/* Copyright 2007 MySQL AB. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "mysql_priv.h" #include "rpl_rli.h" #include "rpl_record.h" #include "slave.h" // Need to pull in slave_print_msg #include "rpl_utility.h" #include "rpl_rli.h" /** Pack a record of data for a table into a format suitable for transfer via the binary log. The format for a row in transfer with N fields is the following: ceil(N/8) null bytes: One null bit for every column *regardless of whether it can be null or not*. This simplifies the decoding. Observe that the number of null bits is equal to the number of set bits in the @c cols bitmap. The number of null bytes is the smallest number of bytes necessary to store the null bits. Padding bits are 1. N packets: Each field is stored in packed format. @param table Table describing the format of the record @param cols Bitmap with a set bit for each column that should be stored in the row @param row_data Pointer to memory where row will be written @param record Pointer to record that should be packed. It is assumed that the pointer refers to either @c record[0] or @c record[1], but no such check is made since the code does not rely on that. @return The number of bytes written at @c row_data. */ #if !defined(MYSQL_CLIENT) size_t pack_row(TABLE *table, MY_BITMAP const* cols, uchar *row_data, const uchar *record) { Field **p_field= table->field, *field; int const null_byte_count= (bitmap_bits_set(cols) + 7) / 8; uchar *pack_ptr = row_data + null_byte_count; uchar *null_ptr = row_data; my_ptrdiff_t const rec_offset= record - table->record[0]; my_ptrdiff_t const def_offset= table->s->default_values - table->record[0]; DBUG_ENTER("pack_row"); /* We write the null bits and the packed records using one pass through all the fields. The null bytes are written little-endian, i.e., the first fields are in the first byte. */ unsigned int null_bits= (1U << 8) - 1; // Mask to mask out the correct but among the null bits unsigned int null_mask= 1U; for ( ; (field= *p_field) ; p_field++) { DBUG_PRINT("debug", ("null_mask=%d; null_ptr=%p; row_data=%p; null_byte_count=%d", null_mask, null_ptr, row_data, null_byte_count)); if (bitmap_is_set(cols, p_field - table->field)) { my_ptrdiff_t offset; if (field->is_null(rec_offset)) { offset= def_offset; null_bits |= null_mask; } else { offset= rec_offset; null_bits &= ~null_mask; /* We only store the data of the field if it is non-null For big-endian machines, we have to make sure that the length is stored in little-endian format, since this is the format used for the binlog. */ #ifndef DBUG_OFF const uchar *old_pack_ptr= pack_ptr; #endif pack_ptr= field->pack(pack_ptr, field->ptr + offset, field->max_data_length(), TRUE); DBUG_PRINT("debug", ("field: %s; pack_ptr: 0x%lx;" " pack_ptr':0x%lx; bytes: %d", field->field_name, (ulong) old_pack_ptr, (ulong) pack_ptr, (int) (pack_ptr - old_pack_ptr))); } null_mask <<= 1; if ((null_mask & 0xFF) == 0) { DBUG_ASSERT(null_ptr < row_data + null_byte_count); null_mask = 1U; *null_ptr++ = null_bits; null_bits= (1U << 8) - 1; } } } /* Write the last (partial) byte, if there is one */ if ((null_mask & 0xFF) > 1) { DBUG_ASSERT(null_ptr < row_data + null_byte_count); *null_ptr++ = null_bits; } /* The null pointer should now point to the first byte of the packed data. If it doesn't, something is very wrong. */ DBUG_ASSERT(null_ptr == row_data + null_byte_count); DBUG_DUMP("row_data", row_data, pack_ptr - row_data); DBUG_RETURN(static_cast(pack_ptr - row_data)); } #endif /** Unpack a row into @c table->record[0]. The function will always unpack into the @c table->record[0] record. This is because there are too many dependencies on where the various member functions of Field and subclasses expect to write. The row is assumed to only consist of the fields for which the corresponding bit in bitset @c cols is set; the other parts of the record are left alone. At most @c colcnt columns are read: if the table is larger than that, the remaining fields are not filled in. @param rli Relay log info @param table Table to unpack into @param colcnt Number of columns to read from record @param row_data Packed row data @param cols Pointer to bitset describing columns to fill in @param row_end Pointer to variable that will hold the value of the one-after-end position for the row @param master_reclength Pointer to variable that will be set to the length of the record on the master side @retval 0 No error @retval ER_NO_DEFAULT_FOR_FIELD Returned if one of the fields existing on the slave but not on the master does not have a default value (and isn't nullable) */ #if !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) int unpack_row(Relay_log_info const *rli, TABLE *table, uint const colcnt, uchar const *const row_data, MY_BITMAP const *cols, uchar const **const row_end, ulong *const master_reclength) { DBUG_ENTER("unpack_row"); DBUG_ASSERT(row_data); size_t const master_null_byte_count= (bitmap_bits_set(cols) + 7) / 8; int error= 0; uchar const *null_ptr= row_data; uchar const *pack_ptr= row_data + master_null_byte_count; Field **const begin_ptr = table->field; Field **field_ptr; Field **const end_ptr= begin_ptr + colcnt; DBUG_ASSERT(null_ptr < row_data + master_null_byte_count); // Mask to mask out the correct bit among the null bits unsigned int null_mask= 1U; // The "current" null bits unsigned int null_bits= *null_ptr++; uint i= 0; table_def *tabledef= ((Relay_log_info*)rli)->get_tabledef(table); for (field_ptr= begin_ptr ; field_ptr < end_ptr && *field_ptr ; ++field_ptr) { Field *const f= *field_ptr; /* No need to bother about columns that does not exist: they have gotten default values when being emptied above. */ if (bitmap_is_set(cols, field_ptr - begin_ptr)) { if ((null_mask & 0xFF) == 0) { DBUG_ASSERT(null_ptr < row_data + master_null_byte_count); null_mask= 1U; null_bits= *null_ptr++; } DBUG_ASSERT(null_mask & 0xFF); // One of the 8 LSB should be set /* Field...::unpack() cannot return 0 */ DBUG_ASSERT(pack_ptr != NULL); if ((null_bits & null_mask) && f->maybe_null()) f->set_null(); else { f->set_notnull(); /* We only unpack the field if it was non-null. Use the master's size information if available else call normal unpack operation. */ uint16 const metadata= tabledef->field_metadata(i); #ifndef DBUG_OFF uchar const *const old_pack_ptr= pack_ptr; #endif pack_ptr= f->unpack(f->ptr, pack_ptr, metadata, TRUE); DBUG_PRINT("debug", ("field: %s; metadata: 0x%x;" " pack_ptr: 0x%lx; pack_ptr': 0x%lx; bytes: %d", f->field_name, metadata, (ulong) old_pack_ptr, (ulong) pack_ptr, (int) (pack_ptr - old_pack_ptr))); } null_mask <<= 1; } i++; } /* throw away master's extra fields */ uint max_cols= min(tabledef->size(), cols->n_bits); for (; i < max_cols; i++) { if (bitmap_is_set(cols, i)) { if ((null_mask & 0xFF) == 0) { DBUG_ASSERT(null_ptr < row_data + master_null_byte_count); null_mask= 1U; null_bits= *null_ptr++; } DBUG_ASSERT(null_mask & 0xFF); // One of the 8 LSB should be set if (!((null_bits & null_mask) && tabledef->maybe_null(i))) pack_ptr+= tabledef->calc_field_size(i, (uchar *) pack_ptr); null_mask <<= 1; } } /* We should now have read all the null bytes, otherwise something is really wrong. */ DBUG_ASSERT(null_ptr == row_data + master_null_byte_count); DBUG_DUMP("row_data", row_data, pack_ptr - row_data); *row_end = pack_ptr; if (master_reclength) { if (*field_ptr) *master_reclength = (*field_ptr)->ptr - table->record[0]; else *master_reclength = table->s->reclength; } DBUG_RETURN(error); } /** Fills @c table->record[0] with default values. First @c empty_record() is called and then, additionally, fields are initialized explicitly with a call to @c set_default(). For optimization reasons, the explicit initialization can be skipped for first @c skip fields. This is useful if later we are going to fill these fields from other source (e.g. from a Rows replication event). If @c check is true, fields are explicitly initialized only if they have default value or can be NULL. Otherwise error is reported. @param log Used to report errors. @param table Table whose record[0] buffer is prepared. @param skip Number of columns for which default value initialization should be skipped. @param check Indicates if errors should be checked when setting default values. @returns 0 on success. */ int prepare_record(const Slave_reporting_capability *const log, TABLE *const table, const uint skip, const bool check) { DBUG_ENTER("prepare_record"); int error= 0; empty_record(table); if (skip >= table->s->fields) // nothing to do DBUG_RETURN(0); /* Explicit initialization of fields */ for (Field **field_ptr= table->field+skip ; *field_ptr ; ++field_ptr) { uint32 const mask= NOT_NULL_FLAG | NO_DEFAULT_VALUE_FLAG; Field *const f= *field_ptr; if (check && ((f->flags & mask) == mask)) { DBUG_ASSERT(log); log->report(ERROR_LEVEL, ER_NO_DEFAULT_FOR_FIELD, "Field `%s` of table `%s`.`%s` " "has no default value and cannot be NULL", f->field_name, table->s->db.str, table->s->table_name.str); error = ER_NO_DEFAULT_FOR_FIELD; } else f->set_default(); } DBUG_RETURN(error); } #endif // HAVE_REPLICATION