/* -*- mode: C; c-basic-offset: 4 -*- */ #ident "Copyright (c) 2007, 2008 Tokutek Inc. All rights reserved." #include "test.h" #include "includes.h" #define TESTMSNDSKVAL 0x1234567890123456 // arbitrary number #define TESTMSNMEMVAL 0x6543210987654321 // arbitrary number #define MIN(x, y) (((x) < (y)) ? (x) : (y)) static int omt_int_cmp(OMTVALUE p, void *q) { LEAFENTRY a = p, b = q; void *ak, *bk; u_int32_t al, bl; ak = le_key_and_len(a, &al); bk = le_key_and_len(b, &bl); assert(al == 4 && bl == 4); int ai = *(int *) ak; int bi = *(int *) bk; int c = ai - bi; if (c < 0) { return -1; } if (c > 0) { return +1; } else { return 0; } } static int omt_cmp(OMTVALUE p, void *q) { LEAFENTRY a = p, b = q; void *ak, *bk; u_int32_t al, bl; ak = le_key_and_len(a, &al); bk = le_key_and_len(b, &bl); int l = MIN(al, bl); int c = memcmp(ak, bk, l); if (c < 0) { return -1; } if (c > 0) { return +1; } int d = al - bl; if (d < 0) { return -1; } if (d > 0) { return +1; } else { return 0; } } static LEAFENTRY le_fastmalloc(char *key, int keylen, char *val, int vallen) { LEAFENTRY r = toku_malloc(sizeof(r->type) + sizeof(r->keylen) + sizeof(r->u.clean.vallen) + keylen + vallen); resource_assert(r); r->type = LE_CLEAN; r->keylen = keylen; r->u.clean.vallen = vallen; memcpy(&r->u.clean.key_val[0], key, keylen); memcpy(&r->u.clean.key_val[keylen], val, vallen); return r; } static LEAFENTRY le_malloc(char *key, char *val) { int keylen = strlen(key) + 1; int vallen = strlen(val) + 1; return le_fastmalloc(key, keylen, val, vallen); } struct check_leafentries_struct { int nelts; LEAFENTRY *elts; int i; int (*cmp)(OMTVALUE, void *); }; static int check_leafentries(OMTVALUE v, u_int32_t UU(i), void *extra) { struct check_leafentries_struct *e = extra; assert(e->i < e->nelts); assert(e->cmp(v, e->elts[e->i]) == 0); e->i++; return 0; } static void test_serialize_leaf_with_large_pivots(void) { int r; struct brtnode sn, *dn; const int keylens = 256*1024, vallens = 0, nrows = 8; // assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); sn.max_msn_applied_to_node_on_disk.msn = 0; sn.max_msn_applied_to_node_in_memory.msn = 0; sn.nodesize = 4*(1<<20); sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = BRT_LAYOUT_VERSION; sn.layout_version_original = BRT_LAYOUT_VERSION; sn.height = 0; sn.n_children = nrows; LEAFENTRY les[nrows]; { char key[keylens], val[vallens]; key[keylens-1] = '\0'; for (int i = 0; i < nrows; ++i) { char c = 'a' + i; memset(key, c, keylens-1); les[i] = le_fastmalloc((char *) &key, sizeof(key), (char *) &val, sizeof(val)); } } MALLOC_N(sn.n_children, sn.bp); MALLOC_N(sn.n_children-1, sn.childkeys); sn.totalchildkeylens = (sn.n_children-1)*sizeof(int); for (int i = 0; i < sn.n_children; ++i) { BP_STATE(&sn,i) = PT_AVAIL; BP_SUBTREE_EST(&sn,i).ndata = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).nkeys = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).dsize = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).exact = (BOOL)(random()%2 != 0); sn.bp[i].ptr = toku_xmalloc(sizeof(struct brtnode_leaf_basement_node)); r = toku_omt_create(&BLB_BUFFER(&sn, i)); assert(r==0); BLB_OPTIMIZEDFORUPGRADE(&sn, i) = BRT_LAYOUT_VERSION; BLB_SOFTCOPYISUPTODATE(&sn, i) = TRUE; BLB_SEQINSERT(&sn, i) = 0; } for (int i = 0; i < nrows; ++i) { r = toku_omt_insert(BLB_BUFFER(&sn, i), les[i], omt_cmp, les[i], NULL); assert(r==0); BLB_NBYTESINBUF(&sn, i) = OMT_ITEM_OVERHEAD + leafentry_disksize(les[i]); if (i < nrows-1) { u_int32_t keylen; char *key = le_key_and_len(les[i], &keylen); sn.childkeys[i] = kv_pair_malloc(key, keylen, 0, 0); } } struct brt *XMALLOC(brt); struct brt_header *XCALLOC(brt_h); brt->h = brt_h; brt_h->type = BRTHEADER_CURRENT; brt_h->panic = 0; brt_h->panic_string = 0; toku_blocktable_create_new(&brt_h->blocktable); //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE); assert(r==0); r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, &dn, brt_h); assert(r==0); assert(dn->thisnodename.b==20); assert(dn->layout_version ==BRT_LAYOUT_VERSION); assert(dn->layout_version_original ==BRT_LAYOUT_VERSION); { const u_int32_t npartitions = dn->n_children; assert(dn->totalchildkeylens==(keylens*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_cmp }; u_int32_t last_i = 0; for (u_int32_t i = 0; i < npartitions; ++i) { assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0); toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); assert(BLB_OPTIMIZEDFORUPGRADE(dn, i) == BRT_LAYOUT_VERSION); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+keylens+vallens) + toku_omt_size(BLB_BUFFER(dn, i))); last_i = extra.i; } assert(extra.i == nrows); } toku_brtnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { kv_pair_free(sn.childkeys[i]); } for (int i = 0; i < sn.n_children; ++i) { toku_omt_destroy(&BLB_BUFFER(&sn, i)); } for (int i = 0; i < nrows; ++i) { toku_free(les[i]); } toku_free(sn.childkeys); for (int i = 0; i < sn.n_children; i++) { toku_free(sn.bp[i].ptr); } toku_free(sn.bp); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h); toku_free(brt); r = close(fd); assert(r != -1); } static void test_serialize_leaf_with_many_rows(void) { int r; struct brtnode sn, *dn; const int keylens = sizeof(int), vallens = sizeof(int), nrows = 196*1024; // assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); sn.max_msn_applied_to_node_on_disk.msn = 0; sn.max_msn_applied_to_node_in_memory.msn = 0; sn.nodesize = 4*(1<<20); sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = BRT_LAYOUT_VERSION; sn.layout_version_original = BRT_LAYOUT_VERSION; sn.height = 0; sn.n_children = 1; LEAFENTRY les[nrows]; { int key = 0, val = 0; for (int i = 0; i < nrows; ++i, key++, val++) { les[i] = le_fastmalloc((char *) &key, sizeof(key), (char *) &val, sizeof(val)); } } MALLOC_N(sn.n_children, sn.bp); MALLOC_N(sn.n_children-1, sn.childkeys); sn.totalchildkeylens = (sn.n_children-1)*sizeof(int); for (int i = 0; i < sn.n_children; ++i) { BP_STATE(&sn,i) = PT_AVAIL; BP_SUBTREE_EST(&sn,i).ndata = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).nkeys = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).dsize = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).exact = (BOOL)(random()%2 != 0); sn.bp[i].ptr = toku_xmalloc(sizeof(struct brtnode_leaf_basement_node)); r = toku_omt_create(&BLB_BUFFER(&sn, i)); assert(r==0); BLB_OPTIMIZEDFORUPGRADE(&sn, i) = BRT_LAYOUT_VERSION; BLB_SOFTCOPYISUPTODATE(&sn, i) = TRUE; BLB_SEQINSERT(&sn, i) = 0; } BLB_NBYTESINBUF(&sn, 0) = 0; for (int i = 0; i < nrows; ++i) { r = toku_omt_insert(BLB_BUFFER(&sn, 0), les[i], omt_int_cmp, les[i], NULL); assert(r==0); BLB_NBYTESINBUF(&sn, 0) += OMT_ITEM_OVERHEAD + leafentry_disksize(les[i]); } struct brt *XMALLOC(brt); struct brt_header *XCALLOC(brt_h); brt->h = brt_h; brt_h->type = BRTHEADER_CURRENT; brt_h->panic = 0; brt_h->panic_string = 0; toku_blocktable_create_new(&brt_h->blocktable); //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE); assert(r==0); r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, &dn, brt_h); assert(r==0); assert(dn->thisnodename.b==20); assert(dn->layout_version ==BRT_LAYOUT_VERSION); assert(dn->layout_version_original ==BRT_LAYOUT_VERSION); { const u_int32_t npartitions = dn->n_children; assert(dn->totalchildkeylens==(sizeof(int)*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_int_cmp }; u_int32_t last_i = 0; for (u_int32_t i = 0; i < npartitions; ++i) { assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0); toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); assert(BLB_OPTIMIZEDFORUPGRADE(dn, i) == BRT_LAYOUT_VERSION); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+keylens+vallens) + toku_omt_size(BLB_BUFFER(dn, i))); assert(BLB_NBYTESINBUF(dn, i) < 128*1024); // BN_MAX_SIZE, apt to change last_i = extra.i; } assert(extra.i == nrows); } toku_brtnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { kv_pair_free(sn.childkeys[i]); } for (int i = 0; i < sn.n_children; ++i) { toku_omt_destroy(&BLB_BUFFER(&sn, i)); } for (int i = 0; i < nrows; ++i) { toku_free(les[i]); } for (int i = 0; i < sn.n_children; i++) { toku_free(sn.bp[i].ptr); } toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h); toku_free(brt); r = close(fd); assert(r != -1); } static void test_serialize_leaf_with_large_rows(void) { int r; struct brtnode sn, *dn; const size_t val_size = 512*1024; // assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); sn.max_msn_applied_to_node_on_disk.msn = 0; sn.max_msn_applied_to_node_in_memory.msn = 0; sn.nodesize = 4*(1<<20); sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = BRT_LAYOUT_VERSION; sn.layout_version_original = BRT_LAYOUT_VERSION; sn.height = 0; sn.n_children = 1; LEAFENTRY les[7]; { char key[8], val[val_size]; key[7] = '\0'; val[val_size-1] = '\0'; for (int i = 0; i < 7; ++i) { char c = 'a' + i; memset(key, c, 7); memset(val, c, val_size-1); les[i] = le_fastmalloc(key, 8, val, val_size); } } MALLOC_N(sn.n_children, sn.bp); MALLOC_N(sn.n_children-1, sn.childkeys); sn.totalchildkeylens = (sn.n_children-1)*8; for (int i = 0; i < sn.n_children; ++i) { BP_STATE(&sn,i) = PT_AVAIL; BP_SUBTREE_EST(&sn,i).ndata = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).nkeys = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).dsize = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).exact = (BOOL)(random()%2 != 0); sn.bp[i].ptr = toku_xmalloc(sizeof(struct brtnode_leaf_basement_node)); r = toku_omt_create(&BLB_BUFFER(&sn, i)); assert(r==0); BLB_OPTIMIZEDFORUPGRADE(&sn, i) = BRT_LAYOUT_VERSION; BLB_SOFTCOPYISUPTODATE(&sn, i) = TRUE; BLB_SEQINSERT(&sn, i) = 0; } BLB_NBYTESINBUF(&sn, 0) = 0; for (int i = 0; i < 7; ++i) { r = toku_omt_insert(BLB_BUFFER(&sn, 0), les[i], omt_cmp, les[i], NULL); assert(r==0); BLB_NBYTESINBUF(&sn, 0) += OMT_ITEM_OVERHEAD + leafentry_disksize(les[i]); } struct brt *XMALLOC(brt); struct brt_header *XCALLOC(brt_h); brt->h = brt_h; brt_h->type = BRTHEADER_CURRENT; brt_h->panic = 0; brt_h->panic_string = 0; toku_blocktable_create_new(&brt_h->blocktable); //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE); assert(r==0); r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, &dn, brt_h); assert(r==0); assert(dn->thisnodename.b==20); assert(dn->layout_version ==BRT_LAYOUT_VERSION); assert(dn->layout_version_original ==BRT_LAYOUT_VERSION); { const u_int32_t npartitions = dn->n_children; assert(npartitions == 7); assert(dn->totalchildkeylens==(8*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = 7, .elts = les, .i = 0, .cmp = omt_cmp }; u_int32_t last_i = 0; for (u_int32_t i = 0; i < npartitions; ++i) { assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0); toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); assert(BLB_OPTIMIZEDFORUPGRADE(dn, i) == BRT_LAYOUT_VERSION); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+8+val_size) + toku_omt_size(BLB_BUFFER(dn, i))); last_i = extra.i; } assert(extra.i == 7); } toku_brtnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { kv_pair_free(sn.childkeys[i]); } for (int i = 0; i < sn.n_children; ++i) { toku_omt_destroy(&BLB_BUFFER(&sn, i)); } for (int i = 0; i < 7; ++i) { toku_free(les[i]); } for (int i = 0; i < sn.n_children; i++) { toku_free(sn.bp[i].ptr); } toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h); toku_free(brt); r = close(fd); assert(r != -1); } static void test_serialize_leaf_with_empty_basement_nodes(void) { const int nodesize = 1024; struct brtnode sn, *dn; int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; sn.max_msn_applied_to_node_on_disk.msn = 0; sn.max_msn_applied_to_node_in_memory.msn = 0; sn.nodesize = nodesize; sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = BRT_LAYOUT_VERSION; sn.layout_version_original = BRT_LAYOUT_VERSION; sn.height = 0; sn.n_children = 7; LEAFENTRY elts[3]; elts[0] = le_malloc("a", "aval"); elts[1] = le_malloc("b", "bval"); elts[2] = le_malloc("x", "xval"); MALLOC_N(sn.n_children, sn.bp); MALLOC_N(sn.n_children-1, sn.childkeys); sn.childkeys[0] = kv_pair_malloc("A", 2, 0, 0); sn.childkeys[1] = kv_pair_malloc("a", 2, 0, 0); sn.childkeys[2] = kv_pair_malloc("a", 2, 0, 0); sn.childkeys[3] = kv_pair_malloc("b", 2, 0, 0); sn.childkeys[4] = kv_pair_malloc("b", 2, 0, 0); sn.childkeys[5] = kv_pair_malloc("x", 2, 0, 0); sn.totalchildkeylens = (sn.n_children-1)*2; for (int i = 0; i < sn.n_children; ++i) { BP_STATE(&sn,i) = PT_AVAIL; BP_SUBTREE_EST(&sn,i).ndata = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,i).nkeys = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,i).dsize = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,i).exact = (BOOL)(random()%2 != 0); sn.bp[i].ptr = toku_xmalloc(sizeof(struct brtnode_leaf_basement_node)); r = toku_omt_create(&BLB_BUFFER(&sn, i)); assert(r==0); BLB_OPTIMIZEDFORUPGRADE(&sn, i) = BRT_LAYOUT_VERSION; BLB_SOFTCOPYISUPTODATE(&sn, i) = TRUE; BLB_SEQINSERT(&sn, i) = 0; } r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[0], omt_cmp, elts[0], NULL); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 3), elts[1], omt_cmp, elts[1], NULL); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 5), elts[2], omt_cmp, elts[2], NULL); assert(r==0); BLB_NBYTESINBUF(&sn, 0) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0)); BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1)); BLB_NBYTESINBUF(&sn, 2) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 2)); BLB_NBYTESINBUF(&sn, 3) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 3)); BLB_NBYTESINBUF(&sn, 4) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 4)); BLB_NBYTESINBUF(&sn, 5) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 5)); BLB_NBYTESINBUF(&sn, 6) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 6)); struct brt *XMALLOC(brt); struct brt_header *XCALLOC(brt_h); brt->h = brt_h; brt_h->type = BRTHEADER_CURRENT; brt_h->panic = 0; brt_h->panic_string = 0; toku_blocktable_create_new(&brt_h->blocktable); //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE); assert(r==0); r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, &dn, brt_h); assert(r==0); assert(dn->thisnodename.b==20); assert(dn->layout_version ==BRT_LAYOUT_VERSION); assert(dn->layout_version_original ==BRT_LAYOUT_VERSION); assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION); assert(dn->height == 0); assert(dn->n_children>0); { const u_int32_t npartitions = dn->n_children; assert(dn->totalchildkeylens==(2*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp }; u_int32_t last_i = 0; for (u_int32_t i = 0; i < npartitions; ++i) { assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0); toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); assert(BLB_OPTIMIZEDFORUPGRADE(dn, i) == BRT_LAYOUT_VERSION); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i))); last_i = extra.i; } assert(extra.i == 3); } toku_brtnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { kv_pair_free(sn.childkeys[i]); } for (int i = 0; i < sn.n_children; ++i) { toku_omt_destroy(&BLB_BUFFER(&sn, i)); } for (int i = 0; i < 3; ++i) { toku_free(elts[i]); } for (int i = 0; i < sn.n_children; i++) { toku_free(sn.bp[i].ptr); } toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h); toku_free(brt); r = close(fd); assert(r != -1); } static void test_serialize_leaf(void) { // struct brt source_brt; const int nodesize = 1024; struct brtnode sn, *dn; int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; sn.max_msn_applied_to_node_on_disk.msn = 0; sn.max_msn_applied_to_node_in_memory.msn = 0; sn.nodesize = nodesize; sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = BRT_LAYOUT_VERSION; sn.layout_version_original = BRT_LAYOUT_VERSION; sn.height = 0; sn.n_children = 2; LEAFENTRY elts[3]; elts[0] = le_malloc("a", "aval"); elts[1] = le_malloc("b", "bval"); elts[2] = le_malloc("x", "xval"); MALLOC_N(sn.n_children, sn.bp); MALLOC_N(1, sn.childkeys); sn.childkeys[0] = kv_pair_malloc("b", 2, 0, 0); sn.totalchildkeylens = 2; BP_SUBTREE_EST(&sn,0).ndata = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,1).ndata = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,0).nkeys = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,1).nkeys = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,0).dsize = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,1).dsize = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,0).exact = (BOOL)(random()%2 != 0); BP_SUBTREE_EST(&sn,1).exact = (BOOL)(random()%2 != 0); BP_STATE(&sn,0) = PT_AVAIL; BP_STATE(&sn,1) = PT_AVAIL; sn.bp[0].ptr = toku_xmalloc(sizeof(struct brtnode_leaf_basement_node)); sn.bp[1].ptr = toku_xmalloc(sizeof(struct brtnode_leaf_basement_node)); r = toku_omt_create(&BLB_BUFFER(&sn, 0)); assert(r==0); r = toku_omt_create(&BLB_BUFFER(&sn, 1)); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[0], omt_cmp, elts[0], NULL); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[1], omt_cmp, elts[1], NULL); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[2], omt_cmp, elts[2], NULL); assert(r==0); BLB_NBYTESINBUF(&sn, 0) = 2*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0)); BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1)); for (int i = 0; i < 2; ++i) { BLB_OPTIMIZEDFORUPGRADE(&sn, i) = BRT_LAYOUT_VERSION; BLB_SOFTCOPYISUPTODATE(&sn, i) = TRUE; BLB_SEQINSERT(&sn, i) = 0; } struct brt *XMALLOC(brt); struct brt_header *XCALLOC(brt_h); brt->h = brt_h; brt_h->type = BRTHEADER_CURRENT; brt_h->panic = 0; brt_h->panic_string = 0; toku_blocktable_create_new(&brt_h->blocktable); //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE); assert(r==0); r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, &dn, brt_h); assert(r==0); assert(dn->thisnodename.b==20); assert(dn->layout_version ==BRT_LAYOUT_VERSION); assert(dn->layout_version_original ==BRT_LAYOUT_VERSION); assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION); assert(dn->height == 0); assert(dn->n_children>=1); { const u_int32_t npartitions = dn->n_children; assert(dn->totalchildkeylens==(2*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp }; u_int32_t last_i = 0; for (u_int32_t i = 0; i < npartitions; ++i) { toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); u_int32_t keylen; if (i < npartitions-1) { assert(strcmp(kv_pair_key(dn->childkeys[i]), le_key_and_len(elts[extra.i-1], &keylen))==0); } assert(BLB_OPTIMIZEDFORUPGRADE(dn, i) == BRT_LAYOUT_VERSION); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i))); last_i = extra.i; } assert(extra.i == 3); } toku_brtnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { kv_pair_free(sn.childkeys[i]); } for (int i = 0; i < sn.n_children; ++i) { toku_omt_destroy(&BLB_BUFFER(&sn, i)); } for (int i = 0; i < 3; ++i) { toku_free(elts[i]); } for (int i = 0; i < sn.n_children; i++) { toku_free(sn.bp[i].ptr); } toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h); toku_free(brt); r = close(fd); assert(r != -1); } static void test_serialize_nonleaf(void) { // struct brt source_brt; const int nodesize = 1024; struct brtnode sn, *dn; int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; // source_brt.fd=fd; sn.max_msn_applied_to_node_on_disk.msn = 0; sn.max_msn_applied_to_node_in_memory.msn = 0; char *hello_string; sn.max_msn_applied_to_node_on_disk.msn = TESTMSNDSKVAL; sn.max_msn_applied_to_node_in_memory.msn = TESTMSNMEMVAL; sn.nodesize = nodesize; sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = BRT_LAYOUT_VERSION; sn.layout_version_original = BRT_LAYOUT_VERSION; sn.height = 1; sn.n_children = 2; hello_string = toku_strdup("hello"); MALLOC_N(2, sn.bp); MALLOC_N(1, sn.childkeys); sn.childkeys[0] = kv_pair_malloc(hello_string, 6, 0, 0); sn.totalchildkeylens = 6; BP_BLOCKNUM(&sn, 0).b = 30; BP_BLOCKNUM(&sn, 1).b = 35; BP_SUBTREE_EST(&sn,0).ndata = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,1).ndata = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,0).nkeys = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,1).nkeys = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,0).dsize = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,1).dsize = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,0).exact = (BOOL)(random()%2 != 0); BP_SUBTREE_EST(&sn,1).exact = (BOOL)(random()%2 != 0); BP_STATE(&sn,0) = PT_AVAIL; BP_STATE(&sn,1) = PT_AVAIL; sn.bp[0].ptr = toku_xmalloc(sizeof(struct brtnode_nonleaf_childinfo)); sn.bp[1].ptr = toku_xmalloc(sizeof(struct brtnode_nonleaf_childinfo)); r = toku_fifo_create(&BNC_BUFFER(&sn,0)); assert(r==0); r = toku_fifo_create(&BNC_BUFFER(&sn,1)); assert(r==0); //Create XIDS XIDS xids_0 = xids_get_root_xids(); XIDS xids_123; XIDS xids_234; r = xids_create_child(xids_0, &xids_123, (TXNID)123); CKERR(r); r = xids_create_child(xids_123, &xids_234, (TXNID)234); CKERR(r); r = toku_fifo_enq(BNC_BUFFER(&sn,0), "a", 2, "aval", 5, BRT_NONE, next_dummymsn(), xids_0); assert(r==0); r = toku_fifo_enq(BNC_BUFFER(&sn,0), "b", 2, "bval", 5, BRT_NONE, next_dummymsn(), xids_123); assert(r==0); r = toku_fifo_enq(BNC_BUFFER(&sn,1), "x", 2, "xval", 5, BRT_NONE, next_dummymsn(), xids_234); assert(r==0); BNC_NBYTESINBUF(&sn, 0) = 2*(BRT_CMD_OVERHEAD+KEY_VALUE_OVERHEAD+2+5) + xids_get_serialize_size(xids_0) + xids_get_serialize_size(xids_123); BNC_NBYTESINBUF(&sn, 1) = 1*(BRT_CMD_OVERHEAD+KEY_VALUE_OVERHEAD+2+5) + xids_get_serialize_size(xids_234); //Cleanup: xids_destroy(&xids_0); xids_destroy(&xids_123); xids_destroy(&xids_234); struct brt *XMALLOC(brt); struct brt_header *XCALLOC(brt_h); brt->h = brt_h; brt_h->type = BRTHEADER_CURRENT; brt_h->panic = 0; brt_h->panic_string = 0; toku_blocktable_create_new(&brt_h->blocktable); //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE); assert(r==0); assert(sn.max_msn_applied_to_node_on_disk.msn == TESTMSNMEMVAL); assert(sn.max_msn_applied_to_node_in_memory.msn == TESTMSNMEMVAL); r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, &dn, brt_h); assert(r==0); assert(dn->thisnodename.b==20); assert(dn->max_msn_applied_to_node_on_disk.msn == TESTMSNMEMVAL); assert(dn->max_msn_applied_to_node_in_memory.msn == TESTMSNMEMVAL); assert(dn->layout_version ==BRT_LAYOUT_VERSION); assert(dn->layout_version_original ==BRT_LAYOUT_VERSION); assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION); assert(dn->height == 1); assert(dn->n_children==2); assert(strcmp(kv_pair_key(dn->childkeys[0]), "hello")==0); assert(toku_brt_pivot_key_len(dn->childkeys[0])==6); assert(dn->totalchildkeylens==6); assert(BP_BLOCKNUM(dn,0).b==30); assert(BP_BLOCKNUM(dn,1).b==35); toku_brtnode_free(&dn); kv_pair_free(sn.childkeys[0]); toku_free(hello_string); toku_fifo_free(&BNC_BUFFER(&sn,0)); toku_fifo_free(&BNC_BUFFER(&sn,1)); toku_free(sn.bp[0].ptr); toku_free(sn.bp[1].ptr); toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h); toku_free(brt); r = close(fd); assert(r != -1); } int test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) { toku_memory_check = 1; test_serialize_leaf(); test_serialize_leaf_with_empty_basement_nodes(); test_serialize_leaf_with_large_rows(); test_serialize_leaf_with_many_rows(); test_serialize_leaf_with_large_pivots(); test_serialize_nonleaf(); return 0; }