/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: #ident "$Id$" /* COPYING CONDITIONS NOTICE: This program is free software; you can redistribute it and/or modify it under the terms of version 2 of the GNU General Public License as published by the Free Software Foundation, and provided that the following conditions are met: * Redistributions of source code must retain this COPYING CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the PATENT MARKING NOTICE (below), and the PATENT RIGHTS GRANT (below). * Redistributions in binary form must reproduce this COPYING CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the PATENT MARKING NOTICE (below), and the PATENT RIGHTS GRANT (below) in the documentation and/or other materials provided with the distribution. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. COPYRIGHT NOTICE: TokuDB, Tokutek Fractal Tree Indexing Library. Copyright (C) 2007-2013 Tokutek, Inc. DISCLAIMER: This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. UNIVERSITY PATENT NOTICE: The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it. PATENT MARKING NOTICE: This software is covered by US Patent No. 8,185,551. PATENT RIGHTS GRANT: "THIS IMPLEMENTATION" means the copyrightable works distributed by Tokutek as part of the Fractal Tree project. "PATENT CLAIMS" means the claims of patents that are owned or licensable by Tokutek, both currently or in the future; and that in the absence of this license would be infringed by THIS IMPLEMENTATION or by using or running THIS IMPLEMENTATION. "PATENT CHALLENGE" shall mean a challenge to the validity, patentability, enforceability and/or non-infringement of any of the PATENT CLAIMS or otherwise opposing any of the PATENT CLAIMS. Tokutek hereby grants to you, for the term and geographical scope of the PATENT CLAIMS, a non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, transfer, and otherwise run, modify, and propagate the contents of THIS IMPLEMENTATION, where such license applies only to the PATENT CLAIMS. This grant does not include claims that would be infringed only as a consequence of further modifications of THIS IMPLEMENTATION. If you or your agent or licensee institute or order or agree to the institution of patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that THIS IMPLEMENTATION constitutes direct or contributory patent infringement, or inducement of patent infringement, then any rights granted to you under this License shall terminate as of the date such litigation is filed. If you or your agent or exclusive licensee institute or order or agree to the institution of a PATENT CHALLENGE, then Tokutek may terminate any rights granted to you under this License. */ #ident "Copyright (c) 2007-2013 Tokutek Inc. All rights reserved." #ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it." // Update operation codes. These codes get stuffed into update messages, so they can not change. // The operations are currently stored in a single byte in the update message, so only 256 operations // are supported. When we need more, we can use the last (255) code to indicate that the operation code // is expanded beyond 1 byte. enum { UPDATE_OP_COL_ADD_OR_DROP = 0, UPDATE_OP_EXPAND_VARIABLE_OFFSETS = 1, UPDATE_OP_EXPAND_INT = 2, UPDATE_OP_EXPAND_UINT = 3, UPDATE_OP_EXPAND_CHAR = 4, UPDATE_OP_EXPAND_BINARY = 5, UPDATE_OP_UPDATE_1 = 10, UPDATE_OP_UPSERT_1 = 11, UPDATE_OP_UPDATE_2 = 12, UPDATE_OP_UPSERT_2 = 13, }; // Field types used in the update messages enum { UPDATE_TYPE_UNKNOWN = 0, UPDATE_TYPE_INT = 1, UPDATE_TYPE_UINT = 2, UPDATE_TYPE_CHAR = 3, UPDATE_TYPE_BINARY = 4, UPDATE_TYPE_VARCHAR = 5, UPDATE_TYPE_VARBINARY = 6, UPDATE_TYPE_TEXT = 7, UPDATE_TYPE_BLOB = 8, }; #define UP_COL_ADD_OR_DROP UPDATE_OP_COL_ADD_OR_DROP // add or drop column sub-operations #define COL_DROP 0xaa #define COL_ADD 0xbb // add or drop column types #define COL_FIXED 0xcc #define COL_VAR 0xdd #define COL_BLOB 0xee #define STATIC_ROW_MUTATOR_SIZE 1+8+2+8+8+8 // how much space do I need for the mutators? // static stuff first: // operation 1 == UP_COL_ADD_OR_DROP // 8 - old null, new null // 2 - old num_offset, new num_offset // 8 - old fixed_field size, new fixed_field_size // 8 - old and new length of offsets // 8 - old and new starting null bit position // TOTAL: 27 // dynamic stuff: // 4 - number of columns // for each column: // 1 - add or drop // 1 - is nullable // 4 - if nullable, position // 1 - if add, whether default is null or not // 1 - if fixed, var, or not // for fixed, entire default // for var, 4 bytes length, then entire default // for blob, nothing // So, an upperbound is 4 + num_fields(12) + all default stuff // static blob stuff: // 4 - num blobs // 1 byte for each num blobs in old table // So, an upperbound is 4 + kc_info->num_blobs // dynamic blob stuff: // for each blob added: // 1 - state if we are adding or dropping // 4 - blob index // if add, 1 len bytes // at most, 4 0's // So, upperbound is num_blobs(1+4+1+4) = num_columns*10 // The expand varchar offsets message is used to expand the size of an offset from 1 to 2 bytes. // operation 1 == UPDATE_OP_EXPAND_VARIABLE_OFFSETS // n_offsets 4 number of offsets // offset_start 4 starting offset of the variable length field offsets // These expand messages are used to expand the size of a fixed length field. // The field type is encoded in the operation code. // operation 1 == UPDATE_OP_EXPAND_INT/UINT/CHAR/BINARY // offset 4 offset of the field // old length 4 the old length of the field's value // new length 4 the new length of the field's value // operation 1 == UPDATE_OP_EXPAND_CHAR/BINARY // offset 4 offset of the field // old length 4 the old length of the field's value // new length 4 the new length of the field's value // pad char 1 // Update and Upsert version 1 // // Field descriptor: // Operations: // update operation 4 == { '=', '+', '-' } // x = k // x = x + k // x = x - k // field type 4 see field types above // unused 4 unused // field null num 4 bit 31 is 1 if the field is nullible and the remaining bits contain the null bit number // field offset 4 for fixed fields, this is the offset from begining of the row of the field // value: // value length 4 == N, length of the value // value N value to add or subtract // // Update_1 message: // Operation 1 == UPDATE_OP_UPDATE_1 // fixed field offset 4 offset of the beginning of the fixed fields // var field offset 4 offset of the variable length offsets // var_offset_bytes 1 length of offsets (Note: not big enough) // bytes_per_offset 4 number of bytes per offset // Number of update ops 4 == N // Update ops [N] // // Upsert_1 message: // Operation 1 == UPDATE_OP_UPSERT_1 // Insert row: // length 4 == N // data N // fixed field offset 4 offset of the beginning of the fixed fields // var field offset 4 offset of the variable length offsets // var_offset_bytes 1 length of offsets (Note: not big enough) // bytes_per_offset 4 number of bytes per offset // Number of update ops 4 == N // Update ops [N] // Update version 2 // Operation uint32 == UPDATE_OP_UPDATE_2 // Number of update ops uint32 == N // Update ops uint8 [ N ] // // Upsert version 2 // Operation uint32 == UPDATE_OP_UPSERT_2 // Insert length uint32 == N // Insert data uint8 [ N ] // Number of update ops uint32 == N // Update ops uint8 [ N ] // // Variable fields info // Update operation uint32 == 'v' // Start offset uint32 // Num varchars uint32 // Bytes per offset uint32 // // Blobs info // Update operation uint32 == 'b' // Num blobs uint32 == N // Blob lengths uint8 [ N ] // // Update operation on fixed length fields // Update operation uint32 == '=', '+', '-' // Field type uint32 // Null num uint32 0 => not nullable, otherwise encoded as field_null_num + 1 // Offset uint32 // Value length uint32 == N // Value uint8 [ N ] // // Update operation on varchar fields // Update operation uint32 == '=' // Field type uint32 // Null num uint32 // Var index uint32 // Value length uint32 == N // Value uint8 [ N ] // // Update operation on blob fields // Update operation uint32 == '=' // Field type uint32 // Null num uint32 // Blob index uint32 // Value length 4 == N // Value [ N ] #include "tokudb_buffer.h" #include "tokudb_math.h" // // checks whether the bit at index pos in data is set or not // static inline bool is_overall_null_position_set(uchar* data, uint32_t pos) { uint32_t offset = pos/8; uchar remainder = pos%8; uchar null_bit = 1<data; extra_pos = (uchar *)extra->data; operation = extra_pos[0]; extra_pos++; assert(operation == UP_COL_ADD_OR_DROP); memcpy(&old_num_null_bytes, extra_pos, sizeof(uint32_t)); extra_pos += sizeof(uint32_t); memcpy(&new_num_null_bytes, extra_pos, sizeof(uint32_t)); extra_pos += sizeof(uint32_t); old_num_offset_bytes = extra_pos[0]; extra_pos++; new_num_offset_bytes = extra_pos[0]; extra_pos++; memcpy(&old_fixed_field_size, extra_pos, sizeof(uint32_t)); extra_pos += sizeof(uint32_t); memcpy(&new_fixed_field_size, extra_pos, sizeof(uint32_t)); extra_pos += sizeof(uint32_t); memcpy(&old_len_of_offsets, extra_pos, sizeof(uint32_t)); extra_pos += sizeof(uint32_t); memcpy(&new_len_of_offsets, extra_pos, sizeof(uint32_t)); extra_pos += sizeof(uint32_t); max_num_bytes = old_val->size + extra->size + new_len_of_offsets + new_fixed_field_size; new_val_data = (uchar *)my_malloc( max_num_bytes, MYF(MY_FAE) ); if (new_val_data == NULL) { goto cleanup; } old_fixed_field_ptr = (uchar *) old_val->data; old_fixed_field_ptr += old_num_null_bytes; new_fixed_field_ptr = new_val_data + new_num_null_bytes; curr_old_fixed_offset = 0; curr_new_fixed_offset = 0; old_num_var_fields = old_len_of_offsets/old_num_offset_bytes; // new_num_var_fields = new_len_of_offsets/new_num_offset_bytes; // following fields will change as we write the variable data old_var_field_offset_ptr = old_fixed_field_ptr + old_fixed_field_size; new_var_field_offset_ptr = new_fixed_field_ptr + new_fixed_field_size; old_var_field_data_ptr = old_var_field_offset_ptr + old_len_of_offsets; new_var_field_data_ptr = new_var_field_offset_ptr + new_len_of_offsets; curr_new_var_field_offset_ptr = new_var_field_offset_ptr; curr_new_var_field_data_ptr = new_var_field_data_ptr; curr_old_num_var_field = 0; curr_new_num_var_field = 0; old_null_bytes = (uchar *)old_val->data; new_null_bytes = new_val_data; memcpy(&curr_old_null_pos, extra_pos, sizeof(uint32_t)); extra_pos += sizeof(uint32_t); memcpy(&curr_new_null_pos, extra_pos, sizeof(uint32_t)); extra_pos += sizeof(uint32_t); memcpy(&num_columns, extra_pos, sizeof(num_columns)); extra_pos += sizeof(num_columns); // // now go through and apply the change into new_val_data // for (uint32_t i = 0; i < num_columns; i++) { uchar op_type = extra_pos[0]; bool is_null_default = false; extra_pos++; assert(op_type == COL_DROP || op_type == COL_ADD); bool nullable = (extra_pos[0] != 0); extra_pos++; if (nullable) { uint32_t null_bit_position; memcpy(&null_bit_position, extra_pos, sizeof(uint32_t)); extra_pos += sizeof(uint32_t); uint32_t num_bits; if (op_type == COL_DROP) { assert(curr_old_null_pos <= null_bit_position); num_bits = null_bit_position - curr_old_null_pos; } else { assert(curr_new_null_pos <= null_bit_position); num_bits = null_bit_position - curr_new_null_pos; } copy_null_bits( curr_old_null_pos, curr_new_null_pos, num_bits, old_null_bytes, new_null_bytes ); // update the positions curr_new_null_pos += num_bits; curr_old_null_pos += num_bits; if (op_type == COL_DROP) { curr_old_null_pos++; // account for dropped column } else { is_null_default = (extra_pos[0] != 0); extra_pos++; set_overall_null_position( new_null_bytes, null_bit_position, is_null_default ); curr_new_null_pos++; //account for added column } } uchar col_type = extra_pos[0]; extra_pos++; if (col_type == COL_FIXED) { uint32_t col_offset; uint32_t col_size; uint32_t num_bytes_to_copy; memcpy(&col_offset, extra_pos, sizeof(uint32_t)); extra_pos += sizeof(uint32_t); memcpy(&col_size, extra_pos, sizeof(uint32_t)); extra_pos += sizeof(uint32_t); if (op_type == COL_DROP) { num_bytes_to_copy = col_offset - curr_old_fixed_offset; } else { num_bytes_to_copy = col_offset - curr_new_fixed_offset; } memcpy( new_fixed_field_ptr + curr_new_fixed_offset, old_fixed_field_ptr + curr_old_fixed_offset, num_bytes_to_copy ); curr_old_fixed_offset += num_bytes_to_copy; curr_new_fixed_offset += num_bytes_to_copy; if (op_type == COL_DROP) { // move old_fixed_offset val to skip OVER column that is being dropped curr_old_fixed_offset += col_size; } else { if (is_null_default) { // copy zeroes memset(new_fixed_field_ptr + curr_new_fixed_offset, 0, col_size); } else { // copy data from extra_pos into new row memcpy( new_fixed_field_ptr + curr_new_fixed_offset, extra_pos, col_size ); extra_pos += col_size; } curr_new_fixed_offset += col_size; } } else if (col_type == COL_VAR) { uint32_t var_col_index; memcpy(&var_col_index, extra_pos, sizeof(uint32_t)); extra_pos += sizeof(uint32_t); if (op_type == COL_DROP) { num_var_fields_to_copy = var_col_index - curr_old_num_var_field; } else { num_var_fields_to_copy = var_col_index - curr_new_num_var_field; } copy_var_fields( curr_old_num_var_field, num_var_fields_to_copy, old_var_field_offset_ptr, old_num_offset_bytes, curr_new_var_field_data_ptr, curr_new_var_field_offset_ptr, new_var_field_data_ptr, // pointer to beginning of var fields in new row old_var_field_data_ptr, // pointer to beginning of var fields in old row new_num_offset_bytes, // number of offset bytes used in new row &num_data_bytes_written, &num_offset_bytes_written ); curr_new_var_field_data_ptr += num_data_bytes_written; curr_new_var_field_offset_ptr += num_offset_bytes_written; curr_new_num_var_field += num_var_fields_to_copy; curr_old_num_var_field += num_var_fields_to_copy; if (op_type == COL_DROP) { curr_old_num_var_field++; // skip over dropped field } else { if (is_null_default) { curr_new_var_field_data_ptr = write_var_field( curr_new_var_field_offset_ptr, curr_new_var_field_data_ptr, new_var_field_data_ptr, NULL, //copying no data 0, //copying 0 bytes new_num_offset_bytes ); curr_new_var_field_offset_ptr += new_num_offset_bytes; } else { uint32_t data_length; memcpy(&data_length, extra_pos, sizeof(data_length)); extra_pos += sizeof(data_length); curr_new_var_field_data_ptr = write_var_field( curr_new_var_field_offset_ptr, curr_new_var_field_data_ptr, new_var_field_data_ptr, extra_pos, //copying data from mutator data_length, //copying data_length bytes new_num_offset_bytes ); extra_pos += data_length; curr_new_var_field_offset_ptr += new_num_offset_bytes; } curr_new_num_var_field++; //account for added column } } else if (col_type == COL_BLOB) { // handle blob data later continue; } else { assert(false); } } // finish copying the null stuff old_null_bits_left = 8*old_num_null_bytes - curr_old_null_pos; new_null_bits_left = 8*new_num_null_bytes - curr_new_null_pos; overall_null_bits_left = old_null_bits_left; set_if_smaller(overall_null_bits_left, new_null_bits_left); copy_null_bits( curr_old_null_pos, curr_new_null_pos, overall_null_bits_left, old_null_bytes, new_null_bytes ); // finish copying fixed field stuff num_bytes_left = old_fixed_field_size - curr_old_fixed_offset; memcpy( new_fixed_field_ptr + curr_new_fixed_offset, old_fixed_field_ptr + curr_old_fixed_offset, num_bytes_left ); curr_old_fixed_offset += num_bytes_left; curr_new_fixed_offset += num_bytes_left; // sanity check assert(curr_new_fixed_offset == new_fixed_field_size); // finish copying var field stuff num_var_fields_to_copy = old_num_var_fields - curr_old_num_var_field; copy_var_fields( curr_old_num_var_field, num_var_fields_to_copy, old_var_field_offset_ptr, old_num_offset_bytes, curr_new_var_field_data_ptr, curr_new_var_field_offset_ptr, new_var_field_data_ptr, // pointer to beginning of var fields in new row old_var_field_data_ptr, // pointer to beginning of var fields in old row new_num_offset_bytes, // number of offset bytes used in new row &num_data_bytes_written, &num_offset_bytes_written ); curr_new_var_field_offset_ptr += num_offset_bytes_written; curr_new_var_field_data_ptr += num_data_bytes_written; // sanity check assert(curr_new_var_field_offset_ptr == new_var_field_data_ptr); // start handling blobs get_blob_field_info( &start_blob_offset, old_len_of_offsets, old_var_field_data_ptr, old_num_offset_bytes ); start_blob_ptr = old_var_field_data_ptr + start_blob_offset; // if nothing else in extra, then there are no blobs to add or drop, so can copy blobs straight if ((extra_pos - extra_pos_start) == extra->size) { num_blob_bytes = old_val->size - (start_blob_ptr - old_null_bytes); memcpy(curr_new_var_field_data_ptr, start_blob_ptr, num_blob_bytes); curr_new_var_field_data_ptr += num_blob_bytes; } // else, there is blob information to process else { uchar* len_bytes = NULL; uint32_t curr_old_blob = 0; uint32_t curr_new_blob = 0; uint32_t num_old_blobs = 0; uchar* curr_old_blob_ptr = start_blob_ptr; memcpy(&num_old_blobs, extra_pos, sizeof(num_old_blobs)); extra_pos += sizeof(num_old_blobs); len_bytes = extra_pos; extra_pos += num_old_blobs; // copy over blob fields one by one while ((extra_pos - extra_pos_start) < extra->size) { uchar op_type = extra_pos[0]; extra_pos++; uint32_t num_blobs_to_copy = 0; uint32_t blob_index; memcpy(&blob_index, extra_pos, sizeof(blob_index)); extra_pos += sizeof(blob_index); assert (op_type == COL_DROP || op_type == COL_ADD); if (op_type == COL_DROP) { num_blobs_to_copy = blob_index - curr_old_blob; } else { num_blobs_to_copy = blob_index - curr_new_blob; } for (uint32_t i = 0; i < num_blobs_to_copy; i++) { uint32_t num_bytes_written = copy_toku_blob( curr_new_var_field_data_ptr, curr_old_blob_ptr, len_bytes[curr_old_blob + i], false ); curr_old_blob_ptr += num_bytes_written; curr_new_var_field_data_ptr += num_bytes_written; } curr_old_blob += num_blobs_to_copy; curr_new_blob += num_blobs_to_copy; if (op_type == COL_DROP) { // skip over blob in row uint32_t num_bytes = copy_toku_blob( NULL, curr_old_blob_ptr, len_bytes[curr_old_blob], true ); curr_old_blob++; curr_old_blob_ptr += num_bytes; } else { // copy new data uint32_t new_len_bytes = extra_pos[0]; extra_pos++; uint32_t num_bytes = copy_toku_blob( curr_new_var_field_data_ptr, extra_pos, new_len_bytes, false ); curr_new_blob++; curr_new_var_field_data_ptr += num_bytes; extra_pos += num_bytes; } } num_blob_bytes = old_val->size - (curr_old_blob_ptr - old_null_bytes); memcpy(curr_new_var_field_data_ptr, curr_old_blob_ptr, num_blob_bytes); curr_new_var_field_data_ptr += num_blob_bytes; } new_val.data = new_val_data; new_val.size = curr_new_var_field_data_ptr - new_val_data; set_val(&new_val, set_extra); error = 0; cleanup: my_free(new_val_data, MYF(MY_ALLOW_ZERO_PTR)); return error; } // Expand the variable offset array in the old row given the update mesage in the extra. static int tokudb_expand_variable_offsets( DB* db, const DBT *key, const DBT *old_val, const DBT *extra, void (*set_val)(const DBT *new_val, void *set_extra), void *set_extra ) { int error = 0; tokudb::buffer extra_val(extra->data, 0, extra->size); // decode the operation uchar operation; extra_val.consume(&operation, sizeof operation); assert(operation == UPDATE_OP_EXPAND_VARIABLE_OFFSETS); // decode number of offsets uint32_t number_of_offsets; extra_val.consume(&number_of_offsets, sizeof number_of_offsets); // decode the offset start uint32_t offset_start; extra_val.consume(&offset_start, sizeof offset_start); assert(extra_val.size() == extra_val.limit()); DBT new_val; memset(&new_val, 0, sizeof new_val); if (old_val != NULL) { assert(offset_start + number_of_offsets < old_val->size); // compute the new val from the old val uchar *old_val_ptr = (uchar *)old_val->data; // allocate space for the new val's data uchar *new_val_ptr = (uchar *)my_malloc(number_of_offsets + old_val->size, MYF(MY_FAE)); if (!new_val_ptr) { error = ENOMEM; goto cleanup; } new_val.data = new_val_ptr; // copy up to the start of the varchar offset memcpy(new_val_ptr, old_val_ptr, offset_start); new_val_ptr += offset_start; old_val_ptr += offset_start; // expand each offset from 1 to 2 bytes for (uint32_t i = 0; i < number_of_offsets; i++) { uint16_t new_offset = *old_val_ptr; int2store(new_val_ptr, new_offset); new_val_ptr += 2; old_val_ptr += 1; } // copy the rest of the row size_t n = old_val->size - (old_val_ptr - (uchar *)old_val->data); memcpy(new_val_ptr, old_val_ptr, n); new_val_ptr += n; old_val_ptr += n; new_val.size = new_val_ptr - (uchar *)new_val.data; assert(new_val_ptr == (uchar *)new_val.data + new_val.size); assert(old_val_ptr == (uchar *)old_val->data + old_val->size); // set the new val set_val(&new_val, set_extra); } error = 0; cleanup: my_free(new_val.data, MYF(MY_ALLOW_ZERO_PTR)); return error; } // Expand an int field in a old row given the expand message in the extra. static int tokudb_expand_int_field( DB* db, const DBT *key, const DBT *old_val, const DBT *extra, void (*set_val)(const DBT *new_val, void *set_extra), void *set_extra ) { int error = 0; tokudb::buffer extra_val(extra->data, 0, extra->size); uchar operation; extra_val.consume(&operation, sizeof operation); assert(operation == UPDATE_OP_EXPAND_INT || operation == UPDATE_OP_EXPAND_UINT); uint32_t the_offset; extra_val.consume(&the_offset, sizeof the_offset); uint32_t old_length; extra_val.consume(&old_length, sizeof old_length); uint32_t new_length; extra_val.consume(&new_length, sizeof new_length); assert(extra_val.size() == extra_val.limit()); assert(new_length >= old_length); // expand only DBT new_val; memset(&new_val, 0, sizeof new_val); if (old_val != NULL) { assert(the_offset + old_length <= old_val->size); // old field within the old val // compute the new val from the old val uchar *old_val_ptr = (uchar *)old_val->data; // allocate space for the new val's data uchar *new_val_ptr = (uchar *)my_malloc(old_val->size + (new_length - old_length), MYF(MY_FAE)); if (!new_val_ptr) { error = ENOMEM; goto cleanup; } new_val.data = new_val_ptr; // copy up to the old offset memcpy(new_val_ptr, old_val_ptr, the_offset); new_val_ptr += the_offset; old_val_ptr += the_offset; switch (operation) { case UPDATE_OP_EXPAND_INT: // fill the entire new value with ones or zeros depending on the sign bit // the encoding is little endian memset(new_val_ptr, (old_val_ptr[old_length-1] & 0x80) ? 0xff : 0x00, new_length); memcpy(new_val_ptr, old_val_ptr, old_length); // overlay the low bytes of the new value with the old value new_val_ptr += new_length; old_val_ptr += old_length; break; case UPDATE_OP_EXPAND_UINT: memset(new_val_ptr, 0, new_length); // fill the entire new value with zeros memcpy(new_val_ptr, old_val_ptr, old_length); // overlay the low bytes of the new value with the old value new_val_ptr += new_length; old_val_ptr += old_length; break; default: assert(0); } // copy the rest size_t n = old_val->size - (old_val_ptr - (uchar *)old_val->data); memcpy(new_val_ptr, old_val_ptr, n); new_val_ptr += n; old_val_ptr += n; new_val.size = new_val_ptr - (uchar *)new_val.data; assert(new_val_ptr == (uchar *)new_val.data + new_val.size); assert(old_val_ptr == (uchar *)old_val->data + old_val->size); // set the new val set_val(&new_val, set_extra); } error = 0; cleanup: my_free(new_val.data, MYF(MY_ALLOW_ZERO_PTR)); return error; } // Expand a char field in a old row given the expand message in the extra. static int tokudb_expand_char_field( DB* db, const DBT *key, const DBT *old_val, const DBT *extra, void (*set_val)(const DBT *new_val, void *set_extra), void *set_extra ) { int error = 0; tokudb::buffer extra_val(extra->data, 0, extra->size); uchar operation; extra_val.consume(&operation, sizeof operation); assert(operation == UPDATE_OP_EXPAND_CHAR || operation == UPDATE_OP_EXPAND_BINARY); uint32_t the_offset; extra_val.consume(&the_offset, sizeof the_offset); uint32_t old_length; extra_val.consume(&old_length, sizeof old_length); uint32_t new_length; extra_val.consume(&new_length, sizeof new_length); uchar pad_char; extra_val.consume(&pad_char, sizeof pad_char); assert(extra_val.size() == extra_val.limit()); assert(new_length >= old_length); // expand only DBT new_val; memset(&new_val, 0, sizeof new_val); if (old_val != NULL) { assert(the_offset + old_length <= old_val->size); // old field within the old val // compute the new val from the old val uchar *old_val_ptr = (uchar *)old_val->data; // allocate space for the new val's data uchar *new_val_ptr = (uchar *)my_malloc(old_val->size + (new_length - old_length), MYF(MY_FAE)); if (!new_val_ptr) { error = ENOMEM; goto cleanup; } new_val.data = new_val_ptr; // copy up to the old offset memcpy(new_val_ptr, old_val_ptr, the_offset); new_val_ptr += the_offset; old_val_ptr += the_offset; switch (operation) { case UPDATE_OP_EXPAND_CHAR: case UPDATE_OP_EXPAND_BINARY: memset(new_val_ptr, pad_char, new_length); // fill the entire new value with the pad char memcpy(new_val_ptr, old_val_ptr, old_length); // overlay the low bytes of the new value with the old value new_val_ptr += new_length; old_val_ptr += old_length; break; default: assert(0); } // copy the rest size_t n = old_val->size - (old_val_ptr - (uchar *)old_val->data); memcpy(new_val_ptr, old_val_ptr, n); new_val_ptr += n; old_val_ptr += n; new_val.size = new_val_ptr - (uchar *)new_val.data; assert(new_val_ptr == (uchar *)new_val.data + new_val.size); assert(old_val_ptr == (uchar *)old_val->data + old_val->size); // set the new val set_val(&new_val, set_extra); } error = 0; cleanup: my_free(new_val.data, MYF(MY_ALLOW_ZERO_PTR)); return error; } namespace tokudb { class var_fields { public: var_fields() : m_initialized(false) { } void init_var_fields(uint32_t var_offset, uint32_t offset_bytes, uint32_t bytes_per_offset, tokudb::buffer *val_buffer) { if (m_initialized) return; assert(bytes_per_offset == 0 || bytes_per_offset == 1 || bytes_per_offset == 2); m_var_offset = var_offset; m_val_offset = m_var_offset + offset_bytes; m_bytes_per_offset = bytes_per_offset; if (bytes_per_offset > 0) { m_num_fields = offset_bytes / bytes_per_offset; } else { assert(offset_bytes == 0); m_num_fields = 0; } m_val_buffer = val_buffer; m_initialized = true; } bool is_initialized() { return m_initialized; } uint32_t value_offset(uint32_t var_index); uint32_t value_length(uint32_t var_index); void update_offsets(uint32_t var_index, uint32_t old_s, uint32_t new_s); uint32_t end_offset(); void replace(uint32_t var_index, void *new_val_ptr, uint32_t new_val_length); private: uint32_t read_offset(uint32_t var_index); void write_offset(uint32_t var_index, uint32_t v); private: uint32_t m_var_offset; uint32_t m_val_offset; uint32_t m_bytes_per_offset; uint32_t m_num_fields; tokudb::buffer *m_val_buffer; bool m_initialized; }; // Return the ith variable length offset uint32_t var_fields::read_offset(uint32_t var_index) { uint32_t offset = 0; m_val_buffer->read(&offset, m_bytes_per_offset, m_var_offset + var_index * m_bytes_per_offset); return offset; } // Write the ith variable length offset with a new offset. void var_fields::write_offset(uint32_t var_index, uint32_t new_offset) { m_val_buffer->write(&new_offset, m_bytes_per_offset, m_var_offset + var_index * m_bytes_per_offset); } // Return the offset of the ith variable length field uint32_t var_fields::value_offset(uint32_t var_index) { assert(var_index < m_num_fields); if (var_index == 0) return m_val_offset; else return m_val_offset + read_offset(var_index-1); } // Return the length of the ith variable length field uint32_t var_fields::value_length(uint32_t var_index) { assert(var_index < m_num_fields); if (var_index == 0) return read_offset(0); else return read_offset(var_index) - read_offset(var_index-1); } // The length of the ith variable length fields changed. Update all of the subsequent offsets. void var_fields::update_offsets(uint32_t var_index, uint32_t old_s, uint32_t new_s) { assert(var_index < m_num_fields); if (old_s == new_s) return; for (uint i = var_index; i < m_num_fields; i++) { uint32_t v = read_offset(i); if (new_s > old_s) write_offset(i, v + (new_s - old_s)); else write_offset(i, v - (old_s - new_s)); } } uint32_t var_fields::end_offset() { if (m_num_fields == 0) return m_val_offset; else return m_val_offset + read_offset(m_num_fields-1); } void var_fields::replace(uint32_t var_index, void *new_val_ptr, uint32_t new_val_length) { assert(m_initialized); // replace the new val with the extra val uint32_t the_offset = value_offset(var_index); uint32_t old_s = value_length(var_index); uint32_t new_s = new_val_length; m_val_buffer->replace(the_offset, old_s, new_val_ptr, new_s); // update the var offsets update_offsets(var_index, old_s, new_s); } class blob_fields { public: blob_fields() : m_initialized(false) { } bool is_initialized() { return m_initialized; } void init_blob_fields(uint32_t num_blobs, uint8_t *blob_lengths, tokudb::buffer *val_buffer) { if (m_initialized) return; m_num_blobs = num_blobs; m_blob_lengths = blob_lengths; m_val_buffer = val_buffer; m_initialized = true; } void start_blobs(uint32_t offset) { m_blob_offset = offset; } void replace(uint32_t blob_index, uint32_t length, void *p); private: uint32_t read_length(uint32_t offset, size_t size); void write_length(uint32_t offset, size_t size, uint32_t new_length); uint32_t blob_offset(uint32_t blob_index); private: uint32_t m_blob_offset; uint32_t m_num_blobs; uint8_t *m_blob_lengths; tokudb::buffer *m_val_buffer; bool m_initialized; }; uint32_t blob_fields::read_length(uint32_t offset, size_t blob_length) { uint32_t length = 0; m_val_buffer->read(&length, blob_length, offset); return length; } void blob_fields::write_length(uint32_t offset, size_t size, uint32_t new_length) { m_val_buffer->write(&new_length, size, offset); } uint32_t blob_fields::blob_offset(uint32_t blob_index) { assert(blob_index < m_num_blobs); uint32_t offset = m_blob_offset; for (uint i = 0; i < blob_index; i++) { uint32_t blob_length = m_blob_lengths[i]; uint32_t length = read_length(offset, blob_length); offset += blob_length + length; } return offset; } void blob_fields::replace(uint32_t blob_index, uint32_t new_length, void *new_value) { assert(m_initialized); assert(blob_index < m_num_blobs); // compute the ith blob offset uint32_t offset = blob_offset(blob_index); uint8_t blob_length = m_blob_lengths[blob_index]; // read the old length uint32_t old_length = read_length(offset, blob_length); // replace the data m_val_buffer->replace(offset + blob_length, old_length, new_value, new_length); // write the new length write_length(offset, blob_length, new_length); } class value_map { public: value_map(tokudb::buffer *val_buffer) : m_val_buffer(val_buffer) { } void init_var_fields(uint32_t var_offset, uint32_t offset_bytes, uint32_t bytes_per_offset) { m_var_fields.init_var_fields(var_offset, offset_bytes, bytes_per_offset, m_val_buffer); } void init_blob_fields(uint32_t num_blobs, uint8_t *blob_lengths) { m_blob_fields.init_blob_fields(num_blobs, blob_lengths, m_val_buffer); } // Replace the value of a fixed length field void replace_fixed(uint32_t the_offset, uint32_t field_null_num, void *new_val_ptr, uint32_t new_val_length) { m_val_buffer->replace(the_offset, new_val_length, new_val_ptr, new_val_length); maybe_clear_null(field_null_num); } // Replace the value of a variable length field void replace_varchar(uint32_t var_index, uint32_t field_null_num, void *new_val_ptr, uint32_t new_val_length) { m_var_fields.replace(var_index, new_val_ptr, new_val_length); maybe_clear_null(field_null_num); } // Replace the value of a blob field void replace_blob(uint32_t blob_index, uint32_t field_null_num, void *new_val_ptr, uint32_t new_val_length) { m_blob_fields.start_blobs(m_var_fields.end_offset()); m_blob_fields.replace(blob_index, new_val_length, new_val_ptr); maybe_clear_null(field_null_num); } void int_op(uint32_t operation, uint32_t the_offset, uint32_t length, uint32_t field_null_num, tokudb::buffer &old_val, void *extra_val); void uint_op(uint32_t operation, uint32_t the_offset, uint32_t length, uint32_t field_null_num, tokudb::buffer &old_val, void *extra_val); private: bool is_null(uint32_t null_num, uchar *null_bytes) { bool field_is_null = false; if (null_num) { if (null_num & (1<<31)) null_num &= ~(1<<31); else null_num -= 1; field_is_null = is_overall_null_position_set(null_bytes, null_num); } return field_is_null; } void maybe_clear_null(uint32_t null_num) { if (null_num) { if (null_num & (1<<31)) null_num &= ~(1<<31); else null_num -= 1; set_overall_null_position((uchar *) m_val_buffer->data(), null_num, false); } } private: var_fields m_var_fields; blob_fields m_blob_fields; tokudb::buffer *m_val_buffer; }; // Update an int field: signed newval@offset = old_val@offset OP extra_val void value_map::int_op(uint32_t operation, uint32_t the_offset, uint32_t length, uint32_t field_null_num, tokudb::buffer &old_val, void *extra_val) { assert(the_offset + length <= m_val_buffer->size()); assert(the_offset + length <= old_val.size()); assert(length == 1 || length == 2 || length == 3 || length == 4 || length == 8); uchar *old_val_ptr = (uchar *) old_val.data(); bool field_is_null = is_null(field_null_num, old_val_ptr); int64_t v = 0; memcpy(&v, old_val_ptr + the_offset, length); v = tokudb::int_sign_extend(v, 8*length); int64_t extra_v = 0; memcpy(&extra_v, extra_val, length); extra_v = tokudb::int_sign_extend(extra_v, 8*length); switch (operation) { case '+': if (!field_is_null) { bool over; v = tokudb::int_add(v, extra_v, 8*length, &over); if (over) { if (extra_v > 0) v = tokudb::int_high_endpoint(8*length); else v = tokudb::int_low_endpoint(8*length); } m_val_buffer->replace(the_offset, length, &v, length); } break; case '-': if (!field_is_null) { bool over; v = tokudb::int_sub(v, extra_v, 8*length, &over); if (over) { if (extra_v > 0) v = tokudb::int_low_endpoint(8*length); else v = tokudb::int_high_endpoint(8*length); } m_val_buffer->replace(the_offset, length, &v, length); } break; default: assert(0); } } // Update an unsigned field: unsigned newval@offset = old_val@offset OP extra_val void value_map::uint_op(uint32_t operation, uint32_t the_offset, uint32_t length, uint32_t field_null_num, tokudb::buffer &old_val, void *extra_val) { assert(the_offset + length <= m_val_buffer->size()); assert(the_offset + length <= old_val.size()); assert(length == 1 || length == 2 || length == 3 || length == 4 || length == 8); uchar *old_val_ptr = (uchar *) old_val.data(); bool field_is_null = is_null(field_null_num, old_val_ptr); uint64_t v = 0; memcpy(&v, old_val_ptr + the_offset, length); uint64_t extra_v = 0; memcpy(&extra_v, extra_val, length); switch (operation) { case '+': if (!field_is_null) { bool over; v = tokudb::uint_add(v, extra_v, 8*length, &over); if (over) { v = tokudb::uint_high_endpoint(8*length); } m_val_buffer->replace(the_offset, length, &v, length); } break; case '-': if (!field_is_null) { bool over; v = tokudb::uint_sub(v, extra_v, 8*length, &over); if (over) { v = tokudb::uint_low_endpoint(8*length); } m_val_buffer->replace(the_offset, length, &v, length); } break; default: assert(0); } } } // Decode and apply a sequence of update operations defined in the extra to the old value and put the result in the new value. static void apply_1_updates(tokudb::value_map &vd, tokudb::buffer &new_val, tokudb::buffer &old_val, tokudb::buffer &extra_val) { uint32_t num_updates; extra_val.consume(&num_updates, sizeof num_updates); for ( ; num_updates > 0; num_updates--) { // get the update operation uint32_t update_operation; extra_val.consume(&update_operation, sizeof update_operation); uint32_t field_type; extra_val.consume(&field_type, sizeof field_type); uint32_t unused; extra_val.consume(&unused, sizeof unused); uint32_t field_null_num; extra_val.consume(&field_null_num, sizeof field_null_num); uint32_t the_offset; extra_val.consume(&the_offset, sizeof the_offset); uint32_t extra_val_length; extra_val.consume(&extra_val_length, sizeof extra_val_length); void *extra_val_ptr = extra_val.consume_ptr(extra_val_length); // apply the update switch (field_type) { case UPDATE_TYPE_INT: if (update_operation == '=') vd.replace_fixed(the_offset, field_null_num, extra_val_ptr, extra_val_length); else vd.int_op(update_operation, the_offset, extra_val_length, field_null_num, old_val, extra_val_ptr); break; case UPDATE_TYPE_UINT: if (update_operation == '=') vd.replace_fixed(the_offset, field_null_num, extra_val_ptr, extra_val_length); else vd.uint_op(update_operation, the_offset, extra_val_length, field_null_num, old_val, extra_val_ptr); break; case UPDATE_TYPE_CHAR: case UPDATE_TYPE_BINARY: if (update_operation == '=') vd.replace_fixed(the_offset, field_null_num, extra_val_ptr, extra_val_length); else assert(0); break; default: assert(0); break; } } assert(extra_val.size() == extra_val.limit()); } // Simple update handler. Decode the update message, apply the update operations to the old value, and set the new value. static int tokudb_update_1_fun( DB* db, const DBT *key_dbt, const DBT *old_val_dbt, const DBT *extra, void (*set_val)(const DBT *new_val_dbt, void *set_extra), void *set_extra ) { tokudb::buffer extra_val(extra->data, 0, extra->size); uchar operation; extra_val.consume(&operation, sizeof operation); assert(operation == UPDATE_OP_UPDATE_1); if (old_val_dbt != NULL) { // get the simple descriptor uint32_t m_fixed_field_offset; extra_val.consume(&m_fixed_field_offset, sizeof m_fixed_field_offset); uint32_t m_var_field_offset; extra_val.consume(&m_var_field_offset, sizeof m_var_field_offset); uint32_t m_var_offset_bytes; extra_val.consume(&m_var_offset_bytes, sizeof m_var_offset_bytes); uint32_t m_bytes_per_offset; extra_val.consume(&m_bytes_per_offset, sizeof m_bytes_per_offset); tokudb::buffer old_val(old_val_dbt->data, old_val_dbt->size, old_val_dbt->size); // new val = old val tokudb::buffer new_val; new_val.append(old_val_dbt->data, old_val_dbt->size); tokudb::value_map vd(&new_val); vd.init_var_fields(m_var_field_offset, m_var_offset_bytes, m_bytes_per_offset); // apply updates to new val apply_1_updates(vd, new_val, old_val, extra_val); // set the new val DBT new_val_dbt; memset(&new_val_dbt, 0, sizeof new_val_dbt); new_val_dbt.data = new_val.data(); new_val_dbt.size = new_val.size(); set_val(&new_val_dbt, set_extra); } return 0; } // Simple upsert handler. Decode the upsert message. If the key does not exist, then insert a new value from the extra. // Otherwise, apply the update operations to the old value, and then set the new value. static int tokudb_upsert_1_fun( DB* db, const DBT *key_dbt, const DBT *old_val_dbt, const DBT *extra, void (*set_val)(const DBT *new_val_dbt, void *set_extra), void *set_extra ) { tokudb::buffer extra_val(extra->data, 0, extra->size); uchar operation; extra_val.consume(&operation, sizeof operation); assert(operation == UPDATE_OP_UPSERT_1); uint32_t insert_length; extra_val.consume(&insert_length, sizeof insert_length); void *insert_row = extra_val.consume_ptr(insert_length); if (old_val_dbt == NULL) { // insert a new row DBT new_val_dbt; memset(&new_val_dbt, 0, sizeof new_val_dbt); new_val_dbt.size = insert_length; new_val_dbt.data = insert_row; set_val(&new_val_dbt, set_extra); } else { // decode the simple descriptor uint32_t m_fixed_field_offset; extra_val.consume(&m_fixed_field_offset, sizeof m_fixed_field_offset); uint32_t m_var_field_offset; extra_val.consume(&m_var_field_offset, sizeof m_var_field_offset); uint32_t m_var_offset_bytes; extra_val.consume(&m_var_offset_bytes, sizeof m_var_offset_bytes); uint32_t m_bytes_per_offset; extra_val.consume(&m_bytes_per_offset, sizeof m_bytes_per_offset); tokudb::buffer old_val(old_val_dbt->data, old_val_dbt->size, old_val_dbt->size); // new val = old val tokudb::buffer new_val; new_val.append(old_val_dbt->data, old_val_dbt->size); tokudb::value_map vd(&new_val); vd.init_var_fields(m_var_field_offset, m_var_offset_bytes, m_bytes_per_offset); // apply updates to new val apply_1_updates(vd, new_val, old_val, extra_val); // set the new val DBT new_val_dbt; memset(&new_val_dbt, 0, sizeof new_val_dbt); new_val_dbt.data = new_val.data(); new_val_dbt.size = new_val.size(); set_val(&new_val_dbt, set_extra); } return 0; } // Decode and apply a sequence of update operations defined in the extra to the old value and put the result in the new value. static void apply_2_updates(tokudb::value_map &vd, tokudb::buffer &new_val, tokudb::buffer &old_val, tokudb::buffer &extra_val) { uint32_t num_updates; extra_val.consume_ui(&num_updates); for (uint32_t i = 0; i < num_updates; i++) { uint32_t update_operation; extra_val.consume_ui(&update_operation); if (update_operation == 'v') { uint32_t var_field_offset; extra_val.consume_ui(&var_field_offset); uint32_t var_offset_bytes; extra_val.consume_ui(&var_offset_bytes); uint32_t bytes_per_offset; extra_val.consume_ui(&bytes_per_offset); vd.init_var_fields(var_field_offset, var_offset_bytes, bytes_per_offset); } else if (update_operation == 'b') { uint32_t num_blobs; extra_val.consume_ui(&num_blobs); uint8_t *blob_lengths = (uint8_t *)extra_val.consume_ptr(num_blobs); vd.init_blob_fields(num_blobs, blob_lengths); } else { uint32_t field_type; extra_val.consume_ui(&field_type); uint32_t field_null_num; extra_val.consume_ui(&field_null_num); uint32_t the_offset; extra_val.consume_ui(&the_offset); uint32_t extra_val_length; extra_val.consume_ui(&extra_val_length); void *extra_val_ptr = extra_val.consume_ptr(extra_val_length); switch (field_type) { case UPDATE_TYPE_INT: if (update_operation == '=') vd.replace_fixed(the_offset, field_null_num, extra_val_ptr, extra_val_length); else vd.int_op(update_operation, the_offset, extra_val_length, field_null_num, old_val, extra_val_ptr); break; case UPDATE_TYPE_UINT: if (update_operation == '=') vd.replace_fixed(the_offset, field_null_num, extra_val_ptr, extra_val_length); else vd.uint_op(update_operation, the_offset, extra_val_length, field_null_num, old_val, extra_val_ptr); break; case UPDATE_TYPE_CHAR: case UPDATE_TYPE_BINARY: if (update_operation == '=') vd.replace_fixed(the_offset, field_null_num, extra_val_ptr, extra_val_length); else assert(0); break; case UPDATE_TYPE_VARBINARY: case UPDATE_TYPE_VARCHAR: if (update_operation == '=') vd.replace_varchar(the_offset, field_null_num, extra_val_ptr, extra_val_length); else assert(0); break; case UPDATE_TYPE_TEXT: case UPDATE_TYPE_BLOB: if (update_operation == '=') vd.replace_blob(the_offset, field_null_num, extra_val_ptr, extra_val_length); else assert(0); break; default: assert(0); break; } } } assert(extra_val.size() == extra_val.limit()); } // Simple update handler. Decode the update message, apply the update operations to the old value, and set the new value. static int tokudb_update_2_fun( DB* db, const DBT *key_dbt, const DBT *old_val_dbt, const DBT *extra, void (*set_val)(const DBT *new_val_dbt, void *set_extra), void *set_extra ) { tokudb::buffer extra_val(extra->data, 0, extra->size); uint8_t op; extra_val.consume(&op, sizeof op); assert(op == UPDATE_OP_UPDATE_2); if (old_val_dbt != NULL) { tokudb::buffer old_val(old_val_dbt->data, old_val_dbt->size, old_val_dbt->size); // new val = old val tokudb::buffer new_val; new_val.append(old_val_dbt->data, old_val_dbt->size); tokudb::value_map vd(&new_val); // apply updates to new val apply_2_updates(vd, new_val, old_val, extra_val); // set the new val DBT new_val_dbt; memset(&new_val_dbt, 0, sizeof new_val_dbt); new_val_dbt.data = new_val.data(); new_val_dbt.size = new_val.size(); set_val(&new_val_dbt, set_extra); } return 0; } // Simple upsert handler. Decode the upsert message. If the key does not exist, then insert a new value from the extra. // Otherwise, apply the update operations to the old value, and then set the new value. static int tokudb_upsert_2_fun( DB* db, const DBT *key_dbt, const DBT *old_val_dbt, const DBT *extra, void (*set_val)(const DBT *new_val_dbt, void *set_extra), void *set_extra ) { tokudb::buffer extra_val(extra->data, 0, extra->size); uint8_t op; extra_val.consume(&op, sizeof op); assert(op == UPDATE_OP_UPSERT_2); uint32_t insert_length; extra_val.consume_ui(&insert_length); assert(insert_length < extra_val.limit()); void *insert_row = extra_val.consume_ptr(insert_length); if (old_val_dbt == NULL) { // insert a new row DBT new_val_dbt; memset(&new_val_dbt, 0, sizeof new_val_dbt); new_val_dbt.size = insert_length; new_val_dbt.data = insert_row; set_val(&new_val_dbt, set_extra); } else { tokudb::buffer old_val(old_val_dbt->data, old_val_dbt->size, old_val_dbt->size); // new val = old val tokudb::buffer new_val; new_val.append(old_val_dbt->data, old_val_dbt->size); tokudb::value_map vd(&new_val); // apply updates to new val apply_2_updates(vd, new_val, old_val, extra_val); // set the new val DBT new_val_dbt; memset(&new_val_dbt, 0, sizeof new_val_dbt); new_val_dbt.data = new_val.data(); new_val_dbt.size = new_val.size(); set_val(&new_val_dbt, set_extra); } return 0; } // This function is the update callback function that is registered with the YDB environment. // It uses the first byte in the update message to identify the update message type and call // the handler for that message. int tokudb_update_fun( DB* db, const DBT *key, const DBT *old_val, const DBT *extra, void (*set_val)(const DBT *new_val, void *set_extra), void *set_extra ) { uchar *extra_pos = (uchar *)extra->data; uchar operation = extra_pos[0]; int error; switch (operation) { case UPDATE_OP_COL_ADD_OR_DROP: error = tokudb_hcad_update_fun(db, key, old_val, extra, set_val, set_extra); break; case UPDATE_OP_EXPAND_VARIABLE_OFFSETS: error = tokudb_expand_variable_offsets(db, key, old_val, extra, set_val, set_extra); break; case UPDATE_OP_EXPAND_INT: case UPDATE_OP_EXPAND_UINT: error = tokudb_expand_int_field(db, key, old_val, extra, set_val, set_extra); break; case UPDATE_OP_EXPAND_CHAR: case UPDATE_OP_EXPAND_BINARY: error = tokudb_expand_char_field(db, key, old_val, extra, set_val, set_extra); break; case UPDATE_OP_UPDATE_1: error = tokudb_update_1_fun(db, key, old_val, extra, set_val, set_extra); break; case UPDATE_OP_UPSERT_1: error = tokudb_upsert_1_fun(db, key, old_val, extra, set_val, set_extra); break; case UPDATE_OP_UPDATE_2: error = tokudb_update_2_fun(db, key, old_val, extra, set_val, set_extra); break; case UPDATE_OP_UPSERT_2: error = tokudb_upsert_2_fun(db, key, old_val, extra, set_val, set_extra); break; default: assert(0); error = EINVAL; break; } return error; }