/***************************************************************************** Copyright (c) 1994, 2011, Oracle and/or its affiliates. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /********************************************************************//** @file ha/ha0ha.cc The hash table with external chains Created 8/22/1994 Heikki Tuuri *************************************************************************/ #include "ha0ha.h" #ifdef UNIV_NONINL #include "ha0ha.ic" #endif #ifndef UNIV_HOTBACKUP #ifdef UNIV_DEBUG # include "buf0buf.h" #endif /* UNIV_DEBUG */ # include "btr0sea.h" #include "page0page.h" /*************************************************************//** Creates a hash table with at least n array cells. The actual number of cells is chosen to be a prime number slightly bigger than n. @return own: created table */ UNIV_INTERN hash_table_t* ha_create_func( /*===========*/ ulint n, /*!< in: number of array cells */ #ifdef UNIV_SYNC_DEBUG ulint sync_level, /*!< in: level of the mutexes or rw_locks in the latching order: this is used in the debug version */ #endif /* UNIV_SYNC_DEBUG */ ulint n_sync_obj, /*!< in: number of mutexes or rw_locks to protect the hash table: must be a power of 2, or 0 */ ulint type) /*!< in: type of datastructure for which the memory heap is going to be used e.g.: MEM_HEAP_FOR_BTR_SEARCH or MEM_HEAP_FOR_PAGE_HASH */ { hash_table_t* table; ulint i; ut_a(type == MEM_HEAP_FOR_BTR_SEARCH || type == MEM_HEAP_FOR_PAGE_HASH); ut_ad(ut_is_2pow(n_sync_obj)); table = hash_create(n); /* Creating MEM_HEAP_BTR_SEARCH type heaps can potentially fail, but in practise it never should in this case, hence the asserts. */ if (n_sync_obj == 0) { table->heap = mem_heap_create_typed( ut_min(4096, MEM_MAX_ALLOC_IN_BUF), type); ut_a(table->heap); return(table); } if (type == MEM_HEAP_FOR_PAGE_HASH) { /* We create a hash table protected by rw_locks for buf_pool->page_hash. */ hash_create_sync_obj(table, HASH_TABLE_SYNC_RW_LOCK, n_sync_obj, sync_level); } else { hash_create_sync_obj(table, HASH_TABLE_SYNC_MUTEX, n_sync_obj, sync_level); } table->heaps = static_cast( mem_alloc(n_sync_obj * sizeof(void*))); for (i = 0; i < n_sync_obj; i++) { table->heaps[i] = mem_heap_create_typed(4096, type); ut_a(table->heaps[i]); } return(table); } /*************************************************************//** Empties a hash table and frees the memory heaps. */ UNIV_INTERN void ha_clear( /*=====*/ hash_table_t* table) /*!< in, own: hash table */ { ulint i; ulint n; ut_ad(table); ut_ad(table->magic_n == HASH_TABLE_MAGIC_N); #ifdef UNIV_SYNC_DEBUG ut_ad(!table->adaptive || rw_lock_own(&btr_search_latch, RW_LOCK_EXCLUSIVE)); #endif /* UNIV_SYNC_DEBUG */ /* Free the memory heaps. */ n = table->n_sync_obj; for (i = 0; i < n; i++) { mem_heap_free(table->heaps[i]); } if (table->heaps) { mem_free(table->heaps); } switch (table->type) { case HASH_TABLE_SYNC_MUTEX: mem_free(table->sync_obj.mutexes); table->sync_obj.mutexes = NULL; break; case HASH_TABLE_SYNC_RW_LOCK: mem_free(table->sync_obj.rw_locks); table->sync_obj.rw_locks = NULL; break; case HASH_TABLE_SYNC_NONE: /* do nothing */ break; } table->n_sync_obj = 0; table->type = HASH_TABLE_SYNC_NONE; /* Clear the hash table. */ n = hash_get_n_cells(table); for (i = 0; i < n; i++) { hash_get_nth_cell(table, i)->node = NULL; } } /*************************************************************//** Inserts an entry into a hash table. If an entry with the same fold number is found, its node is updated to point to the new data, and no new node is inserted. If btr_search_enabled is set to FALSE, we will only allow updating existing nodes, but no new node is allowed to be added. @return TRUE if succeed, FALSE if no more memory could be allocated */ UNIV_INTERN ibool ha_insert_for_fold_func( /*====================*/ hash_table_t* table, /*!< in: hash table */ ulint fold, /*!< in: folded value of data; if a node with the same fold value already exists, it is updated to point to the same data, and no new node is created! */ #if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG buf_block_t* block, /*!< in: buffer block containing the data */ #endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */ const rec_t* data) /*!< in: data, must not be NULL */ { hash_cell_t* cell; ha_node_t* node; ha_node_t* prev_node; ulint hash; ut_ad(data); ut_ad(table); ut_ad(table->magic_n == HASH_TABLE_MAGIC_N); #if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG ut_a(block->frame == page_align(data)); #endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */ hash_assert_can_modify(table, fold); ut_ad(btr_search_enabled); hash = hash_calc_hash(fold, table); cell = hash_get_nth_cell(table, hash); prev_node = static_cast(cell->node); while (prev_node != NULL) { if (prev_node->fold == fold) { #if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG if (table->adaptive) { buf_block_t* prev_block = prev_node->block; ut_a(prev_block->frame == page_align(prev_node->data)); ut_a(prev_block->n_pointers > 0); prev_block->n_pointers--; block->n_pointers++; } prev_node->block = block; #endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */ prev_node->data = data; return(TRUE); } prev_node = prev_node->next; } /* We have to allocate a new chain node */ node = static_cast( mem_heap_alloc(hash_get_heap(table, fold), sizeof(ha_node_t))); if (node == NULL) { /* It was a btr search type memory heap and at the moment no more memory could be allocated: return */ ut_ad(hash_get_heap(table, fold)->type & MEM_HEAP_BTR_SEARCH); return(FALSE); } ha_node_set_data(node, block, data); #if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG if (table->adaptive) { block->n_pointers++; } #endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */ node->fold = fold; node->next = NULL; prev_node = static_cast(cell->node); if (prev_node == NULL) { cell->node = node; return(TRUE); } while (prev_node->next != NULL) { prev_node = prev_node->next; } prev_node->next = node; return(TRUE); } /***********************************************************//** Deletes a hash node. */ UNIV_INTERN void ha_delete_hash_node( /*================*/ hash_table_t* table, /*!< in: hash table */ ha_node_t* del_node) /*!< in: node to be deleted */ { ut_ad(table); ut_ad(table->magic_n == HASH_TABLE_MAGIC_N); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(&btr_search_latch, RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ ut_ad(btr_search_enabled); #if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG if (table->adaptive) { ut_a(del_node->block->frame = page_align(del_node->data)); ut_a(del_node->block->n_pointers > 0); del_node->block->n_pointers--; } #endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */ HASH_DELETE_AND_COMPACT(ha_node_t, next, table, del_node); } /*********************************************************//** Looks for an element when we know the pointer to the data, and updates the pointer to data, if found. @return TRUE if found */ UNIV_INTERN ibool ha_search_and_update_if_found_func( /*===============================*/ hash_table_t* table, /*!< in/out: hash table */ ulint fold, /*!< in: folded value of the searched data */ const rec_t* data, /*!< in: pointer to the data */ #if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG buf_block_t* new_block,/*!< in: block containing new_data */ #endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */ const rec_t* new_data)/*!< in: new pointer to the data */ { ha_node_t* node; ut_ad(table); ut_ad(table->magic_n == HASH_TABLE_MAGIC_N); hash_assert_can_modify(table, fold); #if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG ut_a(new_block->frame == page_align(new_data)); #endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */ #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(&btr_search_latch, RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ if (!btr_search_enabled) { return(FALSE); } node = ha_search_with_data(table, fold, data); if (node) { #if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG if (table->adaptive) { ut_a(node->block->n_pointers > 0); node->block->n_pointers--; new_block->n_pointers++; } node->block = new_block; #endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */ node->data = new_data; return(TRUE); } return(FALSE); } /*****************************************************************//** Removes from the chain determined by fold all nodes whose data pointer points to the page given. */ UNIV_INTERN void ha_remove_all_nodes_to_page( /*========================*/ hash_table_t* table, /*!< in: hash table */ ulint fold, /*!< in: fold value */ const page_t* page) /*!< in: buffer page */ { ha_node_t* node; ut_ad(table); ut_ad(table->magic_n == HASH_TABLE_MAGIC_N); hash_assert_can_modify(table, fold); ut_ad(btr_search_enabled); node = ha_chain_get_first(table, fold); while (node) { if (page_align(ha_node_get_data(node)) == page) { /* Remove the hash node */ ha_delete_hash_node(table, node); /* Start again from the first node in the chain because the deletion may compact the heap of nodes and move other nodes! */ node = ha_chain_get_first(table, fold); } else { node = ha_chain_get_next(node); } } #ifdef UNIV_DEBUG /* Check that all nodes really got deleted */ node = ha_chain_get_first(table, fold); while (node) { ut_a(page_align(ha_node_get_data(node)) != page); node = ha_chain_get_next(node); } #endif } #if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG /*************************************************************//** Validates a given range of the cells in hash table. @return TRUE if ok */ UNIV_INTERN ibool ha_validate( /*========*/ hash_table_t* table, /*!< in: hash table */ ulint start_index, /*!< in: start index */ ulint end_index) /*!< in: end index */ { ibool ok = TRUE; ulint i; ut_ad(table); ut_ad(table->magic_n == HASH_TABLE_MAGIC_N); ut_a(start_index <= end_index); ut_a(start_index < hash_get_n_cells(table)); ut_a(end_index < hash_get_n_cells(table)); for (i = start_index; i <= end_index; i++) { ha_node_t* node; hash_cell_t* cell; cell = hash_get_nth_cell(table, i); for (node = static_cast(cell->node); node != 0; node = node->next) { if (hash_calc_hash(node->fold, table) != i) { ut_print_timestamp(stderr); fprintf(stderr, "InnoDB: Error: hash table node" " fold value %lu does not\n" "InnoDB: match the cell number %lu.\n", (ulong) node->fold, (ulong) i); ok = FALSE; } } } return(ok); } #endif /* defined UNIV_AHI_DEBUG || defined UNIV_DEBUG */ /*************************************************************//** Prints info of a hash table. */ UNIV_INTERN void ha_print_info( /*==========*/ FILE* file, /*!< in: file where to print */ hash_table_t* table) /*!< in: hash table */ { #ifdef UNIV_DEBUG /* Some of the code here is disabled for performance reasons in production builds, see http://bugs.mysql.com/36941 */ #define PRINT_USED_CELLS #endif /* UNIV_DEBUG */ #ifdef PRINT_USED_CELLS hash_cell_t* cell; ulint cells = 0; ulint i; #endif /* PRINT_USED_CELLS */ ulint n_bufs; ut_ad(table); ut_ad(table->magic_n == HASH_TABLE_MAGIC_N); #ifdef PRINT_USED_CELLS for (i = 0; i < hash_get_n_cells(table); i++) { cell = hash_get_nth_cell(table, i); if (cell->node) { cells++; } } #endif /* PRINT_USED_CELLS */ fprintf(file, "Hash table size %lu", (ulong) hash_get_n_cells(table)); #ifdef PRINT_USED_CELLS fprintf(file, ", used cells %lu", (ulong) cells); #endif /* PRINT_USED_CELLS */ if (table->heaps == NULL && table->heap != NULL) { /* This calculation is intended for the adaptive hash index: how many buffer frames we have reserved? */ n_bufs = UT_LIST_GET_LEN(table->heap->base) - 1; if (table->heap->free_block) { n_bufs++; } fprintf(file, ", node heap has %lu buffer(s)\n", (ulong) n_bufs); } } #endif /* !UNIV_HOTBACKUP */