mariadb/storage/innobase/mem/mem0mem.cc
Marko Mäkelä aaef2e1d8c MDEV-27058: Reduce the size of buf_block_t and buf_page_t
buf_page_t::frame: Moved from buf_block_t::frame.
All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED
pages will have frame=nullptr, while all 'fat' buf_block_t
will have a non-null frame pointing to aligned innodb_page_size bytes.
This eliminates the need for separate states for
BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE.

buf_page_t:🔒 Moved from buf_block_t::lock. That is, all block
descriptors will have a page latch. The IO_PIN state that was used
for discarding or creating the uncompressed page frame of a
ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix
and page X-latch.

page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status
of buf_page_t with a single std::atomic<uint32_t>. All modifications
will use store(), fetch_add(), fetch_sub(). This space was previously
wasted to alignment on 64-bit systems. We will use the following encoding
that combines a state (partly read-fix or write-fix) and a buffer-fix
count:

buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED)
buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY)
buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH)
buf_page_t::FREED=3 + fix: pages marked as freed in the file
buf_page_t::UNFIXED=1U<<29 + fix: normal pages
buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge
buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite)
buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched)
buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched)
buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf
buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite)

buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to
UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch.

buf_page_t::read_complete(): Renamed from buf_page_read_complete().
Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch.

buf_page_t::can_relocate(): If the page latch is being held or waited for,
or the block is buffer-fixed or io-fixed, return false. (The condition
on the page latch is new.)

Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we
will acquire the page latch before fix(), and unfix() before unlocking.

buf_page_t::flush(): Replaces buf_flush_page(). Optimize the
handling of FREED pages.

buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held
by the caller.

buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates.

buf_page_get_low(): Ignore guesses that are read-fixed because they
may not yet be registered in buf_pool.page_hash and buf_pool.LRU.

buf_page_optimistic_get(): Acquire latch before buffer-fixing.

buf_page_make_young(): Leave read-fixed blocks alone, because they
might not be registered in buf_pool.LRU yet.

recv_sys_t::recover_deferred(), recv_sys_t::recover_low():
Possibly fix MDEV-26326, by holding a page X-latch instead of
only buffer-fixing the page.
2021-11-18 17:47:19 +02:00

436 lines
10 KiB
C++

/*****************************************************************************
Copyright (c) 1994, 2014, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2017, 2021, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/********************************************************************//**
@file mem/mem0mem.cc
The memory management
Created 6/9/1994 Heikki Tuuri
*************************************************************************/
#include "mem0mem.h"
#include "buf0buf.h"
#include "srv0srv.h"
#include <stdarg.h>
/**********************************************************************//**
Concatenate two strings and return the result, using a memory heap.
@return own: the result */
char*
mem_heap_strcat(
/*============*/
mem_heap_t* heap, /*!< in: memory heap where string is allocated */
const char* s1, /*!< in: string 1 */
const char* s2) /*!< in: string 2 */
{
char* s;
ulint s1_len = strlen(s1);
ulint s2_len = strlen(s2);
s = static_cast<char*>(mem_heap_alloc(heap, s1_len + s2_len + 1));
memcpy(s, s1, s1_len);
memcpy(s + s1_len, s2, s2_len);
s[s1_len + s2_len] = '\0';
return(s);
}
/****************************************************************//**
Helper function for mem_heap_printf.
@return length of formatted string, including terminating NUL */
static
ulint
mem_heap_printf_low(
/*================*/
char* buf, /*!< in/out: buffer to store formatted string
in, or NULL to just calculate length */
const char* format, /*!< in: format string */
va_list ap) /*!< in: arguments */
{
ulint len = 0;
while (*format) {
/* Does this format specifier have the 'l' length modifier. */
ibool is_long = FALSE;
/* Length of one parameter. */
size_t plen;
if (*format++ != '%') {
/* Non-format character. */
len++;
if (buf) {
*buf++ = *(format - 1);
}
continue;
}
if (*format == 'l') {
is_long = TRUE;
format++;
}
switch (*format++) {
case 's':
/* string */
{
char* s = va_arg(ap, char*);
/* "%ls" is a non-sensical format specifier. */
ut_a(!is_long);
plen = strlen(s);
len += plen;
if (buf) {
memcpy(buf, s, plen);
buf += plen;
}
}
break;
case 'u':
/* unsigned int */
{
char tmp[32];
unsigned long val;
/* We only support 'long' values for now. */
ut_a(is_long);
val = va_arg(ap, unsigned long);
plen = size_t(sprintf(tmp, "%lu", val));
len += plen;
if (buf) {
memcpy(buf, tmp, plen);
buf += plen;
}
}
break;
case '%':
/* "%l%" is a non-sensical format specifier. */
ut_a(!is_long);
len++;
if (buf) {
*buf++ = '%';
}
break;
default:
ut_error;
}
}
/* For the NUL character. */
len++;
if (buf) {
*buf = '\0';
}
return(len);
}
/****************************************************************//**
A simple sprintf replacement that dynamically allocates the space for the
formatted string from the given heap. This supports a very limited set of
the printf syntax: types 's' and 'u' and length modifier 'l' (which is
required for the 'u' type).
@return heap-allocated formatted string */
char*
mem_heap_printf(
/*============*/
mem_heap_t* heap, /*!< in: memory heap */
const char* format, /*!< in: format string */
...)
{
va_list ap;
char* str;
ulint len;
/* Calculate length of string */
len = 0;
va_start(ap, format);
len = mem_heap_printf_low(NULL, format, ap);
va_end(ap);
/* Now create it for real. */
str = static_cast<char*>(mem_heap_alloc(heap, len));
va_start(ap, format);
mem_heap_printf_low(str, format, ap);
va_end(ap);
return(str);
}
#ifdef UNIV_DEBUG
/** Validates the contents of a memory heap.
Checks a memory heap for consistency, prints the contents if any error
is detected. A fatal error is logged if an error is detected.
@param[in] heap Memory heap to validate. */
void
mem_heap_validate(
const mem_heap_t* heap)
{
ulint size = 0;
for (const mem_block_t* block = heap;
block != NULL;
block = UT_LIST_GET_NEXT(list, block)) {
switch (block->type) {
case MEM_HEAP_DYNAMIC:
break;
case MEM_HEAP_BUFFER:
case MEM_HEAP_BUFFER | MEM_HEAP_BTR_SEARCH:
ut_ad(block->len <= srv_page_size);
break;
default:
ut_error;
}
size += block->len;
}
ut_ad(size == heap->total_size);
}
/** Copy the tail of a string.
@param[in,out] dst destination buffer
@param[in] src string whose tail to copy
@param[in] size size of dst buffer, in bytes, including NUL terminator
@return strlen(src) */
static void ut_strlcpy_rev(char* dst, const char* src, ulint size)
{
size_t src_size = strlen(src), n = std::min(src_size, size - 1);
memcpy(dst, src + src_size - n, n + 1);
}
#endif /* UNIV_DEBUG */
/***************************************************************//**
Creates a memory heap block where data can be allocated.
@return own: memory heap block, NULL if did not succeed (only possible
for MEM_HEAP_BTR_SEARCH type heaps) */
mem_block_t*
mem_heap_create_block_func(
/*=======================*/
mem_heap_t* heap, /*!< in: memory heap or NULL if first block
should be created */
ulint n, /*!< in: number of bytes needed for user data */
#ifdef UNIV_DEBUG
const char* file_name,/*!< in: file name where created */
unsigned line, /*!< in: line where created */
#endif /* UNIV_DEBUG */
ulint type) /*!< in: type of heap: MEM_HEAP_DYNAMIC or
MEM_HEAP_BUFFER */
{
buf_block_t* buf_block = NULL;
mem_block_t* block;
ulint len;
ut_ad((type == MEM_HEAP_DYNAMIC) || (type == MEM_HEAP_BUFFER)
|| (type == MEM_HEAP_BUFFER + MEM_HEAP_BTR_SEARCH));
if (heap != NULL) {
ut_d(mem_heap_validate(heap));
}
/* In dynamic allocation, calculate the size: block header + data. */
len = MEM_BLOCK_HEADER_SIZE + MEM_SPACE_NEEDED(n);
if (type == MEM_HEAP_DYNAMIC || len < srv_page_size / 2) {
ut_ad(type == MEM_HEAP_DYNAMIC || n <= MEM_MAX_ALLOC_IN_BUF);
block = static_cast<mem_block_t*>(ut_malloc_nokey(len));
} else {
len = srv_page_size;
if ((type & MEM_HEAP_BTR_SEARCH) && heap) {
/* We cannot allocate the block from the
buffer pool, but must get the free block from
the heap header free block field */
buf_block = static_cast<buf_block_t*>(heap->free_block);
heap->free_block = NULL;
if (UNIV_UNLIKELY(!buf_block)) {
return(NULL);
}
} else {
buf_block = buf_block_alloc();
}
block = (mem_block_t*) buf_block->page.frame;
}
if (block == NULL) {
ib::fatal() << "Unable to allocate memory of size "
<< len << ".";
}
block->buf_block = buf_block;
block->free_block = NULL;
ut_d(ut_strlcpy_rev(block->file_name, file_name,
sizeof(block->file_name)));
ut_d(block->line = line);
mem_block_set_len(block, len);
mem_block_set_type(block, type);
mem_block_set_free(block, MEM_BLOCK_HEADER_SIZE);
mem_block_set_start(block, MEM_BLOCK_HEADER_SIZE);
if (UNIV_UNLIKELY(heap == NULL)) {
/* This is the first block of the heap. The field
total_size should be initialized here */
block->total_size = len;
} else {
/* Not the first allocation for the heap. This block's
total_length field should be set to undefined. */
ut_d(block->total_size = ULINT_UNDEFINED);
MEM_UNDEFINED(&block->total_size, sizeof block->total_size);
heap->total_size += len;
}
/* Poison all available memory. Individual chunks will be unpoisoned on
every mem_heap_alloc() call. */
compile_time_assert(MEM_BLOCK_HEADER_SIZE >= sizeof *block);
MEM_NOACCESS(block + 1, len - sizeof *block);
ut_ad((ulint)MEM_BLOCK_HEADER_SIZE < len);
return(block);
}
/***************************************************************//**
Adds a new block to a memory heap.
@return created block, NULL if did not succeed (only possible for
MEM_HEAP_BTR_SEARCH type heaps) */
mem_block_t*
mem_heap_add_block(
/*===============*/
mem_heap_t* heap, /*!< in: memory heap */
ulint n) /*!< in: number of bytes user needs */
{
mem_block_t* block;
mem_block_t* new_block;
ulint new_size;
block = UT_LIST_GET_LAST(heap->base);
/* We have to allocate a new block. The size is always at least
doubled until the standard size is reached. After that the size
stays the same, except in cases where the caller needs more space. */
new_size = 2 * mem_block_get_len(block);
if (heap->type != MEM_HEAP_DYNAMIC) {
/* From the buffer pool we allocate buffer frames */
ut_a(n <= MEM_MAX_ALLOC_IN_BUF);
if (new_size > MEM_MAX_ALLOC_IN_BUF) {
new_size = MEM_MAX_ALLOC_IN_BUF;
}
} else if (new_size > MEM_BLOCK_STANDARD_SIZE) {
new_size = MEM_BLOCK_STANDARD_SIZE;
}
if (new_size < n) {
new_size = n;
}
new_block = mem_heap_create_block(heap, new_size, heap->type,
heap->file_name, heap->line);
if (new_block == NULL) {
return(NULL);
}
/* Add the new block as the last block */
UT_LIST_INSERT_AFTER(heap->base, block, new_block);
return(new_block);
}
/******************************************************************//**
Frees a block from a memory heap. */
void
mem_heap_block_free(
/*================*/
mem_heap_t* heap, /*!< in: heap */
mem_block_t* block) /*!< in: block to free */
{
ulint type;
ulint len;
buf_block_t* buf_block;
buf_block = static_cast<buf_block_t*>(block->buf_block);
UT_LIST_REMOVE(heap->base, block);
ut_ad(heap->total_size >= block->len);
heap->total_size -= block->len;
type = heap->type;
len = block->len;
if (type == MEM_HEAP_DYNAMIC || len < srv_page_size / 2) {
ut_ad(!buf_block);
ut_free(block);
} else {
ut_ad(type & MEM_HEAP_BUFFER);
buf_block_free(buf_block);
}
}
/******************************************************************//**
Frees the free_block field from a memory heap. */
void
mem_heap_free_block_free(
/*=====================*/
mem_heap_t* heap) /*!< in: heap */
{
if (UNIV_LIKELY_NULL(heap->free_block)) {
buf_block_free(static_cast<buf_block_t*>(heap->free_block));
heap->free_block = NULL;
}
}