/********************************************************************** Utilities for converting data from the database file to the machine format. (c) 1995 Innobase Oy Created 11/28/1995 Heikki Tuuri ***********************************************************************/ #include "ut0mem.h" /*********************************************************** The following function is used to store data in one byte. */ UNIV_INLINE void mach_write_to_1( /*============*/ byte* b, /* in: pointer to byte where to store */ ulint n) /* in: ulint integer to be stored, >= 0, < 256 */ { ut_ad(b); ut_ad(n <= 0xFFUL); b[0] = (byte)n; } /************************************************************ The following function is used to fetch data from one byte. */ UNIV_INLINE ulint mach_read_from_1( /*=============*/ /* out: ulint integer, >= 0, < 256 */ const byte* b) /* in: pointer to byte */ { ut_ad(b); return((ulint)(b[0])); } /*********************************************************** The following function is used to store data in two consecutive bytes. We store the most significant byte to the lowest address. */ UNIV_INLINE void mach_write_to_2( /*============*/ byte* b, /* in: pointer to two bytes where to store */ ulint n) /* in: ulint integer to be stored */ { ut_ad(b); ut_ad(n <= 0xFFFFUL); b[0] = (byte)(n >> 8); b[1] = (byte)(n); } /************************************************************ The following function is used to fetch data from 2 consecutive bytes. The most significant byte is at the lowest address. */ UNIV_INLINE ulint mach_read_from_2( /*=============*/ /* out: ulint integer */ const byte* b) /* in: pointer to 2 bytes */ { ut_ad(b); return( ((ulint)(b[0]) << 8) + (ulint)(b[1]) ); } /************************************************************ The following function is used to convert a 16-bit data item to the canonical format, for fast bytewise equality test against memory. */ UNIV_INLINE uint16 mach_encode_2( /*==========*/ /* out: 16-bit integer in canonical format */ ulint n) /* in: integer in machine-dependent format */ { uint16 ret; ut_ad(2 == sizeof ret); mach_write_to_2((byte*) &ret, n); return(ret); } /************************************************************ The following function is used to convert a 16-bit data item from the canonical format, for fast bytewise equality test against memory. */ UNIV_INLINE ulint mach_decode_2( /*==========*/ /* out: integer in machine-dependent format */ uint16 n) /* in: 16-bit integer in canonical format */ { ut_ad(2 == sizeof n); return(mach_read_from_2((const byte*) &n)); } /*********************************************************** The following function is used to store data in 3 consecutive bytes. We store the most significant byte to the lowest address. */ UNIV_INLINE void mach_write_to_3( /*============*/ byte* b, /* in: pointer to 3 bytes where to store */ ulint n) /* in: ulint integer to be stored */ { ut_ad(b); ut_ad(n <= 0xFFFFFFUL); b[0] = (byte)(n >> 16); b[1] = (byte)(n >> 8); b[2] = (byte)(n); } /************************************************************ The following function is used to fetch data from 3 consecutive bytes. The most significant byte is at the lowest address. */ UNIV_INLINE ulint mach_read_from_3( /*=============*/ /* out: ulint integer */ const byte* b) /* in: pointer to 3 bytes */ { ut_ad(b); return( ((ulint)(b[0]) << 16) + ((ulint)(b[1]) << 8) + (ulint)(b[2]) ); } /*********************************************************** The following function is used to store data in four consecutive bytes. We store the most significant byte to the lowest address. */ UNIV_INLINE void mach_write_to_4( /*============*/ byte* b, /* in: pointer to four bytes where to store */ ulint n) /* in: ulint integer to be stored */ { ut_ad(b); b[0] = (byte)(n >> 24); b[1] = (byte)(n >> 16); b[2] = (byte)(n >> 8); b[3] = (byte)n; } /************************************************************ The following function is used to fetch data from 4 consecutive bytes. The most significant byte is at the lowest address. */ UNIV_INLINE ulint mach_read_from_4( /*=============*/ /* out: ulint integer */ const byte* b) /* in: pointer to four bytes */ { ut_ad(b); return( ((ulint)(b[0]) << 24) + ((ulint)(b[1]) << 16) + ((ulint)(b[2]) << 8) + (ulint)(b[3]) ); } /************************************************************* Writes a ulint in a compressed form where the first byte codes the length of the stored ulint. We look at the most significant bits of the byte. If the most significant bit is zero, it means 1-byte storage, else if the 2nd bit is 0, it means 2-byte storage, else if 3rd is 0, it means 3-byte storage, else if 4th is 0, it means 4-byte storage, else the storage is 5-byte. */ UNIV_INLINE ulint mach_write_compressed( /*==================*/ /* out: compressed size in bytes */ byte* b, /* in: pointer to memory where to store */ ulint n) /* in: ulint integer (< 2^32) to be stored */ { ut_ad(b); if (n < 0x80UL) { mach_write_to_1(b, n); return(1); } else if (n < 0x4000UL) { mach_write_to_2(b, n | 0x8000UL); return(2); } else if (n < 0x200000UL) { mach_write_to_3(b, n | 0xC00000UL); return(3); } else if (n < 0x10000000UL) { mach_write_to_4(b, n | 0xE0000000UL); return(4); } else { mach_write_to_1(b, 0xF0UL); mach_write_to_4(b + 1, n); return(5); } } /************************************************************* Returns the size of a ulint when written in the compressed form. */ UNIV_INLINE ulint mach_get_compressed_size( /*=====================*/ /* out: compressed size in bytes */ ulint n) /* in: ulint integer (< 2^32) to be stored */ { if (n < 0x80UL) { return(1); } else if (n < 0x4000UL) { return(2); } else if (n < 0x200000UL) { return(3); } else if (n < 0x10000000UL) { return(4); } else { return(5); } } /************************************************************* Reads a ulint in a compressed form. */ UNIV_INLINE ulint mach_read_compressed( /*=================*/ /* out: read integer (< 2^32) */ const byte* b) /* in: pointer to memory from where to read */ { ulint flag; ut_ad(b); flag = mach_read_from_1(b); if (flag < 0x80UL) { return(flag); } else if (flag < 0xC0UL) { return(mach_read_from_2(b) & 0x7FFFUL); } else if (flag < 0xE0UL) { return(mach_read_from_3(b) & 0x3FFFFFUL); } else if (flag < 0xF0UL) { return(mach_read_from_4(b) & 0x1FFFFFFFUL); } else { ut_ad(flag == 0xF0UL); return(mach_read_from_4(b + 1)); } } /*********************************************************** The following function is used to store data in 8 consecutive bytes. We store the most significant byte to the lowest address. */ UNIV_INLINE void mach_write_to_8( /*============*/ byte* b, /* in: pointer to 8 bytes where to store */ dulint n) /* in: dulint integer to be stored */ { ut_ad(b); mach_write_to_4(b, ut_dulint_get_high(n)); mach_write_to_4(b + 4, ut_dulint_get_low(n)); } /*********************************************************** The following function is used to store data in 8 consecutive bytes. We store the most significant byte to the lowest address. */ UNIV_INLINE void mach_write_ull( /*===========*/ byte* b, /* in: pointer to 8 bytes where to store */ ib_uint64_t n) /* in: 64-bit integer to be stored */ { ut_ad(b); mach_write_to_4(b, (ulint) (n >> 32)); mach_write_to_4(b + 4, (ulint) n); } /************************************************************ The following function is used to fetch data from 8 consecutive bytes. The most significant byte is at the lowest address. */ UNIV_INLINE dulint mach_read_from_8( /*=============*/ /* out: dulint integer */ const byte* b) /* in: pointer to 8 bytes */ { ulint high; ulint low; ut_ad(b); high = mach_read_from_4(b); low = mach_read_from_4(b + 4); return(ut_dulint_create(high, low)); } /************************************************************ The following function is used to fetch data from 8 consecutive bytes. The most significant byte is at the lowest address. */ UNIV_INLINE ib_uint64_t mach_read_ull( /*==========*/ /* out: 64-bit integer */ const byte* b) /* in: pointer to 8 bytes */ { ib_uint64_t ull; ull = ((ib_uint64_t) mach_read_from_4(b)) << 32; ull |= (ib_uint64_t) mach_read_from_4(b + 4); return(ull); } /*********************************************************** The following function is used to store data in 7 consecutive bytes. We store the most significant byte to the lowest address. */ UNIV_INLINE void mach_write_to_7( /*============*/ byte* b, /* in: pointer to 7 bytes where to store */ dulint n) /* in: dulint integer to be stored */ { ut_ad(b); mach_write_to_3(b, ut_dulint_get_high(n)); mach_write_to_4(b + 3, ut_dulint_get_low(n)); } /************************************************************ The following function is used to fetch data from 7 consecutive bytes. The most significant byte is at the lowest address. */ UNIV_INLINE dulint mach_read_from_7( /*=============*/ /* out: dulint integer */ const byte* b) /* in: pointer to 7 bytes */ { ulint high; ulint low; ut_ad(b); high = mach_read_from_3(b); low = mach_read_from_4(b + 3); return(ut_dulint_create(high, low)); } /*********************************************************** The following function is used to store data in 6 consecutive bytes. We store the most significant byte to the lowest address. */ UNIV_INLINE void mach_write_to_6( /*============*/ byte* b, /* in: pointer to 6 bytes where to store */ dulint n) /* in: dulint integer to be stored */ { ut_ad(b); mach_write_to_2(b, ut_dulint_get_high(n)); mach_write_to_4(b + 2, ut_dulint_get_low(n)); } /************************************************************ The following function is used to fetch data from 6 consecutive bytes. The most significant byte is at the lowest address. */ UNIV_INLINE dulint mach_read_from_6( /*=============*/ /* out: dulint integer */ const byte* b) /* in: pointer to 6 bytes */ { ulint high; ulint low; ut_ad(b); high = mach_read_from_2(b); low = mach_read_from_4(b + 2); return(ut_dulint_create(high, low)); } /************************************************************* Writes a dulint in a compressed form (5..9 bytes). */ UNIV_INLINE ulint mach_dulint_write_compressed( /*=========================*/ /* out: size in bytes */ byte* b, /* in: pointer to memory where to store */ dulint n) /* in: dulint integer to be stored */ { ulint size; ut_ad(b); size = mach_write_compressed(b, ut_dulint_get_high(n)); mach_write_to_4(b + size, ut_dulint_get_low(n)); return(size + 4); } /************************************************************* Returns the size of a dulint when written in the compressed form. */ UNIV_INLINE ulint mach_dulint_get_compressed_size( /*============================*/ /* out: compressed size in bytes */ dulint n) /* in: dulint integer to be stored */ { return(4 + mach_get_compressed_size(ut_dulint_get_high(n))); } /************************************************************* Reads a dulint in a compressed form. */ UNIV_INLINE dulint mach_dulint_read_compressed( /*========================*/ /* out: read dulint */ const byte* b) /* in: pointer to memory from where to read */ { ulint high; ulint low; ulint size; ut_ad(b); high = mach_read_compressed(b); size = mach_get_compressed_size(high); low = mach_read_from_4(b + size); return(ut_dulint_create(high, low)); } /************************************************************* Writes a dulint in a compressed form (1..11 bytes). */ UNIV_INLINE ulint mach_dulint_write_much_compressed( /*==============================*/ /* out: size in bytes */ byte* b, /* in: pointer to memory where to store */ dulint n) /* in: dulint integer to be stored */ { ulint size; ut_ad(b); if (ut_dulint_get_high(n) == 0) { return(mach_write_compressed(b, ut_dulint_get_low(n))); } *b = (byte)0xFF; size = 1 + mach_write_compressed(b + 1, ut_dulint_get_high(n)); size += mach_write_compressed(b + size, ut_dulint_get_low(n)); return(size); } /************************************************************* Returns the size of a dulint when written in the compressed form. */ UNIV_INLINE ulint mach_dulint_get_much_compressed_size( /*=================================*/ /* out: compressed size in bytes */ dulint n) /* in: dulint integer to be stored */ { if (0 == ut_dulint_get_high(n)) { return(mach_get_compressed_size(ut_dulint_get_low(n))); } return(1 + mach_get_compressed_size(ut_dulint_get_high(n)) + mach_get_compressed_size(ut_dulint_get_low(n))); } /************************************************************* Reads a dulint in a compressed form. */ UNIV_INLINE dulint mach_dulint_read_much_compressed( /*=============================*/ /* out: read dulint */ const byte* b) /* in: pointer to memory from where to read */ { ulint high; ulint low; ulint size; ut_ad(b); if (*b != (byte)0xFF) { high = 0; size = 0; } else { high = mach_read_compressed(b + 1); size = 1 + mach_get_compressed_size(high); } low = mach_read_compressed(b + size); return(ut_dulint_create(high, low)); } /************************************************************* Reads a double. It is stored in a little-endian format. */ UNIV_INLINE double mach_double_read( /*=============*/ /* out: double read */ const byte* b) /* in: pointer to memory from where to read */ { double d; ulint i; byte* ptr; ptr = (byte*)&d; for (i = 0; i < sizeof(double); i++) { #ifdef WORDS_BIGENDIAN ptr[sizeof(double) - i - 1] = b[i]; #else ptr[i] = b[i]; #endif } return(d); } /************************************************************* Writes a double. It is stored in a little-endian format. */ UNIV_INLINE void mach_double_write( /*==============*/ byte* b, /* in: pointer to memory where to write */ double d) /* in: double */ { ulint i; byte* ptr; ptr = (byte*)&d; for (i = 0; i < sizeof(double); i++) { #ifdef WORDS_BIGENDIAN b[i] = ptr[sizeof(double) - i - 1]; #else b[i] = ptr[i]; #endif } } /************************************************************* Reads a float. It is stored in a little-endian format. */ UNIV_INLINE float mach_float_read( /*============*/ /* out: float read */ const byte* b) /* in: pointer to memory from where to read */ { float d; ulint i; byte* ptr; ptr = (byte*)&d; for (i = 0; i < sizeof(float); i++) { #ifdef WORDS_BIGENDIAN ptr[sizeof(float) - i - 1] = b[i]; #else ptr[i] = b[i]; #endif } return(d); } /************************************************************* Writes a float. It is stored in a little-endian format. */ UNIV_INLINE void mach_float_write( /*=============*/ byte* b, /* in: pointer to memory where to write */ float d) /* in: float */ { ulint i; byte* ptr; ptr = (byte*)&d; for (i = 0; i < sizeof(float); i++) { #ifdef WORDS_BIGENDIAN b[i] = ptr[sizeof(float) - i - 1]; #else b[i] = ptr[i]; #endif } } /************************************************************* Reads a ulint stored in the little-endian format. */ UNIV_INLINE ulint mach_read_from_n_little_endian( /*===========================*/ /* out: unsigned long int */ const byte* buf, /* in: from where to read */ ulint buf_size) /* in: from how many bytes to read */ { ulint n = 0; const byte* ptr; ut_ad(buf_size <= sizeof(ulint)); ut_ad(buf_size > 0); ptr = buf + buf_size; for (;;) { ptr--; n = n << 8; n += (ulint)(*ptr); if (ptr == buf) { break; } } return(n); } /************************************************************* Writes a ulint in the little-endian format. */ UNIV_INLINE void mach_write_to_n_little_endian( /*==========================*/ byte* dest, /* in: where to write */ ulint dest_size, /* in: into how many bytes to write */ ulint n) /* in: unsigned long int to write */ { byte* end; ut_ad(dest_size <= sizeof(ulint)); ut_ad(dest_size > 0); end = dest + dest_size; for (;;) { *dest = (byte)(n & 0xFF); n = n >> 8; dest++; if (dest == end) { break; } } ut_ad(n == 0); } /************************************************************* Reads a ulint stored in the little-endian format. */ UNIV_INLINE ulint mach_read_from_2_little_endian( /*===========================*/ /* out: unsigned long int */ const byte* buf) /* in: from where to read */ { return((ulint)(*buf) + ((ulint)(*(buf + 1))) * 256); } /************************************************************* Writes a ulint in the little-endian format. */ UNIV_INLINE void mach_write_to_2_little_endian( /*==========================*/ byte* dest, /* in: where to write */ ulint n) /* in: unsigned long int to write */ { ut_ad(n < 256 * 256); *dest = (byte)(n & 0xFFUL); n = n >> 8; dest++; *dest = (byte)(n & 0xFFUL); } /************************************************************* Convert integral type from storage byte order (big endian) to host byte order. */ UNIV_INLINE ullint mach_read_int_type( /*===============*/ /* out: integer value */ const byte* src, /* in: where to read from */ ulint len, /* in: length of src */ ibool unsigned_type) /* in: signed or unsigned flag */ { /* XXX this can be optimized on big-endian machines */ ullint ret; uint i; if (unsigned_type || (src[0] & 0x80)) { ret = 0x0000000000000000ULL; } else { ret = 0xFFFFFFFFFFFFFF00ULL; } if (unsigned_type) { ret |= src[0]; } else { ret |= src[0] ^ 0x80; } for (i = 1; i < len; i++) { ret <<= 8; ret |= src[i]; } return(ret); }