mirror of
				https://github.com/MariaDB/server.git
				synced 2025-10-31 19:06:14 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			120 lines
		
	
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|   Copyright (c) 2025, MariaDB plc
 | |
| 
 | |
|   This program is free software; you can redistribute it and/or modify
 | |
|   it under the terms of the GNU General Public License as published by
 | |
|   the Free Software Foundation; version 2 of the License.
 | |
| 
 | |
|   This program is distributed in the hope that it will be useful,
 | |
|   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|   GNU General Public License for more details.
 | |
| 
 | |
|   You should have received a copy of the GNU General Public License
 | |
|   along with this program; if not, write to the Free Software
 | |
|   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1335  USA */
 | |
| 
 | |
| #include <my_alloca.h>
 | |
| #include "mysql_sha2.h"
 | |
| 
 | |
| /* based on https://www.akkadia.org/drepper/SHA-crypt.txt */
 | |
| 
 | |
| /* SHA256-based Unix crypt implementation.
 | |
|    Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.  */
 | |
| 
 | |
| void sha256_crypt_r(const unsigned char *key, size_t key_len,
 | |
|                     const unsigned char *salt, size_t salt_len,
 | |
|                     unsigned char *buffer, size_t rounds)
 | |
| {
 | |
|   unsigned char tmp[SHA256_DIGEST_LENGTH];
 | |
|   unsigned char alt[SHA256_DIGEST_LENGTH];
 | |
|   size_t cnt;
 | |
|   static const char b64t[64] =
 | |
|   "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
 | |
|   void *ctx = alloca(my_sha256_context_size());
 | |
|   unsigned char *p_bytes = alloca(key_len);
 | |
|   unsigned char *s_bytes = alloca(salt_len);
 | |
| 
 | |
|   my_sha256_multi(alt, key, key_len, salt, salt_len, key, key_len, NULL);
 | |
| 
 | |
|   my_sha256_init(ctx);
 | |
|   my_sha256_input(ctx, key, key_len);
 | |
|   my_sha256_input(ctx, salt, salt_len);
 | |
|   /* Add for every byte in the key one byte of the alternate sum.  */
 | |
|   for (cnt = key_len; cnt > sizeof(alt); cnt -= sizeof(alt))
 | |
|     my_sha256_input(ctx, alt, sizeof(alt));
 | |
|   my_sha256_input(ctx, alt, cnt);
 | |
|   /* Take the binary representation of the length of the key and for every
 | |
|      1 add the alternate sum, for every 0 the key.  */
 | |
|   for (cnt = key_len; cnt > 0; cnt >>= 1)
 | |
|     if ((cnt & 1) != 0)
 | |
|       my_sha256_input(ctx, alt, sizeof(alt));
 | |
|     else
 | |
|       my_sha256_input(ctx, key, key_len);
 | |
|   my_sha256_result(ctx, alt);
 | |
| 
 | |
|   /* Start computing S byte sequence.  */
 | |
|   my_sha256_init(ctx);
 | |
|   for (cnt = 0; cnt < 16u + alt[0]; ++cnt)
 | |
|     my_sha256_input(ctx, salt, salt_len);
 | |
|   my_sha256_result(ctx, tmp);
 | |
| 
 | |
|   /* Create byte sequence S.  */
 | |
|   for (cnt = salt_len; cnt >= sizeof(tmp); cnt -= sizeof(tmp))
 | |
|     memcpy(s_bytes + salt_len - cnt, tmp, sizeof(tmp));
 | |
|   memcpy(s_bytes + salt_len - cnt, tmp, cnt);
 | |
| 
 | |
|   /* Start computing P byte sequence.  */
 | |
|   my_sha256_init(ctx);
 | |
|   for (cnt = 0; cnt < key_len; ++cnt)
 | |
|     my_sha256_input(ctx, key, key_len);
 | |
|   my_sha256_result(ctx, tmp);
 | |
| 
 | |
|   /* Create byte sequence P.  */
 | |
|   for (cnt = key_len; cnt >= sizeof(tmp); cnt -= sizeof(tmp))
 | |
|     memcpy(p_bytes + key_len - cnt, tmp, sizeof(tmp));
 | |
|   memcpy(p_bytes + key_len - cnt, tmp, cnt);
 | |
| 
 | |
|   /* Repeatedly run the collected hash value through SHA256 to burn
 | |
|      CPU cycles.  */
 | |
|   for (cnt = 0; cnt < rounds; ++cnt)
 | |
|   {
 | |
|     my_sha256_init(ctx);
 | |
|     if ((cnt & 1) != 0)
 | |
|       my_sha256_input(ctx, p_bytes, key_len);
 | |
|     else
 | |
|       my_sha256_input(ctx, cnt ? tmp : alt, sizeof(tmp));
 | |
|     if (cnt % 3 != 0)
 | |
|       my_sha256_input(ctx, s_bytes, salt_len);
 | |
|     if (cnt % 7 != 0)
 | |
|       my_sha256_input(ctx, p_bytes, key_len);
 | |
|     if ((cnt & 1) != 0)
 | |
|       my_sha256_input(ctx, tmp, sizeof(tmp));
 | |
|     else
 | |
|       my_sha256_input(ctx, p_bytes, key_len);
 | |
|     my_sha256_result(ctx, tmp);
 | |
|   }
 | |
| 
 | |
| #define b64_from_24bit(B2, B1, B0, N)                     \
 | |
|   do {                                                    \
 | |
|     unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0);   \
 | |
|     int n = (N);                                          \
 | |
|     while (n-- > 0)                                       \
 | |
|     {                                                     \
 | |
|       *buffer++ = b64t[w & 0x3f];                         \
 | |
|       w >>= 6;                                            \
 | |
|     }                                                     \
 | |
|   } while (0)
 | |
| 
 | |
|   b64_from_24bit (tmp[0], tmp[10], tmp[20], 4);
 | |
|   b64_from_24bit (tmp[21], tmp[1], tmp[11], 4);
 | |
|   b64_from_24bit (tmp[12], tmp[22], tmp[2], 4);
 | |
|   b64_from_24bit (tmp[3], tmp[13], tmp[23], 4);
 | |
|   b64_from_24bit (tmp[24], tmp[4], tmp[14], 4);
 | |
|   b64_from_24bit (tmp[15], tmp[25], tmp[5], 4);
 | |
|   b64_from_24bit (tmp[6], tmp[16], tmp[26], 4);
 | |
|   b64_from_24bit (tmp[27], tmp[7], tmp[17], 4);
 | |
|   b64_from_24bit (tmp[18], tmp[28], tmp[8], 4);
 | |
|   b64_from_24bit (tmp[9], tmp[19], tmp[29], 4);
 | |
|   b64_from_24bit (0, tmp[31], tmp[30], 3);      /* == 43 bytes in total */
 | |
| }
 | 
