/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifdef __GNUC__ #pragma implementation // gcc: Class implementation #endif #include "mysql_priv.h" #include #include "ha_heap.h" /***************************************************************************** ** HEAP tables *****************************************************************************/ const char **ha_heap::bas_ext() const { static const char *ext[1]= { NullS }; return ext; } int ha_heap::open(const char *name, int mode, uint test_if_locked) { uint key,parts,mem_per_row=0; ulong max_rows; HP_KEYDEF *keydef; HP_KEYSEG *seg; for (key=parts=0 ; key < table->keys ; key++) parts+=table->key_info[key].key_parts; if (!(keydef=(HP_KEYDEF*) my_malloc(table->keys*sizeof(HP_KEYDEF)+ parts*sizeof(HP_KEYSEG),MYF(MY_WME)))) return my_errno; seg=my_reinterpret_cast(HP_KEYSEG*) (keydef+table->keys); for (key=0 ; key < table->keys ; key++) { KEY *pos=table->key_info+key; KEY_PART_INFO *key_part= pos->key_part; KEY_PART_INFO *key_part_end= key_part+pos->key_parts; mem_per_row += (pos->key_length + (sizeof(char*) * 2)); keydef[key].keysegs=(uint) pos->key_parts; keydef[key].flag = (pos->flags & (HA_NOSAME | HA_NULL_ARE_EQUAL)); keydef[key].seg=seg; for (; key_part != key_part_end ; key_part++, seg++) { uint flag=key_part->key_type; Field *field=key_part->field; if (!f_is_packed(flag) && f_packtype(flag) == (int) FIELD_TYPE_DECIMAL && !(flag & FIELDFLAG_BINARY)) seg->type= (int) HA_KEYTYPE_TEXT; else seg->type= (int) HA_KEYTYPE_BINARY; seg->start=(uint) key_part->offset; seg->length=(uint) key_part->length; if (field->null_ptr) { seg->null_bit=field->null_bit; seg->null_pos= (uint) (field->null_ptr- (uchar*) table->record[0]); } else { seg->null_bit=0; seg->null_pos=0; } } } mem_per_row += MY_ALIGN(table->reclength+1, sizeof(char*)); max_rows = (ulong) (max_heap_table_size / mem_per_row); file=heap_open(name,mode, table->keys,keydef, table->reclength, ((table->max_rows < max_rows && table->max_rows) ? table->max_rows : max_rows), table->min_rows); my_free((gptr) keydef,MYF(0)); if (file) info(HA_STATUS_NO_LOCK | HA_STATUS_CONST | HA_STATUS_VARIABLE); ref_length=sizeof(HEAP_PTR); return (!file ? errno : 0); } int ha_heap::close(void) { return heap_close(file); } int ha_heap::write_row(byte * buf) { statistic_increment(ha_write_count,&LOCK_status); if (table->time_stamp) update_timestamp(buf+table->time_stamp-1); return heap_write(file,buf); } int ha_heap::update_row(const byte * old_data, byte * new_data) { statistic_increment(ha_update_count,&LOCK_status); if (table->time_stamp) update_timestamp(new_data+table->time_stamp-1); return heap_update(file,old_data,new_data); } int ha_heap::delete_row(const byte * buf) { statistic_increment(ha_delete_count,&LOCK_status); return heap_delete(file,buf); } int ha_heap::index_read(byte * buf, const byte * key, uint key_len __attribute__((unused)), enum ha_rkey_function find_flag __attribute__((unused))) { statistic_increment(ha_read_key_count,&LOCK_status); int error=heap_rkey(file,buf,active_index, key); table->status=error ? STATUS_NOT_FOUND: 0; return error; } int ha_heap::index_read_idx(byte * buf, uint index, const byte * key, uint key_len __attribute__((unused)), enum ha_rkey_function find_flag __attribute__((unused))) { statistic_increment(ha_read_key_count,&LOCK_status); int error=heap_rkey(file, buf, index, key); table->status=error ? STATUS_NOT_FOUND: 0; return error; } int ha_heap::index_next(byte * buf) { statistic_increment(ha_read_next_count,&LOCK_status); int error=heap_rnext(file,buf); table->status=error ? STATUS_NOT_FOUND: 0; return error; } int ha_heap::index_prev(byte * buf) { statistic_increment(ha_read_prev_count,&LOCK_status); int error=heap_rprev(file,buf); table->status=error ? STATUS_NOT_FOUND: 0; return error; } int ha_heap::index_first(byte * buf) { statistic_increment(ha_read_first_count,&LOCK_status); int error=heap_rfirst(file, buf); table->status=error ? STATUS_NOT_FOUND: 0; return error; } int ha_heap::index_last(byte * buf) { statistic_increment(ha_read_last_count,&LOCK_status); int error=heap_rlast(file, buf); table->status=error ? STATUS_NOT_FOUND: 0; return error; } int ha_heap::rnd_init(bool scan) { return scan ? heap_scan_init(file) : 0; } int ha_heap::rnd_next(byte *buf) { statistic_increment(ha_read_rnd_next_count,&LOCK_status); int error=heap_scan(file, buf); table->status=error ? STATUS_NOT_FOUND: 0; return error; } int ha_heap::rnd_pos(byte * buf, byte *pos) { int error; HEAP_PTR position; statistic_increment(ha_read_rnd_count,&LOCK_status); memcpy_fixed((char*) &position,pos,sizeof(HEAP_PTR)); error=heap_rrnd(file, buf, position); table->status=error ? STATUS_NOT_FOUND: 0; return error; } void ha_heap::position(const byte *record) { *(HEAP_PTR*) ref= heap_position(file); // Ref is aligned } void ha_heap::info(uint flag) { HEAPINFO info; (void) heap_info(file,&info,flag); records = info.records; deleted = info.deleted; errkey = info.errkey; mean_rec_length=info.reclength; data_file_length=info.data_length; index_file_length=info.index_length; max_data_file_length= info.max_records* info.reclength; delete_length= info.deleted * info.reclength; } int ha_heap::extra(enum ha_extra_function operation) { return heap_extra(file,operation); } int ha_heap::reset(void) { return heap_extra(file,HA_EXTRA_RESET); } int ha_heap::delete_all_rows() { heap_clear(file); return 0; } int ha_heap::external_lock(THD *thd, int lock_type) { return 0; // No external locking } THR_LOCK_DATA **ha_heap::store_lock(THD *thd, THR_LOCK_DATA **to, enum thr_lock_type lock_type) { if (lock_type != TL_IGNORE && file->lock.type == TL_UNLOCK) file->lock.type=lock_type; *to++= &file->lock; return to; } /* We have to ignore ENOENT entries as the HEAP table is created on open and not when doing a CREATE on the table. */ int ha_heap::delete_table(const char *name) { int error=heap_delete_table(name); return error == ENOENT ? 0 : error; } int ha_heap::rename_table(const char * from, const char * to) { return heap_rename(from,to); } ha_rows ha_heap::records_in_range(int inx, const byte *start_key,uint start_key_len, enum ha_rkey_function start_search_flag, const byte *end_key,uint end_key_len, enum ha_rkey_function end_search_flag) { KEY *pos=table->key_info+inx; if (start_key_len != end_key_len || start_key_len != pos->key_length || start_search_flag != HA_READ_KEY_EXACT || end_search_flag != HA_READ_AFTER_KEY) return HA_POS_ERROR; // Can't only use exact keys return 10; // Good guess } int ha_heap::create(const char *name, TABLE *form, HA_CREATE_INFO *create_info) { char buff[FN_REFLEN]; return heap_create(fn_format(buff,name,"","",4+2)); }