created July 17, 2007 Vasil Dimov
*******************************************************/
#include "trx0i_s.h"
#include "buf0buf.h"
#include "dict0dict.h"
#include "ha0storage.h"
#include "hash0hash.h"
#include "lock0iter.h"
#include "lock0lock.h"
#include "mem0mem.h"
#include "page0page.h"
#include "rem0rec.h"
#include "row0row.h"
#include "srv0srv.h"
#include "trx0sys.h"
#include "que0que.h"
#include "trx0purge.h"
#include "sql_class.h"
/** Initial number of rows in the table cache */
#define TABLE_CACHE_INITIAL_ROWSNUM 1024
/** @brief The maximum number of chunks to allocate for a table cache.
The rows of a table cache are stored in a set of chunks. When a new
row is added a new chunk is allocated if necessary. Assuming that the
first one is 1024 rows (TABLE_CACHE_INITIAL_ROWSNUM) and each
subsequent is N/2 where N is the number of rows we have allocated till
now, then 39th chunk would accommodate 1677416425 rows and all chunks
would accommodate 3354832851 rows. */
#define MEM_CHUNKS_IN_TABLE_CACHE 39
/** Memory limit passed to ha_storage_put_memlim().
@param cache hash storage
@return maximum allowed allocation size */
#define MAX_ALLOWED_FOR_STORAGE(cache) \
(TRX_I_S_MEM_LIMIT \
- (cache)->mem_allocd)
/** Memory limit in table_cache_create_empty_row().
@param cache hash storage
@return maximum allowed allocation size */
#define MAX_ALLOWED_FOR_ALLOC(cache) \
(TRX_I_S_MEM_LIMIT \
- (cache)->mem_allocd \
- ha_storage_get_size((cache)->storage))
/** Memory for each table in the intermediate buffer is allocated in
separate chunks. These chunks are considered to be concatenated to
represent one flat array of rows. */
struct i_s_mem_chunk_t {
ulint offset; /*!< offset, in number of rows */
ulint rows_allocd; /*!< the size of this chunk, in number
of rows */
void* base; /*!< start of the chunk */
};
/** This represents one table's cache. */
struct i_s_table_cache_t {
ulint rows_used; /*!< number of used rows */
ulint rows_allocd; /*!< number of allocated rows */
ulint row_size; /*!< size of a single row */
i_s_mem_chunk_t chunks[MEM_CHUNKS_IN_TABLE_CACHE]; /*!< array of
memory chunks that stores the
rows */
};
/** This structure describes the intermediate buffer */
struct trx_i_s_cache_t {
srw_lock rw_lock; /*!< read-write lock protecting this */
Atomic_relaxed<ulonglong> last_read;
/*!< last time the cache was read;
measured in nanoseconds */
i_s_table_cache_t innodb_trx; /*!< innodb_trx table */
i_s_table_cache_t innodb_locks; /*!< innodb_locks table */
i_s_table_cache_t innodb_lock_waits;/*!< innodb_lock_waits table */
/** the hash table size is LOCKS_HASH_CELLS_NUM * sizeof(void*) bytes */
#define LOCKS_HASH_CELLS_NUM 10000
hash_table_t locks_hash; /*!< hash table used to eliminate
duplicate entries in the
innodb_locks table */
/** Initial size of the cache storage */
#define CACHE_STORAGE_INITIAL_SIZE 1024
/** Number of hash cells in the cache storage */
#define CACHE_STORAGE_HASH_CELLS 2048
ha_storage_t* storage; /*!< storage for external volatile
data that may become unavailable
when we release
lock_sys.latch */
ulint mem_allocd; /*!< the amount of memory
allocated with mem_alloc*() */
bool is_truncated; /*!< this is true if the memory
limit was hit and thus the data
in the cache is truncated */
/** Adds an element.
@param lock element to be added
@param heap_no record lock heap number, or 0xFFFF for table lock
@return the existing or added lock
@retval nullptr if memory cannot be allocated */
i_s_locks_row_t *add(const lock_t &lock, uint16_t heap_no) noexcept;
};
/** This is the intermediate buffer where data needed to fill the
INFORMATION SCHEMA tables is fetched and later retrieved by the C++
code in handler/i_s.cc. */
static trx_i_s_cache_t trx_i_s_cache_static;
/** This is the intermediate buffer where data needed to fill the
INFORMATION SCHEMA tables is fetched and later retrieved by the C++
code in handler/i_s.cc. */
trx_i_s_cache_t* trx_i_s_cache = &trx_i_s_cache_static;
/** @return the heap number of a record lock
@retval 0xFFFF for table locks */
static uint16_t wait_lock_get_heap_no(const lock_t *lock)
{
return !lock->is_table()
? static_cast<uint16_t>(lock_rec_find_set_bit(lock))
: uint16_t{0xFFFF};
}
/*******************************************************************//**
Initializes the members of a table cache. */
static
void
table_cache_init(
/*=============*/
i_s_table_cache_t* table_cache, /*!< out: table cache */
size_t row_size) /*!< in: the size of a
row */
{
ulint i;
table_cache->rows_used = 0;
table_cache->rows_allocd = 0;
table_cache->row_size = row_size;
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
/* the memory is actually allocated in
table_cache_create_empty_row() */
table_cache->chunks[i].base = NULL;
}
}
/*******************************************************************//**
Frees a table cache. */
static
void
table_cache_free(
/*=============*/
i_s_table_cache_t* table_cache) /*!< in/out: table cache */
{
ulint i;
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
/* the memory is actually allocated in
table_cache_create_empty_row() */
if (table_cache->chunks[i].base) {
ut_free(table_cache->chunks[i].base);
table_cache->chunks[i].base = NULL;
}
}
}
/*******************************************************************//**
Returns an empty row from a table cache. The row is allocated if no more
empty rows are available. The number of used rows is incremented.
If the memory limit is hit then NULL is returned and nothing is
allocated.
@return empty row, or NULL if out of memory */
static
void*
table_cache_create_empty_row(
/*=========================*/
i_s_table_cache_t* table_cache, /*!< in/out: table cache */
trx_i_s_cache_t* cache) /*!< in/out: cache to record
how many bytes are
allocated */
{
ulint i;
void* row;
ut_a(table_cache->rows_used <= table_cache->rows_allocd);
if (table_cache->rows_used == table_cache->rows_allocd) {
/* rows_used == rows_allocd means that new chunk needs
to be allocated: either no more empty rows in the
last allocated chunk or nothing has been allocated yet
(rows_num == rows_allocd == 0); */
i_s_mem_chunk_t* chunk;
ulint req_bytes;
ulint got_bytes;
ulint req_rows;
ulint got_rows;
/* find the first not allocated chunk */
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
if (table_cache->chunks[i].base == NULL) {
break;
}
}
/* i == MEM_CHUNKS_IN_TABLE_CACHE means that all chunks
have been allocated :-X */
ut_a(i < MEM_CHUNKS_IN_TABLE_CACHE);
/* allocate the chunk we just found */
if (i == 0) {
/* first chunk, nothing is allocated yet */
req_rows = TABLE_CACHE_INITIAL_ROWSNUM;
} else {
/* Memory is increased by the formula
new = old + old / 2; We are trying not to be
aggressive here (= using the common new = old * 2)
because the allocated memory will not be freed
until InnoDB exit (it is reused). So it is better
to once allocate the memory in more steps, but
have less unused/wasted memory than to use less
steps in allocation (which is done once in a
lifetime) but end up with lots of unused/wasted
memory. */
req_rows = table_cache->rows_allocd / 2;
}
req_bytes = req_rows * table_cache->row_size;
if (req_bytes > MAX_ALLOWED_FOR_ALLOC(cache)) {
return(NULL);
}
chunk = &table_cache->chunks[i];
got_bytes = req_bytes;
chunk->base = ut_malloc_nokey(req_bytes);
got_rows = got_bytes / table_cache->row_size;
cache->mem_allocd += got_bytes;
#if 0
printf("allocating chunk %d req bytes=%lu, got bytes=%lu,"
" row size=%lu,"
" req rows=%lu, got rows=%lu\n",
i, req_bytes, got_bytes,
table_cache->row_size,
req_rows, got_rows);
#endif
chunk->rows_allocd = got_rows;
table_cache->rows_allocd += got_rows;
/* adjust the offset of the next chunk */
if (i < MEM_CHUNKS_IN_TABLE_CACHE - 1) {
table_cache->chunks[i + 1].offset
= chunk->offset + chunk->rows_allocd;
}
/* return the first empty row in the newly allocated
chunk */
row = chunk->base;
} else {
char* chunk_start;
ulint offset;
/* there is an empty row, no need to allocate new
chunks */
/* find the first chunk that contains allocated but
empty/unused rows */
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
if (table_cache->chunks[i].offset
+ table_cache->chunks[i].rows_allocd
> table_cache->rows_used) {
break;
}
}
/* i == MEM_CHUNKS_IN_TABLE_CACHE means that all chunks
are full, but
table_cache->rows_used != table_cache->rows_allocd means
exactly the opposite - there are allocated but
empty/unused rows :-X */
ut_a(i < MEM_CHUNKS_IN_TABLE_CACHE);
chunk_start = (char*) table_cache->chunks[i].base;
offset = table_cache->rows_used
- table_cache->chunks[i].offset;
row = chunk_start + offset * table_cache->row_size;
}
table_cache->rows_used++;
return(row);
}
#ifdef UNIV_DEBUG
/*******************************************************************//**
Validates a row in the locks cache.
@return TRUE if valid */
static
ibool
i_s_locks_row_validate(
/*===================*/
const i_s_locks_row_t* row) /*!< in: row to validate */
{
ut_ad(row->lock_mode);
ut_ad(row->lock_table != NULL);
ut_ad(row->lock_table_id != 0);
if (!row->lock_index) {
/* table lock */
ut_ad(!row->lock_data);
ut_ad(row->lock_page == page_id_t(0, 0));
ut_ad(!row->lock_rec);
} else {
/* record lock */
/* row->lock_data == NULL if buf_page_try_get() == NULL */
}
return(TRUE);
}
#endif /* UNIV_DEBUG */
/*******************************************************************//**
Fills i_s_trx_row_t object.
If memory can not be allocated then FALSE is returned.
@return FALSE if allocation fails */
static
ibool
fill_trx_row(
/*=========*/
i_s_trx_row_t* row, /*!< out: result object
that's filled */
const trx_t* trx, /*!< in: transaction to
get data from */
const i_s_locks_row_t* requested_lock_row,/*!< in: pointer to the
corresponding row in
innodb_locks if trx is
waiting or NULL if trx
is not waiting */
trx_i_s_cache_t* cache) /*!< in/out: cache into
which to copy volatile
strings */
{
const char* s;
lock_sys.assert_locked();
const lock_t* wait_lock = trx->lock.wait_lock;
row->trx_id = trx->id;
row->trx_started = trx->start_time;
if (trx->in_rollback) {
row->trx_state = "ROLLING BACK";
} else if (trx->state == TRX_STATE_COMMITTED_IN_MEMORY) {
row->trx_state = "COMMITTING";
} else if (wait_lock) {
row->trx_state = "LOCK WAIT";
} else {
row->trx_state = "RUNNING";
}
row->requested_lock_row = requested_lock_row;
ut_ad(requested_lock_row == NULL
|| i_s_locks_row_validate(requested_lock_row));
ut_ad(!wait_lock == !requested_lock_row);
const my_hrtime_t suspend_time= trx->lock.suspend_time;
row->trx_wait_started = wait_lock ? hrtime_to_time(suspend_time) : 0;
row->trx_weight = static_cast<uintmax_t>(TRX_WEIGHT(trx));
if (trx->mysql_thd == NULL) {
/* For internal transactions e.g., purge and transactions
being recovered at startup there is no associated MySQL
thread data structure. */
row->trx_mysql_thread_id = 0;
row->trx_query = NULL;
goto thd_done;
}
row->trx_mysql_thread_id = thd_get_thread_id(trx->mysql_thd);
char query[TRX_I_S_TRX_QUERY_MAX_LEN + 1];
if (size_t stmt_len = thd_query_safe(trx->mysql_thd, query,
sizeof query)) {
row->trx_query = static_cast<const char*>(
ha_storage_put_memlim(
cache->storage, query, stmt_len + 1,
MAX_ALLOWED_FOR_STORAGE(cache)));
row->trx_query_cs = thd_charset(trx->mysql_thd);
if (row->trx_query == NULL) {
return(FALSE);
}
} else {
row->trx_query = NULL;
}
thd_done:
row->trx_operation_state = trx->op_info;
row->trx_tables_in_use = trx->n_mysql_tables_in_use;
row->trx_tables_locked = lock_number_of_tables_locked(&trx->lock);
/* These are protected by lock_sys.latch (which we are holding)
and sometimes also trx->mutex. */
row->trx_lock_structs = UT_LIST_GET_LEN(trx->lock.trx_locks);
row->trx_lock_memory_bytes = mem_heap_get_size(trx->lock.lock_heap);
row->trx_rows_locked = trx->lock.n_rec_locks;
row->trx_rows_modified = trx->undo_no;
row->trx_isolation_level = trx->isolation_level;
row->trx_unique_checks = (ibool) trx->check_unique_secondary;
row->trx_foreign_key_checks = (ibool) trx->check_foreigns;
s = trx->detailed_error;
if (s != NULL && s[0] != '\0') {
TRX_I_S_STRING_COPY(s,
row->trx_foreign_key_error,
TRX_I_S_TRX_FK_ERROR_MAX_LEN, cache);
if (row->trx_foreign_key_error == NULL) {
return(FALSE);
}
} else {
row->trx_foreign_key_error = NULL;
}
row->trx_is_read_only = trx->read_only;
row->trx_is_autocommit_non_locking = trx->is_autocommit_non_locking();
return(TRUE);
}
/*******************************************************************//**
Format the nth field of "rec" and put it in "buf". The result is always
NUL-terminated. Returns the number of bytes that were written to "buf"
(including the terminating NUL).
@return end of the result */
static
ulint
put_nth_field(
/*==========*/
char* buf, /*!< out: buffer */
ulint buf_size,/*!< in: buffer size in bytes */
ulint n, /*!< in: number of field */
const dict_index_t* index, /*!< in: index */
const rec_t* rec, /*!< in: record */
const rec_offs* offsets)/*!< in: record offsets, returned
by rec_get_offsets() */
{
const byte* data;
ulint data_len;
dict_field_t* dict_field;
ulint ret;
ut_ad(rec_offs_validate(rec, NULL, offsets));
if (buf_size == 0) {
return(0);
}
ret = 0;
if (n > 0) {
/* we must append ", " before the actual data */
if (buf_size < 3) {
buf[0] = '\0';
return(1);
}
memcpy(buf, ", ", 3);
buf += 2;
buf_size -= 2;
ret += 2;
}
/* now buf_size >= 1 */
data = rec_get_nth_field(rec, offsets, n, &data_len);
dict_field = dict_index_get_nth_field(index, n);
ret += row_raw_format((const char*) data, data_len,
dict_field, buf, buf_size);
return(ret);
}
/*******************************************************************//**
Fills the "lock_data" member of i_s_locks_row_t object.
If memory can not be allocated then FALSE is returned.
@return FALSE if allocation fails */
static
ibool
fill_lock_data(
/*===========*/
const char** lock_data,/*!< out: "lock_data" to fill */
const lock_t* lock, /*!< in: lock used to find the data */
ulint heap_no,/*!< in: rec num used to find the data */
trx_i_s_cache_t* cache) /*!< in/out: cache where to store
volatile data */
{
ut_a(!lock->is_table());
switch (heap_no) {
case PAGE_HEAP_NO_INFIMUM:
case PAGE_HEAP_NO_SUPREMUM:
*lock_data = ha_storage_put_str_memlim(
cache->storage,
heap_no == PAGE_HEAP_NO_INFIMUM
? "infimum pseudo-record"
: "supremum pseudo-record",
MAX_ALLOWED_FOR_STORAGE(cache));
return(*lock_data != NULL);
}
mtr_t mtr;
const buf_block_t* block;
const page_t* page;
const rec_t* rec;
ulint n_fields;
mem_heap_t* heap;
rec_offs offsets_onstack[REC_OFFS_NORMAL_SIZE];
rec_offs* offsets;
char buf[TRX_I_S_LOCK_DATA_MAX_LEN];
ulint buf_used;
ulint i;
mtr_start(&mtr);
block = buf_page_try_get(lock->un_member.rec_lock.page_id, &mtr);
if (block == NULL) {
*lock_data = NULL;
mtr_commit(&mtr);
return(TRUE);
}
page = reinterpret_cast<const page_t*>(buf_block_get_frame(block));
rec_offs_init(offsets_onstack);
offsets = offsets_onstack;
rec = page_find_rec_with_heap_no(page, heap_no);
const dict_index_t* index = lock->index;
ut_ad(index->is_primary() || !dict_index_is_online_ddl(index));
n_fields = dict_index_get_n_unique(index);
ut_a(n_fields > 0);
heap = NULL;
offsets = rec_get_offsets(rec, index, offsets, index->n_core_fields,
n_fields, &heap);
/* format and store the data */
buf_used = 0;
for (i = 0; i < n_fields; i++) {
buf_used += put_nth_field(
buf + buf_used, sizeof(buf) - buf_used,
i, index, rec, offsets) - 1;
}
*lock_data = (const char*) ha_storage_put_memlim(
cache->storage, buf, buf_used + 1,
MAX_ALLOWED_FOR_STORAGE(cache));
if (heap != NULL) {
/* this means that rec_get_offsets() has created a new
heap and has stored offsets in it; check that this is
really the case and free the heap */
ut_a(offsets != offsets_onstack);
mem_heap_free(heap);
}
mtr_commit(&mtr);
if (*lock_data == NULL) {
return(FALSE);
}
return(TRUE);
}
/** @return the table of a lock */
static const dict_table_t *lock_get_table(const lock_t &lock)
{
if (lock.is_table())
return lock.un_member.tab_lock.table;
ut_ad(lock.index->is_primary() || !dict_index_is_online_ddl(lock.index));
return lock.index->table;
}
/*******************************************************************//**
Fills i_s_locks_row_t object. Returns its first argument.
If memory can not be allocated then FALSE is returned.
@return false if allocation fails */
static bool fill_locks_row(
i_s_locks_row_t* row, /*!< out: result object that's filled */
const lock_t* lock, /*!< in: lock to get data from */
uint16_t heap_no,/*!< in: lock's record number
or 0 if the lock
is a table lock */
trx_i_s_cache_t* cache) /*!< in/out: cache into which to copy
volatile strings */
{
row->lock_trx_id = lock->trx->id;
const bool is_gap_lock = lock->is_gap();
ut_ad(!is_gap_lock || !lock->is_table());
switch (lock->mode()) {
case LOCK_S:
row->lock_mode = uint8_t(1 + is_gap_lock);
break;
case LOCK_X:
row->lock_mode = uint8_t(3 + is_gap_lock);
break;
case LOCK_IS:
row->lock_mode = uint8_t(5 + is_gap_lock);
break;
case LOCK_IX:
row->lock_mode = uint8_t(7 + is_gap_lock);
break;
case LOCK_AUTO_INC:
row->lock_mode = 9;
break;
default:
ut_ad("unknown lock mode" == 0);
row->lock_mode = 0;
}
const dict_table_t* table= lock_get_table(*lock);
row->lock_table = ha_storage_put_str_memlim(
cache->storage, table->name.m_name,
MAX_ALLOWED_FOR_STORAGE(cache));
/* memory could not be allocated */
if (row->lock_table == NULL) {
return false;
}
if (!lock->is_table()) {
row->lock_index = ha_storage_put_str_memlim(
cache->storage, lock->index->name,
MAX_ALLOWED_FOR_STORAGE(cache));
/* memory could not be allocated */
if (row->lock_index == NULL) {
return false;
}
row->lock_page = lock->un_member.rec_lock.page_id;
row->lock_rec = heap_no;
if (!fill_lock_data(&row->lock_data, lock, heap_no, cache)) {
/* memory could not be allocated */
return false;
}
} else {
row->lock_index = NULL;
row->lock_page = page_id_t(0, 0);
row->lock_rec = 0;
row->lock_data = NULL;
}
row->lock_table_id = table->id;
row->next = nullptr;
ut_ad(i_s_locks_row_validate(row));
return true;
}
/*******************************************************************//**
Fills i_s_lock_waits_row_t object. Returns its first argument.
@return result object that's filled */
static
i_s_lock_waits_row_t*
fill_lock_waits_row(
/*================*/
i_s_lock_waits_row_t* row, /*!< out: result object
that's filled */
const i_s_locks_row_t* requested_lock_row,/*!< in: pointer to the
relevant requested lock
row in innodb_locks */
const i_s_locks_row_t* blocking_lock_row)/*!< in: pointer to the
relevant blocking lock
row in innodb_locks */
{
ut_ad(i_s_locks_row_validate(requested_lock_row));
ut_ad(i_s_locks_row_validate(blocking_lock_row));
row->requested_lock_row = requested_lock_row;
row->blocking_lock_row = blocking_lock_row;
return(row);
}
/*******************************************************************//**
Calculates a hash fold for a lock. For a record lock the fold is
calculated from 4 elements, which uniquely identify a lock at a given
point in time: transaction id, space id, page number, record number.
For a table lock the fold is table's id.
@return fold */
static
ulint
fold_lock(
/*======*/
const lock_t& lock, /*!< in: lock object to fold */
uint16_t heap_no)/*!< in: lock's record number
or 0xFFFF if the lock
is a table lock */
{
ut_ad((heap_no == 0xFFFF) == lock.is_table());
if (heap_no == 0xFFFF)
return ulint(lock.un_member.tab_lock.table->id);
char buf[8 + 8];
memcpy(buf, &lock.trx->id, 8);
memcpy(buf + 8, &lock.un_member.rec_lock.page_id, 8);
return my_crc32c(heap_no, buf, sizeof buf);
}
/*******************************************************************//**
Adds new element to the locks cache, enlarging it if necessary.
Returns a pointer to the added row. If the row is already present then
no row is added and a pointer to the existing row is returned.
If row can not be allocated then NULL is returned.
@return row */
i_s_locks_row_t *
trx_i_s_cache_t::add(const lock_t &lock, uint16_t heap_no) noexcept
{
ut_ad(lock.is_table() == (heap_no == 0xFFFF));
i_s_locks_row_t** after= reinterpret_cast<i_s_locks_row_t**>
(&locks_hash.cell_get(fold_lock(lock, heap_no))->node);
while (i_s_locks_row_t *row= *after)
{
ut_ad(i_s_locks_row_validate(row));
if (row->lock_trx_id == lock.trx->id &&
(heap_no == 0xFFFF
? row->lock_table_id == lock.un_member.tab_lock.table->id
: (row->lock_rec == heap_no &&
row->lock_page == lock.un_member.rec_lock.page_id)))
return row;
after= &row->next;
}
i_s_locks_row_t *dst_row= static_cast<i_s_locks_row_t*>
(table_cache_create_empty_row(&innodb_locks, this));
if (dst_row)
{
if (!fill_locks_row(dst_row, &lock, heap_no, this))
{
innodb_locks.rows_used--;
dst_row= nullptr;
}
else
{
*after= dst_row;
ut_ad(i_s_locks_row_validate(dst_row));
}
}
return dst_row;
}
/*******************************************************************//**
Adds new pair of locks to the lock waits cache.
If memory can not be allocated then FALSE is returned.
@return FALSE if allocation fails */
static
ibool
add_lock_wait_to_cache(
/*===================*/
trx_i_s_cache_t* cache, /*!< in/out: cache */
const i_s_locks_row_t* requested_lock_row,/*!< in: pointer to the
relevant requested lock
row in innodb_locks */
const i_s_locks_row_t* blocking_lock_row)/*!< in: pointer to the
relevant blocking lock
row in innodb_locks */
{
i_s_lock_waits_row_t* dst_row;
dst_row = (i_s_lock_waits_row_t*)
table_cache_create_empty_row(&cache->innodb_lock_waits,
cache);
/* memory could not be allocated */
if (dst_row == NULL) {
return(FALSE);
}
fill_lock_waits_row(dst_row, requested_lock_row, blocking_lock_row);
return(TRUE);
}
/*******************************************************************//**
Adds transaction's relevant (important) locks to cache.
If the transaction is waiting, then the wait lock is added to
innodb_locks and a pointer to the added row is returned in
requested_lock_row, otherwise requested_lock_row is set to NULL.
If rows can not be allocated then FALSE is returned and the value of
requested_lock_row is undefined.
@return FALSE if allocation fails */
static
ibool
add_trx_relevant_locks_to_cache(
/*============================*/
trx_i_s_cache_t* cache, /*!< in/out: cache */
const trx_t* trx, /*!< in: transaction */
i_s_locks_row_t** requested_lock_row)/*!< out: pointer to the
requested lock row, or NULL or
undefined */
{
lock_sys.assert_locked();
/* If transaction is waiting we add the wait lock and all locks
from another transactions that are blocking the wait lock. */
if (const lock_t *wait_lock = trx->lock.wait_lock) {
const lock_t* curr_lock;
i_s_locks_row_t* blocking_lock_row;
lock_queue_iterator_t iter;
uint16_t heap_no = wait_lock_get_heap_no(wait_lock);
/* add the requested lock */
*requested_lock_row = cache->add(*wait_lock, heap_no);
/* memory could not be allocated */
if (*requested_lock_row == NULL) {
return(FALSE);
}
/* then iterate over the locks before the wait lock and
add the ones that are blocking it */
lock_queue_iterator_reset(&iter, wait_lock, ULINT_UNDEFINED);
for (curr_lock = lock_queue_iterator_get_prev(&iter);
curr_lock != NULL;
curr_lock = lock_queue_iterator_get_prev(&iter)) {
if (lock_has_to_wait(wait_lock, curr_lock)) {
/* add the lock that is
blocking wait_lock */
blocking_lock_row = cache->add(*curr_lock,
heap_no);
/* memory could not be allocated */
if (blocking_lock_row == NULL) {
return(FALSE);
}
/* add the relation between both locks
to innodb_lock_waits */
if (!add_lock_wait_to_cache(
cache, *requested_lock_row,
blocking_lock_row)) {
/* memory could not be allocated */
return(FALSE);
}
}
}
} else {
*requested_lock_row = NULL;
}
return(TRUE);
}
/** The minimum time that a cache must not be updated after it has been
read for the last time; measured in nanoseconds. We use this technique
to ensure that SELECTs which join several INFORMATION SCHEMA tables read
the same version of the cache. */
#define CACHE_MIN_IDLE_TIME_NS 100000000 /* 0.1 sec */
/*******************************************************************//**
Checks if the cache can safely be updated.
@return whether the cache can be updated */
static bool can_cache_be_updated(trx_i_s_cache_t* cache)
{
/* cache->last_read is only updated when a shared rw lock on the
whole cache is being held (see trx_i_s_cache_end_read()) and
we are currently holding an exclusive rw lock on the cache.
So it is not possible for last_read to be updated while we are
reading it. */
return my_interval_timer() - cache->last_read > CACHE_MIN_IDLE_TIME_NS;
}
/*******************************************************************//**
Declare a cache empty, preparing it to be filled up. Not all resources
are freed because they can be reused. */
static
void
trx_i_s_cache_clear(
/*================*/
trx_i_s_cache_t* cache) /*!< out: cache to clear */
{
cache->innodb_trx.rows_used = 0;
cache->innodb_locks.rows_used = 0;
cache->innodb_lock_waits.rows_used = 0;
cache->locks_hash.clear();
ha_storage_empty(&cache->storage);
}
/**
Add transactions to innodb_trx's cache.
We also add all locks that are relevant to each transaction into
innodb_locks' and innodb_lock_waits' caches.
*/
static void fetch_data_into_cache_low(trx_i_s_cache_t *cache, const trx_t *trx)
{
i_s_locks_row_t *requested_lock_row;
#ifdef UNIV_DEBUG
{
const auto state= trx->state;
if (trx->is_autocommit_non_locking())
{
ut_ad(trx->read_only);
ut_ad(!trx->is_recovered);
ut_ad(trx->mysql_thd);
ut_ad(state == TRX_STATE_NOT_STARTED || state == TRX_STATE_ACTIVE);
}
else
ut_ad(state == TRX_STATE_ACTIVE ||
state == TRX_STATE_PREPARED ||
state == TRX_STATE_PREPARED_RECOVERED ||
state == TRX_STATE_COMMITTED_IN_MEMORY);
}
#endif /* UNIV_DEBUG */
if (add_trx_relevant_locks_to_cache(cache, trx, &requested_lock_row))
{
if (i_s_trx_row_t *trx_row= reinterpret_cast<i_s_trx_row_t*>(
table_cache_create_empty_row(&cache->innodb_trx, cache)))
{
if (fill_trx_row(trx_row, trx, requested_lock_row, cache))
return;
--cache->innodb_trx.rows_used;
}
}
/* memory could not be allocated */
cache->is_truncated= true;
}
/**
Fetches the data needed to fill the 3 INFORMATION SCHEMA tables into the
table cache buffer. Cache must be locked for write.
*/
static void fetch_data_into_cache(trx_i_s_cache_t *cache)
{
LockMutexGuard g{SRW_LOCK_CALL};
trx_i_s_cache_clear(cache);
/* Capture the state of transactions */
trx_sys.trx_list.for_each([cache](trx_t &trx) {
if (!cache->is_truncated && trx.state != TRX_STATE_NOT_STARTED &&
&trx != (purge_sys.query ? purge_sys.query->trx : nullptr))
{
trx.mutex_lock();
if (trx.is_started())
fetch_data_into_cache_low(cache, &trx);
trx.mutex_unlock();
}
});
cache->is_truncated= false;
}
/*******************************************************************//**
Update the transactions cache if it has not been read for some time.
Called from handler/i_s.cc.
@return 0 - fetched, 1 - not */
int
trx_i_s_possibly_fetch_data_into_cache(
/*===================================*/
trx_i_s_cache_t* cache) /*!< in/out: cache */
{
if (!can_cache_be_updated(cache)) {
return(1);
}
/* We need to read trx_sys and record/table lock queues */
fetch_data_into_cache(cache);
/* update cache last read time */
cache->last_read = my_interval_timer();
return(0);
}
/*******************************************************************//**
Returns TRUE if the data in the cache is truncated due to the memory
limit posed by TRX_I_S_MEM_LIMIT.
@return TRUE if truncated */
bool
trx_i_s_cache_is_truncated(
/*=======================*/
trx_i_s_cache_t* cache) /*!< in: cache */
{
return(cache->is_truncated);
}
/*******************************************************************//**
Initialize INFORMATION SCHEMA trx related cache. */
void
trx_i_s_cache_init(
/*===============*/
trx_i_s_cache_t* cache) /*!< out: cache to init */
{
/* The latching is done in the following order:
acquire trx_i_s_cache_t::rw_lock, rwlock
acquire exclusive lock_sys.latch
release exclusive lock_sys.latch
release trx_i_s_cache_t::rw_lock
acquire trx_i_s_cache_t::rw_lock, rdlock
release trx_i_s_cache_t::rw_lock */
cache->rw_lock.SRW_LOCK_INIT(trx_i_s_cache_lock_key);
cache->last_read = 0;
table_cache_init(&cache->innodb_trx, sizeof(i_s_trx_row_t));
table_cache_init(&cache->innodb_locks, sizeof(i_s_locks_row_t));
table_cache_init(&cache->innodb_lock_waits,
sizeof(i_s_lock_waits_row_t));
cache->locks_hash.create(LOCKS_HASH_CELLS_NUM);
cache->storage = ha_storage_create(CACHE_STORAGE_INITIAL_SIZE,
CACHE_STORAGE_HASH_CELLS);
cache->mem_allocd = 0;
cache->is_truncated = false;
}
/*******************************************************************//**
Free the INFORMATION SCHEMA trx related cache. */
void
trx_i_s_cache_free(
/*===============*/
trx_i_s_cache_t* cache) /*!< in, own: cache to free */
{
cache->rw_lock.destroy();
cache->locks_hash.free();
ha_storage_free(cache->storage);
table_cache_free(&cache->innodb_trx);
table_cache_free(&cache->innodb_locks);
table_cache_free(&cache->innodb_lock_waits);
}
/*******************************************************************//**
Issue a shared/read lock on the tables cache. */
void
trx_i_s_cache_start_read(
/*=====================*/
trx_i_s_cache_t* cache) /*!< in: cache */
{
cache->rw_lock.rd_lock(SRW_LOCK_CALL);
}
/*******************************************************************//**
Release a shared/read lock on the tables cache. */
void
trx_i_s_cache_end_read(
/*===================*/
trx_i_s_cache_t* cache) /*!< in: cache */
{
cache->last_read = my_interval_timer();
cache->rw_lock.rd_unlock();
}
/*******************************************************************//**
Issue an exclusive/write lock on the tables cache. */
void
trx_i_s_cache_start_write(
/*======================*/
trx_i_s_cache_t* cache) /*!< in: cache */
{
cache->rw_lock.wr_lock(SRW_LOCK_CALL);
}
/*******************************************************************//**
Release an exclusive/write lock on the tables cache. */
void
trx_i_s_cache_end_write(
/*====================*/
trx_i_s_cache_t* cache) /*!< in: cache */
{
cache->rw_lock.wr_unlock();
}
/*******************************************************************//**
Selects a INFORMATION SCHEMA table cache from the whole cache.
@return table cache */
static
i_s_table_cache_t*
cache_select_table(
/*===============*/
trx_i_s_cache_t* cache, /*!< in: whole cache */
enum i_s_table table) /*!< in: which table */
{
switch (table) {
case I_S_INNODB_TRX:
return &cache->innodb_trx;
case I_S_INNODB_LOCKS:
return &cache->innodb_locks;
case I_S_INNODB_LOCK_WAITS:
return &cache->innodb_lock_waits;
}
ut_error;
return NULL;
}
/*******************************************************************//**
Retrieves the number of used rows in the cache for a given
INFORMATION SCHEMA table.
@return number of rows */
ulint
trx_i_s_cache_get_rows_used(
/*========================*/
trx_i_s_cache_t* cache, /*!< in: cache */
enum i_s_table table) /*!< in: which table */
{
i_s_table_cache_t* table_cache;
table_cache = cache_select_table(cache, table);
return(table_cache->rows_used);
}
/*******************************************************************//**
Retrieves the nth row (zero-based) in the cache for a given
INFORMATION SCHEMA table.
@return row */
void*
trx_i_s_cache_get_nth_row(
/*======================*/
trx_i_s_cache_t* cache, /*!< in: cache */
enum i_s_table table, /*!< in: which table */
ulint n) /*!< in: row number */
{
i_s_table_cache_t* table_cache;
ulint i;
void* row;
table_cache = cache_select_table(cache, table);
ut_a(n < table_cache->rows_used);
row = NULL;
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
if (table_cache->chunks[i].offset
+ table_cache->chunks[i].rows_allocd > n) {
row = (char*) table_cache->chunks[i].base
+ (n - table_cache->chunks[i].offset)
* table_cache->row_size;
break;
}
}
ut_a(row != NULL);
return(row);
}
/*******************************************************************//**
Crafts a lock id string from a i_s_locks_row_t object. Returns its
second argument. This function aborts if there is not enough space in
lock_id. Be sure to provide at least TRX_I_S_LOCK_ID_MAX_LEN + 1 if you
want to be 100% sure that it will not abort.
@return resulting lock id */
char*
trx_i_s_create_lock_id(
/*===================*/
const i_s_locks_row_t* row, /*!< in: innodb_locks row */
char* lock_id,/*!< out: resulting lock_id */
ulint lock_id_size)/*!< in: size of the lock id
buffer */
{
int res_len;
/* please adjust TRX_I_S_LOCK_ID_MAX_LEN if you change this */
if (row->lock_index) {
/* record lock */
res_len = snprintf(lock_id, lock_id_size,
TRX_ID_FMT
":%u:%u:%u",
row->lock_trx_id, row->lock_page.space(),
row->lock_page.page_no(), row->lock_rec);
} else {
/* table lock */
res_len = snprintf(lock_id, lock_id_size,
TRX_ID_FMT":" UINT64PF,
row->lock_trx_id,
row->lock_table_id);
}
/* the typecast is safe because snprintf(3) never returns
negative result */
ut_a(res_len >= 0);
ut_a((ulint) res_len < lock_id_size);
return(lock_id);
}