/***************************************************************************** Copyright (c) 1995, 2016, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2013, 2016, MariaDB Corporation. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file include/fsp0fsp.h File space management Created 12/18/1995 Heikki Tuuri *******************************************************/ #ifndef fsp0fsp_h #define fsp0fsp_h #include "univ.i" #include "fsp0types.h" #ifndef UNIV_INNOCHECKSUM #include "fsp0space.h" #include "fut0lst.h" #include "mtr0mtr.h" #include "page0types.h" #include "rem0types.h" #include "ut0byte.h" #endif /* !UNIV_INNOCHECKSUM */ #include "fsp0types.h" #define FSP_FLAGS_POS_DATA_DIR_ORACLE (FSP_FLAGS_POS_ATOMIC_BLOBS \ + FSP_FLAGS_WIDTH_ATOMIC_BLOBS \ + FSP_FLAGS_WIDTH_PAGE_SSIZE) /** Bit mask of the DATA_DIR field */ #define FSP_FLAGS_MASK_DATA_DIR_ORACLE \ ((~(~0 << FSP_FLAGS_WIDTH_DATA_DIR)) \ << FSP_FLAGS_POS_DATA_DIR_ORACLE) #define FSP_FLAGS_HAS_DATA_DIR_ORACLE(flags) \ ((flags & FSP_FLAGS_MASK_DATA_DIR_ORACLE) \ >> FSP_FLAGS_POS_DATA_DIR_ORACLE) /* @defgroup Tablespace Header Constants (moved from fsp0fsp.c) @{ */ /** Offset of the space header within a file page */ #define FSP_HEADER_OFFSET FIL_PAGE_DATA /* The data structures in files are defined just as byte strings in C */ typedef byte fsp_header_t; typedef byte xdes_t; /* SPACE HEADER ============ File space header data structure: this data structure is contained in the first page of a space. The space for this header is reserved in every extent descriptor page, but used only in the first. */ /*-------------------------------------*/ #define FSP_SPACE_ID 0 /* space id */ #define FSP_NOT_USED 4 /* this field contained a value up to which we know that the modifications in the database have been flushed to the file space; not used now */ #define FSP_SIZE 8 /* Current size of the space in pages */ #define FSP_FREE_LIMIT 12 /* Minimum page number for which the free list has not been initialized: the pages >= this limit are, by definition, free; note that in a single-table tablespace where size < 64 pages, this number is 64, i.e., we have initialized the space about the first extent, but have not physically allocated those pages to the file */ #define FSP_SPACE_FLAGS 16 /* fsp_space_t.flags, similar to dict_table_t::flags */ #define FSP_FRAG_N_USED 20 /* number of used pages in the FSP_FREE_FRAG list */ #define FSP_FREE 24 /* list of free extents */ #define FSP_FREE_FRAG (24 + FLST_BASE_NODE_SIZE) /* list of partially free extents not belonging to any segment */ #define FSP_FULL_FRAG (24 + 2 * FLST_BASE_NODE_SIZE) /* list of full extents not belonging to any segment */ #define FSP_SEG_ID (24 + 3 * FLST_BASE_NODE_SIZE) /* 8 bytes which give the first unused segment id */ #define FSP_SEG_INODES_FULL (32 + 3 * FLST_BASE_NODE_SIZE) /* list of pages containing segment headers, where all the segment inode slots are reserved */ #define FSP_SEG_INODES_FREE (32 + 4 * FLST_BASE_NODE_SIZE) /* list of pages containing segment headers, where not all the segment header slots are reserved */ /*-------------------------------------*/ /* File space header size */ #define FSP_HEADER_SIZE (32 + 5 * FLST_BASE_NODE_SIZE) #define FSP_FREE_ADD 4 /* this many free extents are added to the free list from above FSP_FREE_LIMIT at a time */ /* @} */ #ifndef UNIV_INNOCHECKSUM /* @defgroup File Segment Inode Constants (moved from fsp0fsp.c) @{ */ /* FILE SEGMENT INODE ================== Segment inode which is created for each segment in a tablespace. NOTE: in purge we assume that a segment having only one currently used page can be freed in a few steps, so that the freeing cannot fill the file buffer with bufferfixed file pages. */ typedef byte fseg_inode_t; #define FSEG_INODE_PAGE_NODE FSEG_PAGE_DATA /* the list node for linking segment inode pages */ #define FSEG_ARR_OFFSET (FSEG_PAGE_DATA + FLST_NODE_SIZE) /*-------------------------------------*/ #define FSEG_ID 0 /* 8 bytes of segment id: if this is 0, it means that the header is unused */ #define FSEG_NOT_FULL_N_USED 8 /* number of used segment pages in the FSEG_NOT_FULL list */ #define FSEG_FREE 12 /* list of free extents of this segment */ #define FSEG_NOT_FULL (12 + FLST_BASE_NODE_SIZE) /* list of partially free extents */ #define FSEG_FULL (12 + 2 * FLST_BASE_NODE_SIZE) /* list of full extents */ #define FSEG_MAGIC_N (12 + 3 * FLST_BASE_NODE_SIZE) /* magic number used in debugging */ #define FSEG_FRAG_ARR (16 + 3 * FLST_BASE_NODE_SIZE) /* array of individual pages belonging to this segment in fsp fragment extent lists */ #define FSEG_FRAG_ARR_N_SLOTS (FSP_EXTENT_SIZE / 2) /* number of slots in the array for the fragment pages */ #define FSEG_FRAG_SLOT_SIZE 4 /* a fragment page slot contains its page number within space, FIL_NULL means that the slot is not in use */ /*-------------------------------------*/ #define FSEG_INODE_SIZE \ (16 + 3 * FLST_BASE_NODE_SIZE \ + FSEG_FRAG_ARR_N_SLOTS * FSEG_FRAG_SLOT_SIZE) #define FSP_SEG_INODES_PER_PAGE(page_size) \ ((page_size.physical() - FSEG_ARR_OFFSET - 10) / FSEG_INODE_SIZE) /* Number of segment inodes which fit on a single page */ #define FSEG_MAGIC_N_VALUE 97937874 #define FSEG_FILLFACTOR 8 /* If this value is x, then if the number of unused but reserved pages in a segment is less than reserved pages * 1/x, and there are at least FSEG_FRAG_LIMIT used pages, then we allow a new empty extent to be added to the segment in fseg_alloc_free_page. Otherwise, we use unused pages of the segment. */ #define FSEG_FRAG_LIMIT FSEG_FRAG_ARR_N_SLOTS /* If the segment has >= this many used pages, it may be expanded by allocating extents to the segment; until that only individual fragment pages are allocated from the space */ #define FSEG_FREE_LIST_LIMIT 40 /* If the reserved size of a segment is at least this many extents, we allow extents to be put to the free list of the extent: at most FSEG_FREE_LIST_MAX_LEN many */ #define FSEG_FREE_LIST_MAX_LEN 4 /* @} */ /* @defgroup Extent Descriptor Constants (moved from fsp0fsp.c) @{ */ /* EXTENT DESCRIPTOR ================= File extent descriptor data structure: contains bits to tell which pages in the extent are free and which contain old tuple version to clean. */ /*-------------------------------------*/ #define XDES_ID 0 /* The identifier of the segment to which this extent belongs */ #define XDES_FLST_NODE 8 /* The list node data structure for the descriptors */ #define XDES_STATE (FLST_NODE_SIZE + 8) /* contains state information of the extent */ #define XDES_BITMAP (FLST_NODE_SIZE + 12) /* Descriptor bitmap of the pages in the extent */ /*-------------------------------------*/ #define XDES_BITS_PER_PAGE 2 /* How many bits are there per page */ #define XDES_FREE_BIT 0 /* Index of the bit which tells if the page is free */ #define XDES_CLEAN_BIT 1 /* NOTE: currently not used! Index of the bit which tells if there are old versions of tuples on the page */ /* States of a descriptor */ #define XDES_FREE 1 /* extent is in free list of space */ #define XDES_FREE_FRAG 2 /* extent is in free fragment list of space */ #define XDES_FULL_FRAG 3 /* extent is in full fragment list of space */ #define XDES_FSEG 4 /* extent belongs to a segment */ /** File extent data structure size in bytes. */ #define XDES_SIZE \ (XDES_BITMAP \ + UT_BITS_IN_BYTES(FSP_EXTENT_SIZE * XDES_BITS_PER_PAGE)) /** File extent data structure size in bytes for MAX page size. */ #define XDES_SIZE_MAX \ (XDES_BITMAP \ + UT_BITS_IN_BYTES(FSP_EXTENT_SIZE_MAX * XDES_BITS_PER_PAGE)) /** File extent data structure size in bytes for MIN page size. */ #define XDES_SIZE_MIN \ (XDES_BITMAP \ + UT_BITS_IN_BYTES(FSP_EXTENT_SIZE_MIN * XDES_BITS_PER_PAGE)) /** Offset of the descriptor array on a descriptor page */ #define XDES_ARR_OFFSET (FSP_HEADER_OFFSET + FSP_HEADER_SIZE) /* @} */ /**********************************************************************//** Initializes the file space system. */ void fsp_init(void); /*==========*/ /**********************************************************************//** Gets the size of the system tablespace from the tablespace header. If we do not have an auto-extending data file, this should be equal to the size of the data files. If there is an auto-extending data file, this can be smaller. @return size in pages */ ulint fsp_header_get_tablespace_size(void); /*================================*/ /** Calculate the number of pages to extend a datafile. We extend single-table and general tablespaces first one extent at a time, but 4 at a time for bigger tablespaces. It is not enough to extend always by one extent, because we need to add at least one extent to FSP_FREE. A single extent descriptor page will track many extents. And the extent that uses its extent descriptor page is put onto the FSP_FREE_FRAG list. Extents that do not use their extent descriptor page are added to FSP_FREE. The physical page size is used to determine how many extents are tracked on one extent descriptor page. See xdes_calc_descriptor_page(). @param[in] page_size page_size of the datafile @param[in] size current number of pages in the datafile @return number of pages to extend the file. */ ulint fsp_get_pages_to_extend_ibd( const page_size_t& page_size, ulint size); /** Calculate the number of physical pages in an extent for this file. @param[in] page_size page_size of the datafile @return number of pages in an extent for this file. */ UNIV_INLINE ulint fsp_get_extent_size_in_pages(const page_size_t& page_size) { return(FSP_EXTENT_SIZE * UNIV_PAGE_SIZE / page_size.physical()); } /**********************************************************************//** Reads the space id from the first page of a tablespace. @return space id, ULINT UNDEFINED if error */ ulint fsp_header_get_space_id( /*====================*/ const page_t* page); /*!< in: first page of a tablespace */ /** Read a tablespace header field. @param[in] page first page of a tablespace @param[in] field the header field @return the contents of the header field */ inline ulint fsp_header_get_field(const page_t* page, ulint field) { return(mach_read_from_4(FSP_HEADER_OFFSET + field + page)); } /** Read the flags from the tablespace header page. @param[in] page first page of a tablespace @return the contents of FSP_SPACE_FLAGS */ inline ulint fsp_header_get_flags(const page_t* page) { return(fsp_header_get_field(page, FSP_SPACE_FLAGS)); } /** Reads the page size from the first page of a tablespace. @param[in] page first page of a tablespace @return page size */ page_size_t fsp_header_get_page_size( const page_t* page); /** Decoding the encryption info from the first page of a tablespace. @param[in/out] key key @param[in/out] iv iv @param[in] encryption_info encrytion info. @return true if success */ bool fsp_header_decode_encryption_info( byte* key, byte* iv, byte* encryption_info); /** Reads the encryption key from the first page of a tablespace. @param[in] fsp_flags tablespace flags @param[in/out] key tablespace key @param[in/out] iv tablespace iv @param[in] page first page of a tablespace @return true if success */ bool fsp_header_get_encryption_key( ulint fsp_flags, byte* key, byte* iv, page_t* page); /** Check the encryption key from the first page of a tablespace. @param[in] fsp_flags tablespace flags @param[in] page first page of a tablespace @return true if success */ bool fsp_header_check_encryption_key( ulint fsp_flags, page_t* page); /**********************************************************************//** Writes the space id and flags to a tablespace header. The flags contain row type, physical/compressed page size, and logical/uncompressed page size of the tablespace. */ void fsp_header_init_fields( /*===================*/ page_t* page, /*!< in/out: first page in the space */ ulint space_id, /*!< in: space id */ ulint flags); /*!< in: tablespace flags (FSP_SPACE_FLAGS): 0, or table->flags if newer than COMPACT */ /** Rotate the encryption info in the space header. @param[in] space tablespace @param[in] encrypt_info buffer for re-encrypt key. @param[in,out] mtr mini-transaction @return true if success. */ bool fsp_header_rotate_encryption( fil_space_t* space, byte* encrypt_info, mtr_t* mtr); /** Initializes the space header of a new created space and creates also the insert buffer tree root if space == 0. @param[in] space_id space id @param[in] size current size in blocks @param[in,out] mtr min-transaction @return true on success, otherwise false. */ bool fsp_header_init( ulint space_id, ulint size, mtr_t* mtr); /**********************************************************************//** Increases the space size field of a space. */ void fsp_header_inc_size( /*================*/ ulint space_id, /*!< in: space id */ ulint size_inc, /*!< in: size increment in pages */ mtr_t* mtr); /*!< in/out: mini-transaction */ /**********************************************************************//** Creates a new segment. @return the block where the segment header is placed, x-latched, NULL if could not create segment because of lack of space */ buf_block_t* fseg_create( /*========*/ ulint space_id,/*!< in: space id */ ulint page, /*!< in: page where the segment header is placed: if this is != 0, the page must belong to another segment, if this is 0, a new page will be allocated and it will belong to the created segment */ ulint byte_offset, /*!< in: byte offset of the created segment header on the page */ mtr_t* mtr); /*!< in/out: mini-transaction */ /**********************************************************************//** Creates a new segment. @return the block where the segment header is placed, x-latched, NULL if could not create segment because of lack of space */ buf_block_t* fseg_create_general( /*================*/ ulint space_id,/*!< in: space id */ ulint page, /*!< in: page where the segment header is placed: if this is != 0, the page must belong to another segment, if this is 0, a new page will be allocated and it will belong to the created segment */ ulint byte_offset, /*!< in: byte offset of the created segment header on the page */ ibool has_done_reservation, /*!< in: TRUE if the caller has already done the reservation for the pages with fsp_reserve_free_extents (at least 2 extents: one for the inode and the other for the segment) then there is no need to do the check for this individual operation */ mtr_t* mtr); /*!< in/out: mini-transaction */ /**********************************************************************//** Calculates the number of pages reserved by a segment, and how many pages are currently used. @return number of reserved pages */ ulint fseg_n_reserved_pages( /*==================*/ fseg_header_t* header, /*!< in: segment header */ ulint* used, /*!< out: number of pages used (<= reserved) */ mtr_t* mtr); /*!< in/out: mini-transaction */ /**********************************************************************//** Allocates a single free page from a segment. This function implements the intelligent allocation strategy which tries to minimize file space fragmentation. @param[in,out] seg_header segment header @param[in] hint hint of which page would be desirable @param[in] direction if the new page is needed because of an index page split, and records are inserted there in order, into which direction they go alphabetically: FSP_DOWN, FSP_UP, FSP_NO_DIR @param[in,out] mtr mini-transaction @return X-latched block, or NULL if no page could be allocated */ #define fseg_alloc_free_page(seg_header, hint, direction, mtr) \ fseg_alloc_free_page_general(seg_header, hint, direction, \ FALSE, mtr, mtr) /**********************************************************************//** Allocates a single free page from a segment. This function implements the intelligent allocation strategy which tries to minimize file space fragmentation. @retval NULL if no page could be allocated @retval block, rw_lock_x_lock_count(&block->lock) == 1 if allocation succeeded (init_mtr == mtr, or the page was not previously freed in mtr) @retval block (not allocated or initialized) otherwise */ buf_block_t* fseg_alloc_free_page_general( /*=========================*/ fseg_header_t* seg_header,/*!< in/out: segment header */ ulint hint, /*!< in: hint of which page would be desirable */ byte direction,/*!< in: if the new page is needed because of an index page split, and records are inserted there in order, into which direction they go alphabetically: FSP_DOWN, FSP_UP, FSP_NO_DIR */ ibool has_done_reservation, /*!< in: TRUE if the caller has already done the reservation for the page with fsp_reserve_free_extents, then there is no need to do the check for this individual page */ mtr_t* mtr, /*!< in/out: mini-transaction */ mtr_t* init_mtr)/*!< in/out: mtr or another mini-transaction in which the page should be initialized. If init_mtr!=mtr, but the page is already latched in mtr, do not initialize the page. */ MY_ATTRIBUTE((warn_unused_result, nonnull)); /** Reserves free pages from a tablespace. All mini-transactions which may use several pages from the tablespace should call this function beforehand and reserve enough free extents so that they certainly will be able to do their operation, like a B-tree page split, fully. Reservations must be released with function fil_space_release_free_extents! The alloc_type below has the following meaning: FSP_NORMAL means an operation which will probably result in more space usage, like an insert in a B-tree; FSP_UNDO means allocation to undo logs: if we are deleting rows, then this allocation will in the long run result in less space usage (after a purge); FSP_CLEANING means allocation done in a physical record delete (like in a purge) or other cleaning operation which will result in less space usage in the long run. We prefer the latter two types of allocation: when space is scarce, FSP_NORMAL allocations will not succeed, but the latter two allocations will succeed, if possible. The purpose is to avoid dead end where the database is full but the user cannot free any space because these freeing operations temporarily reserve some space. Single-table tablespaces whose size is < FSP_EXTENT_SIZE pages are a special case. In this function we would liberally reserve several extents for every page split or merge in a B-tree. But we do not want to waste disk space if the table only occupies < FSP_EXTENT_SIZE pages. That is why we apply different rules in that special case, just ensuring that there are n_pages free pages available. @param[out] n_reserved number of extents actually reserved; if we return true and the tablespace size is < FSP_EXTENT_SIZE pages, then this can be 0, otherwise it is n_ext @param[in] space_id tablespace identifier @param[in] n_ext number of extents to reserve @param[in] alloc_type page reservation type (FSP_BLOB, etc) @param[in,out] mtr the mini transaction @param[in] n_pages for small tablespaces (tablespace size is less than FSP_EXTENT_SIZE), number of free pages to reserve. @return true if we were able to make the reservation */ bool fsp_reserve_free_extents( ulint* n_reserved, ulint space_id, ulint n_ext, fsp_reserve_t alloc_type, mtr_t* mtr, ulint n_pages = 2); /** Calculate how many KiB of new data we will be able to insert to the tablespace without running out of space. @param[in] space_id tablespace ID @return available space in KiB @retval UINTMAX_MAX if unknown */ uintmax_t fsp_get_available_space_in_free_extents( ulint space_id); /** Calculate how many KiB of new data we will be able to insert to the tablespace without running out of space. Start with a space object that has been acquired by the caller who holds it for the calculation, @param[in] space tablespace object from fil_space_acquire() @return available space in KiB */ uintmax_t fsp_get_available_space_in_free_extents( const fil_space_t* space); /**********************************************************************//** Frees a single page of a segment. */ void fseg_free_page( /*===========*/ fseg_header_t* seg_header, /*!< in: segment header */ ulint space_id, /*!< in: space id */ ulint page, /*!< in: page offset */ bool ahi, /*!< in: whether we may need to drop the adaptive hash index */ mtr_t* mtr); /*!< in/out: mini-transaction */ /**********************************************************************//** Checks if a single page of a segment is free. @return true if free */ bool fseg_page_is_free( /*==============*/ fseg_header_t* seg_header, /*!< in: segment header */ ulint space_id, /*!< in: space id */ ulint page) /*!< in: page offset */ MY_ATTRIBUTE((nonnull, warn_unused_result)); /**********************************************************************//** Frees part of a segment. This function can be used to free a segment by repeatedly calling this function in different mini-transactions. Doing the freeing in a single mini-transaction might result in too big a mini-transaction. @return TRUE if freeing completed */ ibool fseg_free_step( /*===========*/ fseg_header_t* header, /*!< in, own: segment header; NOTE: if the header resides on the first page of the frag list of the segment, this pointer becomes obsolete after the last freeing step */ bool ahi, /*!< in: whether we may need to drop the adaptive hash index */ mtr_t* mtr) /*!< in/out: mini-transaction */ MY_ATTRIBUTE((warn_unused_result)); /**********************************************************************//** Frees part of a segment. Differs from fseg_free_step because this function leaves the header page unfreed. @return TRUE if freeing completed, except the header page */ ibool fseg_free_step_not_header( /*======================*/ fseg_header_t* header, /*!< in: segment header which must reside on the first fragment page of the segment */ bool ahi, /*!< in: whether we may need to drop the adaptive hash index */ mtr_t* mtr) /*!< in/out: mini-transaction */ MY_ATTRIBUTE((warn_unused_result)); /** Checks if a page address is an extent descriptor page address. @param[in] page_id page id @param[in] page_size page size @return TRUE if a descriptor page */ UNIV_INLINE ibool fsp_descr_page( const page_id_t& page_id, const page_size_t& page_size); /***********************************************************//** Parses a redo log record of a file page init. @return end of log record or NULL */ byte* fsp_parse_init_file_page( /*=====================*/ byte* ptr, /*!< in: buffer */ byte* end_ptr, /*!< in: buffer end */ buf_block_t* block); /*!< in: block or NULL */ #ifdef UNIV_DEBUG /*******************************************************************//** Validates a segment. @return TRUE if ok */ ibool fseg_validate( /*==========*/ fseg_header_t* header, /*!< in: segment header */ mtr_t* mtr); /*!< in/out: mini-transaction */ #endif /* UNIV_DEBUG */ #ifdef UNIV_BTR_PRINT /*******************************************************************//** Writes info of a segment. */ void fseg_print( /*=======*/ fseg_header_t* header, /*!< in: segment header */ mtr_t* mtr); /*!< in/out: mini-transaction */ #endif /* UNIV_BTR_PRINT */ /** Determine if the tablespace is compressed from tablespace flags. @param[in] flags Tablespace flags @return true if compressed, false if not compressed */ UNIV_INLINE bool fsp_flags_is_compressed( ulint flags); /** Determine if two tablespaces are equivalent or compatible. @param[in] flags1 First tablespace flags @param[in] flags2 Second tablespace flags @return true the flags are compatible, false if not */ UNIV_INLINE bool fsp_flags_are_equal( ulint flags1, ulint flags2); /** Initialize an FSP flags integer. @param[in] page_size page sizes in bytes and compression flag. @param[in] atomic_blobs Used by Dynammic and Compressed. @param[in] has_data_dir This tablespace is in a remote location. @param[in] is_shared This tablespace can be shared by many tables. @param[in] is_temporary This tablespace is temporary. @param[in] is_encrypted This tablespace is encrypted. @return tablespace flags after initialization */ UNIV_INLINE ulint fsp_flags_init( const page_size_t& page_size, bool atomic_blobs, bool has_data_dir, bool is_shared, bool is_temporary, bool page_compression, ulint page_compression_level, ulint atomic_writes, bool is_encrypted = false); /** Convert a 32 bit integer tablespace flags to the 32 bit table flags. This can only be done for a tablespace that was built as a file-per-table tablespace. Note that the fsp_flags cannot show the difference between a Compact and Redundant table, so an extra Compact boolean must be supplied. Low order bit | REDUNDANT | COMPACT | COMPRESSED | DYNAMIC fil_space_t::flags | 0 | 0 | 1 | 1 dict_table_t::flags | 0 | 1 | 1 | 1 @param[in] fsp_flags fil_space_t::flags @param[in] compact true if not Redundant row format @return tablespace flags (fil_space_t::flags) */ ulint fsp_flags_to_dict_tf( ulint fsp_flags, bool compact); /** Calculates the descriptor index within a descriptor page. @param[in] page_size page size @param[in] offset page offset @return descriptor index */ UNIV_INLINE ulint xdes_calc_descriptor_index( const page_size_t& page_size, ulint offset); /** Gets pointer to a the extent descriptor of a page. The page where the extent descriptor resides is x-locked. If the page offset is equal to the free limit of the space, adds new extents from above the free limit to the space free list, if not free limit == space size. This adding is necessary to make the descriptor defined, as they are uninitialized above the free limit. @param[in] space_id space id @param[in] offset page offset; if equal to the free limit, we try to add new extents to the space free list @param[in] page_size page size @param[in,out] mtr mini-transaction @return pointer to the extent descriptor, NULL if the page does not exist in the space or if the offset exceeds the free limit */ xdes_t* xdes_get_descriptor( ulint space_id, ulint offset, const page_size_t& page_size, mtr_t* mtr) MY_ATTRIBUTE((warn_unused_result)); /**********************************************************************//** Gets a descriptor bit of a page. @return TRUE if free */ UNIV_INLINE ibool xdes_get_bit( /*=========*/ const xdes_t* descr, /*!< in: descriptor */ ulint bit, /*!< in: XDES_FREE_BIT or XDES_CLEAN_BIT */ ulint offset);/*!< in: page offset within extent: 0 ... FSP_EXTENT_SIZE - 1 */ /** Calculates the page where the descriptor of a page resides. @param[in] page_size page size @param[in] offset page offset @return descriptor page offset */ UNIV_INLINE ulint xdes_calc_descriptor_page( const page_size_t& page_size, ulint offset); #endif /* !UNIV_INNOCHECKSUM */ /*********************************************************************//** @return offset into fsp header where crypt data is stored */ UNIV_INTERN ulint fsp_header_get_crypt_offset( /*========================*/ const page_size_t& page_size,/*!< in: page size */ ulint* max_size); /*!< out: free space after offset */ #ifndef UNIV_INNOCHECKSUM /**********************************************************************//** Checks if a single page is free. @return true if free */ UNIV_INTERN bool fsp_page_is_free_func( /*==============*/ ulint space, /*!< in: space id */ ulint page, /*!< in: page offset */ mtr_t* mtr, /*!< in/out: mini-transaction */ const char *file, ulint line); #define fsp_page_is_free(space,page,mtr) \ fsp_page_is_free_func(space,page,mtr, __FILE__, __LINE__) #endif /* UNIV_INNOCHECKSUM */ #ifndef UNIV_NONINL #include "fsp0fsp.ic" #endif #endif