/***************************************************************************//** Copyright (c) 2007, 2014, Oracle and/or its affiliates. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /********************************************************************//** Red-Black tree implementation (c) 2007 Oracle/Innobase Oy Created 2007-03-20 Sunny Bains ***********************************************************************/ #include "univ.i" #include "ut0new.h" #include "ut0rbt.h" /**********************************************************************//** Definition of a red-black tree ============================== A red-black tree is a binary search tree which has the following red-black properties: 1. Every node is either red or black. 2. Every leaf (NULL - in our case tree->nil) is black. 3. If a node is red, then both its children are black. 4. Every simple path from a node to a descendant leaf contains the same number of black nodes. from (3) above, the implication is that on any path from the root to a leaf, red nodes must not be adjacent. However, any number of black nodes may appear in a sequence. */ #if defined(IB_RBT_TESTING) #warning "Testing enabled!" #endif #define ROOT(t) (t->root->left) #define SIZEOF_NODE(t) ((sizeof(ib_rbt_node_t) + t->sizeof_value) - 1) /**********************************************************************//** Print out the sub-tree recursively. */ static void rbt_print_subtree( /*==============*/ const ib_rbt_t* tree, /*!< in: tree to traverse */ const ib_rbt_node_t* node, /*!< in: node to print */ ib_rbt_print_node print) /*!< in: print key function */ { /* FIXME: Doesn't do anything yet */ if (node != tree->nil) { print(node); rbt_print_subtree(tree, node->left, print); rbt_print_subtree(tree, node->right, print); } } /**********************************************************************//** Verify that the keys are in order. @return TRUE of OK. FALSE if not ordered */ static ibool rbt_check_ordering( /*===============*/ const ib_rbt_t* tree) /*!< in: tree to verfify */ { const ib_rbt_node_t* node; const ib_rbt_node_t* prev = NULL; /* Iterate over all the nodes, comparing each node with the prev */ for (node = rbt_first(tree); node; node = rbt_next(tree, prev)) { if (prev) { int result; if (tree->cmp_arg) { result = tree->compare_with_arg( tree->cmp_arg, prev->value, node->value); } else { result = tree->compare( prev->value, node->value); } if (result >= 0) { return(FALSE); } } prev = node; } return(TRUE); } /**********************************************************************//** Check that every path from the root to the leaves has the same count. Count is expressed in the number of black nodes. @return 0 on failure else black height of the subtree */ static ibool rbt_count_black_nodes( /*==================*/ const ib_rbt_t* tree, /*!< in: tree to verify */ const ib_rbt_node_t* node) /*!< in: start of sub-tree */ { ulint result; if (node != tree->nil) { ulint left_height = rbt_count_black_nodes(tree, node->left); ulint right_height = rbt_count_black_nodes(tree, node->right); if (left_height == 0 || right_height == 0 || left_height != right_height) { result = 0; } else if (node->color == IB_RBT_RED) { /* Case 3 */ if (node->left->color != IB_RBT_BLACK || node->right->color != IB_RBT_BLACK) { result = 0; } else { result = left_height; } /* Check if it's anything other than RED or BLACK. */ } else if (node->color != IB_RBT_BLACK) { result = 0; } else { result = right_height + 1; } } else { result = 1; } return(result); } /**********************************************************************//** Turn the node's right child's left sub-tree into node's right sub-tree. This will also make node's right child it's parent. */ static void rbt_rotate_left( /*============*/ const ib_rbt_node_t* nil, /*!< in: nil node of the tree */ ib_rbt_node_t* node) /*!< in: node to rotate */ { ib_rbt_node_t* right = node->right; node->right = right->left; if (right->left != nil) { right->left->parent = node; } /* Right's new parent was node's parent. */ right->parent = node->parent; /* Since root's parent is tree->nil and root->parent->left points back to root, we can avoid the check. */ if (node == node->parent->left) { /* Node was on the left of its parent. */ node->parent->left = right; } else { /* Node must have been on the right. */ node->parent->right = right; } /* Finally, put node on right's left. */ right->left = node; node->parent = right; } /**********************************************************************//** Turn the node's left child's right sub-tree into node's left sub-tree. This also make node's left child it's parent. */ static void rbt_rotate_right( /*=============*/ const ib_rbt_node_t* nil, /*!< in: nil node of tree */ ib_rbt_node_t* node) /*!< in: node to rotate */ { ib_rbt_node_t* left = node->left; node->left = left->right; if (left->right != nil) { left->right->parent = node; } /* Left's new parent was node's parent. */ left->parent = node->parent; /* Since root's parent is tree->nil and root->parent->left points back to root, we can avoid the check. */ if (node == node->parent->right) { /* Node was on the left of its parent. */ node->parent->right = left; } else { /* Node must have been on the left. */ node->parent->left = left; } /* Finally, put node on left's right. */ left->right = node; node->parent = left; } /**********************************************************************//** Append a node to the tree. */ static ib_rbt_node_t* rbt_tree_add_child( /*===============*/ const ib_rbt_t* tree, ib_rbt_bound_t* parent, ib_rbt_node_t* node) { /* Cast away the const. */ ib_rbt_node_t* last = (ib_rbt_node_t*) parent->last; if (last == tree->root || parent->result < 0) { last->left = node; } else { /* FIXME: We don't handle duplicates (yet)! */ ut_a(parent->result != 0); last->right = node; } node->parent = last; return(node); } /**********************************************************************//** Generic binary tree insert */ static ib_rbt_node_t* rbt_tree_insert( /*============*/ ib_rbt_t* tree, const void* key, ib_rbt_node_t* node) { ib_rbt_bound_t parent; ib_rbt_node_t* current = ROOT(tree); parent.result = 0; parent.last = tree->root; /* Regular binary search. */ while (current != tree->nil) { parent.last = current; if (tree->cmp_arg) { parent.result = tree->compare_with_arg( tree->cmp_arg, key, current->value); } else { parent.result = tree->compare(key, current->value); } if (parent.result < 0) { current = current->left; } else { current = current->right; } } ut_a(current == tree->nil); rbt_tree_add_child(tree, &parent, node); return(node); } /**********************************************************************//** Balance a tree after inserting a node. */ static void rbt_balance_tree( /*=============*/ const ib_rbt_t* tree, /*!< in: tree to balance */ ib_rbt_node_t* node) /*!< in: node that was inserted */ { const ib_rbt_node_t* nil = tree->nil; ib_rbt_node_t* parent = node->parent; /* Restore the red-black property. */ node->color = IB_RBT_RED; while (node != ROOT(tree) && parent->color == IB_RBT_RED) { ib_rbt_node_t* grand_parent = parent->parent; if (parent == grand_parent->left) { ib_rbt_node_t* uncle = grand_parent->right; if (uncle->color == IB_RBT_RED) { /* Case 1 - change the colors. */ uncle->color = IB_RBT_BLACK; parent->color = IB_RBT_BLACK; grand_parent->color = IB_RBT_RED; /* Move node up the tree. */ node = grand_parent; } else { if (node == parent->right) { /* Right is a black node and node is to the right, case 2 - move node up and rotate. */ node = parent; rbt_rotate_left(nil, node); } grand_parent = node->parent->parent; /* Case 3. */ node->parent->color = IB_RBT_BLACK; grand_parent->color = IB_RBT_RED; rbt_rotate_right(nil, grand_parent); } } else { ib_rbt_node_t* uncle = grand_parent->left; if (uncle->color == IB_RBT_RED) { /* Case 1 - change the colors. */ uncle->color = IB_RBT_BLACK; parent->color = IB_RBT_BLACK; grand_parent->color = IB_RBT_RED; /* Move node up the tree. */ node = grand_parent; } else { if (node == parent->left) { /* Left is a black node and node is to the right, case 2 - move node up and rotate. */ node = parent; rbt_rotate_right(nil, node); } grand_parent = node->parent->parent; /* Case 3. */ node->parent->color = IB_RBT_BLACK; grand_parent->color = IB_RBT_RED; rbt_rotate_left(nil, grand_parent); } } parent = node->parent; } /* Color the root black. */ ROOT(tree)->color = IB_RBT_BLACK; } /**********************************************************************//** Find the given node's successor. @return successor node or NULL if no successor */ static ib_rbt_node_t* rbt_find_successor( /*===============*/ const ib_rbt_t* tree, /*!< in: rb tree */ const ib_rbt_node_t* current) /*!< in: this is declared const because it can be called via rbt_next() */ { const ib_rbt_node_t* nil = tree->nil; ib_rbt_node_t* next = current->right; /* Is there a sub-tree to the right that we can follow. */ if (next != nil) { /* Follow the left most links of the current right child. */ while (next->left != nil) { next = next->left; } } else { /* We will have to go up the tree to find the successor. */ ib_rbt_node_t* parent = current->parent; /* Cast away the const. */ next = (ib_rbt_node_t*) current; while (parent != tree->root && next == parent->right) { next = parent; parent = next->parent; } next = (parent == tree->root) ? NULL : parent; } return(next); } /**********************************************************************//** Find the given node's precedecessor. @return predecessor node or NULL if no predecesor */ static ib_rbt_node_t* rbt_find_predecessor( /*=================*/ const ib_rbt_t* tree, /*!< in: rb tree */ const ib_rbt_node_t* current) /*!< in: this is declared const because it can be called via rbt_prev() */ { const ib_rbt_node_t* nil = tree->nil; ib_rbt_node_t* prev = current->left; /* Is there a sub-tree to the left that we can follow. */ if (prev != nil) { /* Follow the right most links of the current left child. */ while (prev->right != nil) { prev = prev->right; } } else { /* We will have to go up the tree to find the precedecessor. */ ib_rbt_node_t* parent = current->parent; /* Cast away the const. */ prev = (ib_rbt_node_t*) current; while (parent != tree->root && prev == parent->left) { prev = parent; parent = prev->parent; } prev = (parent == tree->root) ? NULL : parent; } return(prev); } /**********************************************************************//** Replace node with child. After applying transformations eject becomes an orphan. */ static void rbt_eject_node( /*===========*/ ib_rbt_node_t* eject, /*!< in: node to eject */ ib_rbt_node_t* node) /*!< in: node to replace with */ { /* Update the to be ejected node's parent's child pointers. */ if (eject->parent->left == eject) { eject->parent->left = node; } else if (eject->parent->right == eject) { eject->parent->right = node; } else { ut_a(0); } /* eject is now an orphan but otherwise its pointers and color are left intact. */ node->parent = eject->parent; } /**********************************************************************//** Replace a node with another node. */ static void rbt_replace_node( /*=============*/ ib_rbt_node_t* replace, /*!< in: node to replace */ ib_rbt_node_t* node) /*!< in: node to replace with */ { ib_rbt_color_t color = node->color; /* Update the node pointers. */ node->left = replace->left; node->right = replace->right; /* Update the child node pointers. */ node->left->parent = node; node->right->parent = node; /* Make the parent of replace point to node. */ rbt_eject_node(replace, node); /* Swap the colors. */ node->color = replace->color; replace->color = color; } /**********************************************************************//** Detach node from the tree replacing it with one of it's children. @return the child node that now occupies the position of the detached node */ static ib_rbt_node_t* rbt_detach_node( /*============*/ const ib_rbt_t* tree, /*!< in: rb tree */ ib_rbt_node_t* node) /*!< in: node to detach */ { ib_rbt_node_t* child; const ib_rbt_node_t* nil = tree->nil; if (node->left != nil && node->right != nil) { /* Case where the node to be deleted has two children. */ ib_rbt_node_t* successor = rbt_find_successor(tree, node); ut_a(successor != nil); ut_a(successor->parent != nil); ut_a(successor->left == nil); child = successor->right; /* Remove the successor node and replace with its child. */ rbt_eject_node(successor, child); /* Replace the node to delete with its successor node. */ rbt_replace_node(node, successor); } else { ut_a(node->left == nil || node->right == nil); child = (node->left != nil) ? node->left : node->right; /* Replace the node to delete with one of it's children. */ rbt_eject_node(node, child); } /* Reset the node links. */ node->parent = node->right = node->left = tree->nil; return(child); } /**********************************************************************//** Rebalance the right sub-tree after deletion. @return node to rebalance if more rebalancing required else NULL */ static ib_rbt_node_t* rbt_balance_right( /*==============*/ const ib_rbt_node_t* nil, /*!< in: rb tree nil node */ ib_rbt_node_t* parent, /*!< in: parent node */ ib_rbt_node_t* sibling) /*!< in: sibling node */ { ib_rbt_node_t* node = NULL; ut_a(sibling != nil); /* Case 3. */ if (sibling->color == IB_RBT_RED) { parent->color = IB_RBT_RED; sibling->color = IB_RBT_BLACK; rbt_rotate_left(nil, parent); sibling = parent->right; ut_a(sibling != nil); } /* Since this will violate case 3 because of the change above. */ if (sibling->left->color == IB_RBT_BLACK && sibling->right->color == IB_RBT_BLACK) { node = parent; /* Parent needs to be rebalanced too. */ sibling->color = IB_RBT_RED; } else { if (sibling->right->color == IB_RBT_BLACK) { ut_a(sibling->left->color == IB_RBT_RED); sibling->color = IB_RBT_RED; sibling->left->color = IB_RBT_BLACK; rbt_rotate_right(nil, sibling); sibling = parent->right; ut_a(sibling != nil); } sibling->color = parent->color; sibling->right->color = IB_RBT_BLACK; parent->color = IB_RBT_BLACK; rbt_rotate_left(nil, parent); } return(node); } /**********************************************************************//** Rebalance the left sub-tree after deletion. @return node to rebalance if more rebalancing required else NULL */ static ib_rbt_node_t* rbt_balance_left( /*=============*/ const ib_rbt_node_t* nil, /*!< in: rb tree nil node */ ib_rbt_node_t* parent, /*!< in: parent node */ ib_rbt_node_t* sibling) /*!< in: sibling node */ { ib_rbt_node_t* node = NULL; ut_a(sibling != nil); /* Case 3. */ if (sibling->color == IB_RBT_RED) { parent->color = IB_RBT_RED; sibling->color = IB_RBT_BLACK; rbt_rotate_right(nil, parent); sibling = parent->left; ut_a(sibling != nil); } /* Since this will violate case 3 because of the change above. */ if (sibling->right->color == IB_RBT_BLACK && sibling->left->color == IB_RBT_BLACK) { node = parent; /* Parent needs to be rebalanced too. */ sibling->color = IB_RBT_RED; } else { if (sibling->left->color == IB_RBT_BLACK) { ut_a(sibling->right->color == IB_RBT_RED); sibling->color = IB_RBT_RED; sibling->right->color = IB_RBT_BLACK; rbt_rotate_left(nil, sibling); sibling = parent->left; ut_a(sibling != nil); } sibling->color = parent->color; sibling->left->color = IB_RBT_BLACK; parent->color = IB_RBT_BLACK; rbt_rotate_right(nil, parent); } return(node); } /**********************************************************************//** Delete the node and rebalance the tree if necessary */ static void rbt_remove_node_and_rebalance( /*==========================*/ ib_rbt_t* tree, /*!< in: rb tree */ ib_rbt_node_t* node) /*!< in: node to remove */ { /* Detach node and get the node that will be used as rebalance start. */ ib_rbt_node_t* child = rbt_detach_node(tree, node); if (node->color == IB_RBT_BLACK) { ib_rbt_node_t* last = child; ROOT(tree)->color = IB_RBT_RED; while (child && child->color == IB_RBT_BLACK) { ib_rbt_node_t* parent = child->parent; /* Did the deletion cause an imbalance in the parents left sub-tree. */ if (parent->left == child) { child = rbt_balance_right( tree->nil, parent, parent->right); } else if (parent->right == child) { child = rbt_balance_left( tree->nil, parent, parent->left); } else { ut_error; } if (child) { last = child; } } ut_a(last); last->color = IB_RBT_BLACK; ROOT(tree)->color = IB_RBT_BLACK; } /* Note that we have removed a node from the tree. */ --tree->n_nodes; } /**********************************************************************//** Recursively free the nodes. */ static void rbt_free_node( /*==========*/ ib_rbt_node_t* node, /*!< in: node to free */ ib_rbt_node_t* nil) /*!< in: rb tree nil node */ { if (node != nil) { rbt_free_node(node->left, nil); rbt_free_node(node->right, nil); ut_free(node); } } /**********************************************************************//** Free all the nodes and free the tree. */ void rbt_free( /*=====*/ ib_rbt_t* tree) /*!< in: rb tree to free */ { rbt_free_node(tree->root, tree->nil); ut_free(tree->nil); ut_free(tree); } /**********************************************************************//** Create an instance of a red black tree, whose comparison function takes an argument @return an empty rb tree */ ib_rbt_t* rbt_create_arg_cmp( /*===============*/ size_t sizeof_value, /*!< in: sizeof data item */ ib_rbt_arg_compare compare, /*!< in: fn to compare items */ void* cmp_arg) /*!< in: compare fn arg */ { ib_rbt_t* tree; ut_a(cmp_arg); tree = rbt_create(sizeof_value, NULL); tree->cmp_arg = cmp_arg; tree->compare_with_arg = compare; return(tree); } /**********************************************************************//** Create an instance of a red black tree. @return an empty rb tree */ ib_rbt_t* rbt_create( /*=======*/ size_t sizeof_value, /*!< in: sizeof data item */ ib_rbt_compare compare) /*!< in: fn to compare items */ { ib_rbt_t* tree; ib_rbt_node_t* node; tree = (ib_rbt_t*) ut_zalloc_nokey(sizeof(*tree)); tree->sizeof_value = sizeof_value; /* Create the sentinel (NIL) node. */ node = tree->nil = (ib_rbt_node_t*) ut_zalloc_nokey(sizeof(*node)); node->color = IB_RBT_BLACK; node->parent = node->left = node->right = node; /* Create the "fake" root, the real root node will be the left child of this node. */ node = tree->root = (ib_rbt_node_t*) ut_zalloc_nokey(sizeof(*node)); node->color = IB_RBT_BLACK; node->parent = node->left = node->right = tree->nil; tree->compare = compare; return(tree); } /**********************************************************************//** Generic insert of a value in the rb tree. @return inserted node */ const ib_rbt_node_t* rbt_insert( /*=======*/ ib_rbt_t* tree, /*!< in: rb tree */ const void* key, /*!< in: key for ordering */ const void* value) /*!< in: value of key, this value is copied to the node */ { ib_rbt_node_t* node; /* Create the node that will hold the value data. */ node = (ib_rbt_node_t*) ut_malloc_nokey(SIZEOF_NODE(tree)); memcpy(node->value, value, tree->sizeof_value); node->parent = node->left = node->right = tree->nil; /* Insert in the tree in the usual way. */ rbt_tree_insert(tree, key, node); rbt_balance_tree(tree, node); ++tree->n_nodes; return(node); } /**********************************************************************//** Add a new node to the tree, useful for data that is pre-sorted. @return appended node */ const ib_rbt_node_t* rbt_add_node( /*=========*/ ib_rbt_t* tree, /*!< in: rb tree */ ib_rbt_bound_t* parent, /*!< in: bounds */ const void* value) /*!< in: this value is copied to the node */ { ib_rbt_node_t* node; /* Create the node that will hold the value data */ node = (ib_rbt_node_t*) ut_malloc_nokey(SIZEOF_NODE(tree)); memcpy(node->value, value, tree->sizeof_value); node->parent = node->left = node->right = tree->nil; /* If tree is empty */ if (parent->last == NULL) { parent->last = tree->root; } /* Append the node, the hope here is that the caller knows what s/he is doing. */ rbt_tree_add_child(tree, parent, node); rbt_balance_tree(tree, node); ++tree->n_nodes; #if defined(IB_RBT_TESTING) ut_a(rbt_validate(tree)); #endif return(node); } /**********************************************************************//** Find a matching node in the rb tree. @return NULL if not found else the node where key was found */ const ib_rbt_node_t* rbt_lookup( /*=======*/ const ib_rbt_t* tree, /*!< in: rb tree */ const void* key) /*!< in: key to use for search */ { const ib_rbt_node_t* current = ROOT(tree); /* Regular binary search. */ while (current != tree->nil) { int result; if (tree->cmp_arg) { result = tree->compare_with_arg( tree->cmp_arg, key, current->value); } else { result = tree->compare(key, current->value); } if (result < 0) { current = current->left; } else if (result > 0) { current = current->right; } else { break; } } return(current != tree->nil ? current : NULL); } /**********************************************************************//** Delete a node indentified by key. @return TRUE if success FALSE if not found */ ibool rbt_delete( /*=======*/ ib_rbt_t* tree, /*!< in: rb tree */ const void* key) /*!< in: key to delete */ { ibool deleted = FALSE; ib_rbt_node_t* node = (ib_rbt_node_t*) rbt_lookup(tree, key); if (node) { rbt_remove_node_and_rebalance(tree, node); ut_free(node); deleted = TRUE; } return(deleted); } /**********************************************************************//** Remove a node from the rb tree, the node is not free'd, that is the callers responsibility. @return deleted node but without the const */ ib_rbt_node_t* rbt_remove_node( /*============*/ ib_rbt_t* tree, /*!< in: rb tree */ const ib_rbt_node_t* const_node) /*!< in: node to delete, this is a fudge and declared const because the caller can access only const nodes */ { /* Cast away the const. */ rbt_remove_node_and_rebalance(tree, (ib_rbt_node_t*) const_node); /* This is to make it easier to do something like this: ut_free(rbt_remove_node(node)); */ return((ib_rbt_node_t*) const_node); } /**********************************************************************//** Find the node that has the lowest key that is >= key. @return node satisfying the lower bound constraint or NULL */ const ib_rbt_node_t* rbt_lower_bound( /*============*/ const ib_rbt_t* tree, /*!< in: rb tree */ const void* key) /*!< in: key to search */ { ib_rbt_node_t* lb_node = NULL; ib_rbt_node_t* current = ROOT(tree); while (current != tree->nil) { int result; if (tree->cmp_arg) { result = tree->compare_with_arg( tree->cmp_arg, key, current->value); } else { result = tree->compare(key, current->value); } if (result > 0) { current = current->right; } else if (result < 0) { lb_node = current; current = current->left; } else { lb_node = current; break; } } return(lb_node); } /**********************************************************************//** Find the node that has the greatest key that is <= key. @return node satisfying the upper bound constraint or NULL */ const ib_rbt_node_t* rbt_upper_bound( /*============*/ const ib_rbt_t* tree, /*!< in: rb tree */ const void* key) /*!< in: key to search */ { ib_rbt_node_t* ub_node = NULL; ib_rbt_node_t* current = ROOT(tree); while (current != tree->nil) { int result; if (tree->cmp_arg) { result = tree->compare_with_arg( tree->cmp_arg, key, current->value); } else { result = tree->compare(key, current->value); } if (result > 0) { ub_node = current; current = current->right; } else if (result < 0) { current = current->left; } else { ub_node = current; break; } } return(ub_node); } /**********************************************************************//** Find the node that has the greatest key that is <= key. @return value of result */ int rbt_search( /*=======*/ const ib_rbt_t* tree, /*!< in: rb tree */ ib_rbt_bound_t* parent, /*!< in: search bounds */ const void* key) /*!< in: key to search */ { ib_rbt_node_t* current = ROOT(tree); /* Every thing is greater than the NULL root. */ parent->result = 1; parent->last = NULL; while (current != tree->nil) { parent->last = current; if (tree->cmp_arg) { parent->result = tree->compare_with_arg( tree->cmp_arg, key, current->value); } else { parent->result = tree->compare(key, current->value); } if (parent->result > 0) { current = current->right; } else if (parent->result < 0) { current = current->left; } else { break; } } return(parent->result); } /**********************************************************************//** Find the node that has the greatest key that is <= key. But use the supplied comparison function. @return value of result */ int rbt_search_cmp( /*===========*/ const ib_rbt_t* tree, /*!< in: rb tree */ ib_rbt_bound_t* parent, /*!< in: search bounds */ const void* key, /*!< in: key to search */ ib_rbt_compare compare, /*!< in: fn to compare items */ ib_rbt_arg_compare arg_compare) /*!< in: fn to compare items with argument */ { ib_rbt_node_t* current = ROOT(tree); /* Every thing is greater than the NULL root. */ parent->result = 1; parent->last = NULL; while (current != tree->nil) { parent->last = current; if (arg_compare) { ut_ad(tree->cmp_arg); parent->result = arg_compare( tree->cmp_arg, key, current->value); } else { parent->result = compare(key, current->value); } if (parent->result > 0) { current = current->right; } else if (parent->result < 0) { current = current->left; } else { break; } } return(parent->result); } /**********************************************************************//** Return the left most node in the tree. */ const ib_rbt_node_t* rbt_first( /*======*/ /* out leftmost node or NULL */ const ib_rbt_t* tree) /* in: rb tree */ { ib_rbt_node_t* first = NULL; ib_rbt_node_t* current = ROOT(tree); while (current != tree->nil) { first = current; current = current->left; } return(first); } /**********************************************************************//** Return the right most node in the tree. @return the rightmost node or NULL */ const ib_rbt_node_t* rbt_last( /*=====*/ const ib_rbt_t* tree) /*!< in: rb tree */ { ib_rbt_node_t* last = NULL; ib_rbt_node_t* current = ROOT(tree); while (current != tree->nil) { last = current; current = current->right; } return(last); } /**********************************************************************//** Return the next node. @return node next from current */ const ib_rbt_node_t* rbt_next( /*=====*/ const ib_rbt_t* tree, /*!< in: rb tree */ const ib_rbt_node_t* current) /*!< in: current node */ { return(current ? rbt_find_successor(tree, current) : NULL); } /**********************************************************************//** Return the previous node. @return node prev from current */ const ib_rbt_node_t* rbt_prev( /*=====*/ const ib_rbt_t* tree, /*!< in: rb tree */ const ib_rbt_node_t* current) /*!< in: current node */ { return(current ? rbt_find_predecessor(tree, current) : NULL); } /**********************************************************************//** Reset the tree. Delete all the nodes. */ void rbt_clear( /*======*/ ib_rbt_t* tree) /*!< in: rb tree */ { rbt_free_node(ROOT(tree), tree->nil); tree->n_nodes = 0; tree->root->left = tree->root->right = tree->nil; } /**********************************************************************//** Merge the node from dst into src. Return the number of nodes merged. @return no. of recs merged */ ulint rbt_merge_uniq( /*===========*/ ib_rbt_t* dst, /*!< in: dst rb tree */ const ib_rbt_t* src) /*!< in: src rb tree */ { ib_rbt_bound_t parent; ulint n_merged = 0; const ib_rbt_node_t* src_node = rbt_first(src); if (rbt_empty(src) || dst == src) { return(0); } for (/* No op */; src_node; src_node = rbt_next(src, src_node)) { if (rbt_search(dst, &parent, src_node->value) != 0) { rbt_add_node(dst, &parent, src_node->value); ++n_merged; } } return(n_merged); } /**********************************************************************//** Merge the node from dst into src. Return the number of nodes merged. Delete the nodes from src after copying node to dst. As a side effect the duplicates will be left untouched in the src. @return no. of recs merged */ ulint rbt_merge_uniq_destructive( /*=======================*/ ib_rbt_t* dst, /*!< in: dst rb tree */ ib_rbt_t* src) /*!< in: src rb tree */ { ib_rbt_bound_t parent; ib_rbt_node_t* src_node; ulint old_size = rbt_size(dst); if (rbt_empty(src) || dst == src) { return(0); } for (src_node = (ib_rbt_node_t*) rbt_first(src); src_node; /* */) { ib_rbt_node_t* prev = src_node; src_node = (ib_rbt_node_t*) rbt_next(src, prev); /* Skip duplicates. */ if (rbt_search(dst, &parent, prev->value) != 0) { /* Remove and reset the node but preserve the node (data) value. */ rbt_remove_node_and_rebalance(src, prev); /* The nil should be taken from the dst tree. */ prev->parent = prev->left = prev->right = dst->nil; rbt_tree_add_child(dst, &parent, prev); rbt_balance_tree(dst, prev); ++dst->n_nodes; } } #if defined(IB_RBT_TESTING) ut_a(rbt_validate(dst)); ut_a(rbt_validate(src)); #endif return(rbt_size(dst) - old_size); } /**********************************************************************//** Check that every path from the root to the leaves has the same count and the tree nodes are in order. @return TRUE if OK FALSE otherwise */ ibool rbt_validate( /*=========*/ const ib_rbt_t* tree) /*!< in: RB tree to validate */ { if (rbt_count_black_nodes(tree, ROOT(tree)) > 0) { return(rbt_check_ordering(tree)); } return(FALSE); } /**********************************************************************//** Iterate over the tree in depth first order. */ void rbt_print( /*======*/ const ib_rbt_t* tree, /*!< in: tree to traverse */ ib_rbt_print_node print) /*!< in: print function */ { rbt_print_subtree(tree, ROOT(tree), print); }