/* Innobase relational database engine; Copyright (C) 2001 Innobase Oy This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License 2 as published by the Free Software Foundation in June 1991. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License 2 along with this program (in file COPYING); if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /****************************************************** The database buffer buf_pool (c) 1995 Innobase Oy Created 11/5/1995 Heikki Tuuri *******************************************************/ #include "buf0buf.h" #ifdef UNIV_NONINL #include "buf0buf.ic" #endif #include "mem0mem.h" #include "btr0btr.h" #include "fil0fil.h" #include "lock0lock.h" #include "btr0sea.h" #include "ibuf0ibuf.h" #include "dict0dict.h" #include "log0recv.h" /* IMPLEMENTATION OF THE BUFFER POOL ================================= Performance improvement: ------------------------ Thread scheduling in NT may be so slow that the OS wait mechanism should not be used even in waiting for disk reads to complete. Rather, we should put waiting query threads to the queue of waiting jobs, and let the OS thread do something useful while the i/o is processed. In this way we could remove most OS thread switches in an i/o-intensive benchmark like TPC-C. A possibility is to put a user space thread library between the database and NT. User space thread libraries might be very fast. SQL Server 7.0 can be configured to use 'fibers' which are lightweight threads in NT. These should be studied. Buffer frames and blocks ------------------------ Following the terminology of Gray and Reuter, we call the memory blocks where file pages are loaded buffer frames. For each buffer frame there is a control block, or shortly, a block, in the buffer control array. The control info which does not need to be stored in the file along with the file page, resides in the control block. Buffer pool struct ------------------ The buffer buf_pool contains a single mutex which protects all the control data structures of the buf_pool. The content of a buffer frame is protected by a separate read-write lock in its control block, though. These locks can be locked and unlocked without owning the buf_pool mutex. The OS events in the buf_pool struct can be waited for without owning the buf_pool mutex. The buf_pool mutex is a hot-spot in main memory, causing a lot of memory bus traffic on multiprocessor systems when processors alternately access the mutex. On our Pentium, the mutex is accessed maybe every 10 microseconds. We gave up the solution to have mutexes for each control block, for instance, because it seemed to be complicated. A solution to reduce mutex contention of the buf_pool mutex is to create a separate mutex for the page hash table. On Pentium, accessing the hash table takes 2 microseconds, about half of the total buf_pool mutex hold time. Control blocks -------------- The control block contains, for instance, the bufferfix count which is incremented when a thread wants a file page to be fixed in a buffer frame. The bufferfix operation does not lock the contents of the frame, however. For this purpose, the control block contains a read-write lock. The buffer frames have to be aligned so that the start memory address of a frame is divisible by the universal page size, which is a power of two. We intend to make the buffer buf_pool size on-line reconfigurable, that is, the buf_pool size can be changed without closing the database. Then the database administarator may adjust it to be bigger at night, for example. The control block array must contain enough control blocks for the maximum buffer buf_pool size which is used in the particular database. If the buf_pool size is cut, we exploit the virtual memory mechanism of the OS, and just refrain from using frames at high addresses. Then the OS can swap them to disk. The control blocks containing file pages are put to a hash table according to the file address of the page. We could speed up the access to an individual page by using "pointer swizzling": we could replace the page references on non-leaf index pages by direct pointers to the page, if it exists in the buf_pool. We could make a separate hash table where we could chain all the page references in non-leaf pages residing in the buf_pool, using the page reference as the hash key, and at the time of reading of a page update the pointers accordingly. Drawbacks of this solution are added complexity and, possibly, extra space required on non-leaf pages for memory pointers. A simpler solution is just to speed up the hash table mechanism in the database, using tables whose size is a power of 2. Lists of blocks --------------- There are several lists of control blocks. The free list contains blocks which are currently not used. The LRU-list contains all the blocks holding a file page except those for which the bufferfix count is non-zero. The pages are in the LRU list roughly in the order of the last access to the page, so that the oldest pages are at the end of the list. We also keep a pointer to near the end of the LRU list, which we can use when we want to artificially age a page in the buf_pool. This is used if we know that some page is not needed again for some time: we insert the block right after the pointer, causing it to be replaced sooner than would noramlly be the case. Currently this aging mechanism is used for read-ahead mechanism of pages, and it can also be used when there is a scan of a full table which cannot fit in the memory. Putting the pages near the of the LRU list, we make sure that most of the buf_pool stays in the main memory, undisturbed. The chain of modified blocks contains the blocks holding file pages that have been modified in the memory but not written to disk yet. The block with the oldest modification which has not yet been written to disk is at the end of the chain. Loading a file page ------------------- First, a victim block for replacement has to be found in the buf_pool. It is taken from the free list or searched for from the end of the LRU-list. An exclusive lock is reserved for the frame, the io_fix field is set in the block fixing the block in buf_pool, and the io-operation for loading the page is queued. The io-handler thread releases the X-lock on the frame and resets the io_fix field when the io operation completes. A thread may request the above operation using the buf_page_get- function. It may then continue to request a lock on the frame. The lock is granted when the io-handler releases the x-lock. Read-ahead ---------- The read-ahead mechanism is intended to be intelligent and isolated from the semantically higher levels of the database index management. From the higher level we only need the information if a file page has a natural successor or predecessor page. On the leaf level of a B-tree index, these are the next and previous pages in the natural order of the pages. Let us first explain the read-ahead mechanism when the leafs of a B-tree are scanned in an ascending or descending order. When a read page is the first time referenced in the buf_pool, the buffer manager checks if it is at the border of a so-called linear read-ahead area. The tablespace is divided into these areas of size 64 blocks, for example. So if the page is at the border of such an area, the read-ahead mechanism checks if all the other blocks in the area have been accessed in an ascending or descending order. If this is the case, the system looks at the natural successor or predecessor of the page, checks if that is at the border of another area, and in this case issues read-requests for all the pages in that area. Maybe we could relax the condition that all the pages in the area have to be accessed: if data is deleted from a table, there may appear holes of unused pages in the area. A different read-ahead mechanism is used when there appears to be a random access pattern to a file. If a new page is referenced in the buf_pool, and several pages of its random access area (for instance, 32 consecutive pages in a tablespace) have recently been referenced, we may predict that the whole area may be needed in the near future, and issue the read requests for the whole area. */ buf_pool_t* buf_pool = NULL; /* The buffer buf_pool of the database */ ulint buf_dbg_counter = 0; /* This is used to insert validation operations in excution in the debug version */ ibool buf_debug_prints = FALSE; /* If this is set TRUE, the program prints info whenever read-ahead or flush occurs */ /************************************************************************ Initializes a buffer control block when the buf_pool is created. */ static void buf_block_init( /*===========*/ buf_block_t* block, /* in: pointer to control block */ byte* frame) /* in: pointer to buffer frame */ { block->state = BUF_BLOCK_NOT_USED; block->frame = frame; block->modify_clock = ut_dulint_zero; rw_lock_create(&(block->lock)); ut_ad(rw_lock_validate(&(block->lock))); rw_lock_create(&(block->read_lock)); rw_lock_set_level(&(block->read_lock), SYNC_NO_ORDER_CHECK); rw_lock_create(&(block->debug_latch)); rw_lock_set_level(&(block->debug_latch), SYNC_NO_ORDER_CHECK); } /************************************************************************ Creates a buffer buf_pool object. */ static buf_pool_t* buf_pool_create( /*============*/ /* out, own: buf_pool object, NULL if not enough memory */ ulint max_size, /* in: maximum size of the buf_pool in blocks */ ulint curr_size) /* in: current size to use, must be <= max_size, currently must be equal to max_size */ { byte* frame; ulint i; buf_block_t* block; ut_a(max_size == curr_size); buf_pool = mem_alloc(sizeof(buf_pool_t)); /* 1. Initialize general fields ---------------------------- */ mutex_create(&(buf_pool->mutex)); mutex_set_level(&(buf_pool->mutex), SYNC_BUF_POOL); mutex_enter(&(buf_pool->mutex)); buf_pool->frame_mem = ut_malloc(UNIV_PAGE_SIZE * (max_size + 1)); if (buf_pool->frame_mem == NULL) { return(NULL); } buf_pool->blocks = ut_malloc(sizeof(buf_block_t) * max_size); if (buf_pool->blocks == NULL) { return(NULL); } buf_pool->max_size = max_size; buf_pool->curr_size = curr_size; /* Align pointer to the first frame */ frame = ut_align(buf_pool->frame_mem, UNIV_PAGE_SIZE); buf_pool->frame_zero = frame; /* Init block structs and assign frames for them */ for (i = 0; i < max_size; i++) { block = buf_pool_get_nth_block(buf_pool, i); buf_block_init(block, frame); frame = frame + UNIV_PAGE_SIZE; } buf_pool->page_hash = hash_create(2 * max_size); buf_pool->n_pend_reads = 0; buf_pool->n_pages_read = 0; buf_pool->n_pages_written = 0; buf_pool->n_pages_created = 0; /* 2. Initialize flushing fields ---------------------------- */ UT_LIST_INIT(buf_pool->flush_list); for (i = BUF_FLUSH_LRU; i <= BUF_FLUSH_LIST; i++) { buf_pool->n_flush[i] = 0; buf_pool->no_flush[i] = os_event_create(NULL); } buf_pool->LRU_flush_ended = 0; buf_pool->ulint_clock = 1; buf_pool->freed_page_clock = 0; /* 3. Initialize LRU fields ---------------------------- */ UT_LIST_INIT(buf_pool->LRU); buf_pool->LRU_old = NULL; /* Add control blocks to the free list */ UT_LIST_INIT(buf_pool->free); for (i = 0; i < curr_size; i++) { block = buf_pool_get_nth_block(buf_pool, i); UT_LIST_ADD_FIRST(free, buf_pool->free, block); } mutex_exit(&(buf_pool->mutex)); btr_search_sys_create(curr_size * UNIV_PAGE_SIZE / sizeof(void*) / 64); return(buf_pool); } /************************************************************************ Initializes the buffer buf_pool of the database. */ void buf_pool_init( /*==========*/ ulint max_size, /* in: maximum size of the buf_pool in blocks */ ulint curr_size) /* in: current size to use, must be <= max_size */ { ut_a(buf_pool == NULL); buf_pool_create(max_size, curr_size); ut_ad(buf_validate()); } /************************************************************************ Allocates a buffer block. */ UNIV_INLINE buf_block_t* buf_block_alloc(void) /*=================*/ /* out, own: the allocated block */ { buf_block_t* block; block = buf_LRU_get_free_block(); return(block); } /************************************************************************ Moves to the block to the start of the LRU list if there is a danger that the block would drift out of the buffer pool. */ UNIV_INLINE void buf_block_make_young( /*=================*/ buf_block_t* block) /* in: block to make younger */ { if (buf_pool->freed_page_clock >= block->freed_page_clock + 1 + (buf_pool->curr_size / 1024)) { /* There has been freeing activity in the LRU list: best to move to the head of the LRU list */ buf_LRU_make_block_young(block); } } /************************************************************************ Moves a page to the start of the buffer pool LRU list. This high-level function can be used to prevent an important page from from slipping out of the buffer pool. */ void buf_page_make_young( /*=================*/ buf_frame_t* frame) /* in: buffer frame of a file page */ { buf_block_t* block; mutex_enter(&(buf_pool->mutex)); block = buf_block_align(frame); ut_ad(block->state == BUF_BLOCK_FILE_PAGE); buf_LRU_make_block_young(block); mutex_exit(&(buf_pool->mutex)); } /************************************************************************ Frees a buffer block which does not contain a file page. */ UNIV_INLINE void buf_block_free( /*===========*/ buf_block_t* block) /* in, own: block to be freed */ { ut_ad(block->state != BUF_BLOCK_FILE_PAGE); mutex_enter(&(buf_pool->mutex)); buf_LRU_block_free_non_file_page(block); mutex_exit(&(buf_pool->mutex)); } /************************************************************************* Allocates a buffer frame. */ buf_frame_t* buf_frame_alloc(void) /*=================*/ /* out: buffer frame */ { return(buf_block_alloc()->frame); } /************************************************************************* Frees a buffer frame which does not contain a file page. */ void buf_frame_free( /*===========*/ buf_frame_t* frame) /* in: buffer frame */ { buf_block_free(buf_block_align(frame)); } /************************************************************************ Returns the buffer control block if the page can be found in the buffer pool. NOTE that it is possible that the page is not yet read from disk, though. This is a very low-level function: use with care! */ buf_block_t* buf_page_peek_block( /*================*/ /* out: control block if found from page hash table, otherwise NULL; NOTE that the page is not necessarily yet read from disk! */ ulint space, /* in: space id */ ulint offset) /* in: page number */ { buf_block_t* block; mutex_enter_fast(&(buf_pool->mutex)); block = buf_page_hash_get(space, offset); mutex_exit(&(buf_pool->mutex)); return(block); } /************************************************************************ Returns the current state of is_hashed of a page. FALSE if the page is not in the pool. NOTE that this operation does not fix the page in the pool if it is found there. */ ibool buf_page_peek_if_search_hashed( /*===========================*/ /* out: TRUE if page hash index is built in search system */ ulint space, /* in: space id */ ulint offset) /* in: page number */ { buf_block_t* block; ibool is_hashed; mutex_enter_fast(&(buf_pool->mutex)); block = buf_page_hash_get(space, offset); if (!block) { is_hashed = FALSE; } else { is_hashed = block->is_hashed; } mutex_exit(&(buf_pool->mutex)); return(is_hashed); } /************************************************************************ Returns TRUE if the page can be found in the buffer pool hash table. NOTE that it is possible that the page is not yet read from disk, though. */ ibool buf_page_peek( /*==========*/ /* out: TRUE if found from page hash table, NOTE that the page is not necessarily yet read from disk! */ ulint space, /* in: space id */ ulint offset) /* in: page number */ { if (buf_page_peek_block(space, offset)) { return(TRUE); } return(FALSE); } /************************************************************************ This is the general function used to get access to a database page. */ buf_frame_t* buf_page_get_gen( /*=============*/ /* out: pointer to the frame or NULL */ ulint space, /* in: space id */ ulint offset, /* in: page number */ ulint rw_latch,/* in: RW_S_LATCH, RW_X_LATCH, RW_NO_LATCH */ buf_frame_t* guess, /* in: guessed frame or NULL */ ulint mode, /* in: BUF_GET, BUF_GET_IF_IN_POOL, BUF_GET_NO_LATCH, BUF_GET_NOWAIT */ #ifdef UNIV_SYNC_DEBUG char* file, /* in: file name */ ulint line, /* in: line where called */ #endif mtr_t* mtr) /* in: mini-transaction */ { buf_block_t* block; ibool accessed; ulint fix_type; ibool success; ibool must_read; ut_ad(mtr); ut_ad((rw_latch == RW_S_LATCH) || (rw_latch == RW_X_LATCH) || (rw_latch == RW_NO_LATCH)); ut_ad((mode != BUF_GET_NO_LATCH) || (rw_latch == RW_NO_LATCH)); ut_ad((mode == BUF_GET) || (mode == BUF_GET_IF_IN_POOL) || (mode == BUF_GET_NO_LATCH) || (mode == BUF_GET_NOWAIT)); #ifndef UNIV_LOG_DEBUG ut_ad(!ibuf_inside() || ibuf_page(space, offset)); #endif loop: mutex_enter_fast(&(buf_pool->mutex)); block = NULL; if (guess) { block = buf_block_align(guess); if ((offset != block->offset) || (space != block->space) || (block->state != BUF_BLOCK_FILE_PAGE)) { block = NULL; } } if (block == NULL) { block = buf_page_hash_get(space, offset); } if (block == NULL) { /* Page not in buf_pool: needs to be read from file */ mutex_exit(&(buf_pool->mutex)); if (mode == BUF_GET_IF_IN_POOL) { return(NULL); } buf_read_page(space, offset); #ifdef UNIV_DEBUG buf_dbg_counter++; if (buf_dbg_counter % 37 == 0) { ut_ad(buf_validate()); } #endif goto loop; } must_read = FALSE; if (block->io_fix == BUF_IO_READ) { must_read = TRUE; if (mode == BUF_GET_IF_IN_POOL) { /* The page is only being read to buffer */ mutex_exit(&(buf_pool->mutex)); return(NULL); } } #ifdef UNIV_SYNC_DEBUG buf_block_buf_fix_inc_debug(block, file, line); #else buf_block_buf_fix_inc(block); #endif buf_block_make_young(block); /* Check if this is the first access to the page */ accessed = block->accessed; block->accessed = TRUE; mutex_exit(&(buf_pool->mutex)); #ifdef UNIV_DEBUG buf_dbg_counter++; if (buf_dbg_counter % 5771 == 0) { ut_ad(buf_validate()); } #endif ut_ad(block->buf_fix_count > 0); ut_ad(block->state == BUF_BLOCK_FILE_PAGE); if (mode == BUF_GET_NOWAIT) { if (rw_latch == RW_S_LATCH) { success = rw_lock_s_lock_func_nowait(&(block->lock) #ifdef UNIV_SYNC_DEBUG ,file, line #endif ); fix_type = MTR_MEMO_PAGE_S_FIX; } else { ut_ad(rw_latch == RW_X_LATCH); success = rw_lock_x_lock_func_nowait(&(block->lock) #ifdef UNIV_SYNC_DEBUG ,file, line #endif ); fix_type = MTR_MEMO_PAGE_X_FIX; } if (!success) { mutex_enter(&(buf_pool->mutex)); block->buf_fix_count--; #ifdef UNIV_SYNC_DEBUG rw_lock_s_unlock(&(block->debug_latch)); #endif mutex_exit(&(buf_pool->mutex)); return(NULL); } } else if (rw_latch == RW_NO_LATCH) { if (must_read) { rw_lock_x_lock(&(block->read_lock)); rw_lock_x_unlock(&(block->read_lock)); } fix_type = MTR_MEMO_BUF_FIX; } else if (rw_latch == RW_S_LATCH) { rw_lock_s_lock_func(&(block->lock) #ifdef UNIV_SYNC_DEBUG ,0, file, line #endif ); fix_type = MTR_MEMO_PAGE_S_FIX; } else { rw_lock_x_lock_func(&(block->lock), 0 #ifdef UNIV_SYNC_DEBUG , file, line #endif ); fix_type = MTR_MEMO_PAGE_X_FIX; } mtr_memo_push(mtr, block, fix_type); if (!accessed) { /* In the case of a first access, try to apply linear read-ahead */ buf_read_ahead_linear(space, offset); } #ifdef UNIV_IBUF_DEBUG ut_a(ibuf_count_get(block->space, block->offset) == 0); #endif return(block->frame); } /************************************************************************ This is the general function used to get optimistic access to a database page. */ ibool buf_page_optimistic_get_func( /*=========================*/ /* out: TRUE if success */ ulint rw_latch,/* in: RW_S_LATCH, RW_X_LATCH */ buf_frame_t* guess, /* in: guessed frame */ dulint modify_clock,/* in: modify clock value if mode is ..._GUESS_ON_CLOCK */ #ifdef UNIV_SYNC_DEBUG char* file, /* in: file name */ ulint line, /* in: line where called */ #endif mtr_t* mtr) /* in: mini-transaction */ { buf_block_t* block; ibool accessed; ibool success; ulint fix_type; ut_ad(mtr && guess); ut_ad((rw_latch == RW_S_LATCH) || (rw_latch == RW_X_LATCH)); block = buf_block_align(guess); mutex_enter(&(buf_pool->mutex)); if (block->state != BUF_BLOCK_FILE_PAGE) { mutex_exit(&(buf_pool->mutex)); return(FALSE); } #ifdef UNIV_SYNC_DEBUG buf_block_buf_fix_inc_debug(block, file, line); #else buf_block_buf_fix_inc(block); #endif buf_block_make_young(block); /* Check if this is the first access to the page */ accessed = block->accessed; block->accessed = TRUE; mutex_exit(&(buf_pool->mutex)); ut_ad(!ibuf_inside() || ibuf_page(block->space, block->offset)); if (rw_latch == RW_S_LATCH) { success = rw_lock_s_lock_func_nowait(&(block->lock) #ifdef UNIV_SYNC_DEBUG , file, line #endif ); fix_type = MTR_MEMO_PAGE_S_FIX; } else { success = rw_lock_x_lock_func_nowait(&(block->lock) #ifdef UNIV_SYNC_DEBUG , file, line #endif ); fix_type = MTR_MEMO_PAGE_X_FIX; } if (!success) { mutex_enter(&(buf_pool->mutex)); block->buf_fix_count--; #ifdef UNIV_SYNC_DEBUG rw_lock_s_unlock(&(block->debug_latch)); #endif mutex_exit(&(buf_pool->mutex)); return(FALSE); } if (!UT_DULINT_EQ(modify_clock, block->modify_clock)) { buf_page_dbg_add_level(block->frame, SYNC_NO_ORDER_CHECK); if (rw_latch == RW_S_LATCH) { rw_lock_s_unlock(&(block->lock)); } else { rw_lock_x_unlock(&(block->lock)); } mutex_enter(&(buf_pool->mutex)); block->buf_fix_count--; #ifdef UNIV_SYNC_DEBUG rw_lock_s_unlock(&(block->debug_latch)); #endif mutex_exit(&(buf_pool->mutex)); return(FALSE); } mtr_memo_push(mtr, block, fix_type); #ifdef UNIV_DEBUG buf_dbg_counter++; if (buf_dbg_counter % 5771 == 0) { ut_ad(buf_validate()); } #endif ut_ad(block->buf_fix_count > 0); ut_ad(block->state == BUF_BLOCK_FILE_PAGE); if (!accessed) { /* In the case of a first access, try to apply linear read-ahead */ buf_read_ahead_linear(buf_frame_get_space_id(guess), buf_frame_get_page_no(guess)); } #ifdef UNIV_IBUF_DEBUG ut_a(ibuf_count_get(block->space, block->offset) == 0); #endif return(TRUE); } /************************************************************************ This is used to get access to a known database page, when no waiting can be done. */ ibool buf_page_get_known_nowait( /*======================*/ /* out: TRUE if success */ ulint rw_latch,/* in: RW_S_LATCH, RW_X_LATCH */ buf_frame_t* guess, /* in: the known page frame */ ulint mode, /* in: BUF_MAKE_YOUNG or BUF_KEEP_OLD */ #ifdef UNIV_SYNC_DEBUG char* file, /* in: file name */ ulint line, /* in: line where called */ #endif mtr_t* mtr) /* in: mini-transaction */ { buf_block_t* block; ibool success; ulint fix_type; ut_ad(mtr); ut_ad((rw_latch == RW_S_LATCH) || (rw_latch == RW_X_LATCH)); block = buf_block_align(guess); mutex_enter(&(buf_pool->mutex)); #ifdef UNIV_SYNC_DEBUG buf_block_buf_fix_inc_debug(block, file, line); #else buf_block_buf_fix_inc(block); #endif if (mode == BUF_MAKE_YOUNG) { buf_block_make_young(block); } mutex_exit(&(buf_pool->mutex)); ut_ad(!ibuf_inside() || (mode == BUF_KEEP_OLD)); if (rw_latch == RW_S_LATCH) { success = rw_lock_s_lock_func_nowait(&(block->lock) #ifdef UNIV_SYNC_DEBUG , file, line #endif ); fix_type = MTR_MEMO_PAGE_S_FIX; } else { success = rw_lock_x_lock_func_nowait(&(block->lock) #ifdef UNIV_SYNC_DEBUG , file, line #endif ); fix_type = MTR_MEMO_PAGE_X_FIX; } if (!success) { mutex_enter(&(buf_pool->mutex)); block->buf_fix_count--; #ifdef UNIV_SYNC_DEBUG rw_lock_s_unlock(&(block->debug_latch)); #endif mutex_exit(&(buf_pool->mutex)); return(FALSE); } mtr_memo_push(mtr, block, fix_type); #ifdef UNIV_DEBUG buf_dbg_counter++; if (buf_dbg_counter % 5771 == 0) { ut_ad(buf_validate()); } #endif ut_ad(block->buf_fix_count > 0); ut_ad(block->state == BUF_BLOCK_FILE_PAGE); #ifdef UNIV_IBUF_DEBUG ut_a((mode == BUF_KEEP_OLD) || (ibuf_count_get(block->space, block->offset) == 0)); #endif return(TRUE); } /************************************************************************ Inits a page to the buffer buf_pool. */ static void buf_page_init( /*==========*/ /* out: pointer to the block */ ulint space, /* in: space id */ ulint offset, /* in: offset of the page within space in units of a page */ buf_block_t* block) /* in: block to init */ { ut_ad(mutex_own(&(buf_pool->mutex))); ut_ad(block->state == BUF_BLOCK_READY_FOR_USE); /* Set the state of the block */ block->state = BUF_BLOCK_FILE_PAGE; block->space = space; block->offset = offset; block->lock_hash_val = lock_rec_hash(space, offset); block->lock_mutex = NULL; /* Insert into the hash table of file pages */ HASH_INSERT(buf_block_t, hash, buf_pool->page_hash, buf_page_address_fold(space, offset), block); block->freed_page_clock = 0; block->newest_modification = ut_dulint_zero; block->oldest_modification = ut_dulint_zero; block->accessed = FALSE; block->buf_fix_count = 0; block->io_fix = 0; block->n_hash_helps = 0; block->is_hashed = FALSE; } /************************************************************************ Function which inits a page for read to the buffer buf_pool. If the page is already in buf_pool, does nothing. Sets the io_fix flag to BUF_IO_READ and sets a non-recursive exclusive lock on the buffer frame. The io-handler must take care that the flag is cleared and the lock released later. This is one of the functions which perform the state transition NOT_USED => FILE_PAGE to a block (the other is buf_page_create). */ buf_block_t* buf_page_init_for_read( /*===================*/ /* out: pointer to the block or NULL */ ulint mode, /* in: BUF_READ_IBUF_PAGES_ONLY, ... */ ulint space, /* in: space id */ ulint offset) /* in: page number */ { buf_block_t* block; mtr_t mtr; ut_ad(buf_pool); if (mode == BUF_READ_IBUF_PAGES_ONLY) { /* It is a read-ahead within an ibuf routine */ ut_ad(!ibuf_bitmap_page(offset)); ut_ad(ibuf_inside()); mtr_start(&mtr); if (!ibuf_page_low(space, offset, &mtr)) { mtr_commit(&mtr); return(NULL); } } else { ut_ad(mode == BUF_READ_ANY_PAGE); } block = buf_block_alloc(); ut_ad(block); mutex_enter(&(buf_pool->mutex)); if (NULL != buf_page_hash_get(space, offset)) { /* The page is already in buf_pool, return */ mutex_exit(&(buf_pool->mutex)); buf_block_free(block); if (mode == BUF_READ_IBUF_PAGES_ONLY) { mtr_commit(&mtr); } return(NULL); } ut_ad(block); buf_page_init(space, offset, block); /* The block must be put to the LRU list, to the old blocks */ buf_LRU_add_block(block, TRUE); /* TRUE == to old blocks */ block->io_fix = BUF_IO_READ; buf_pool->n_pend_reads++; /* We set a pass-type x-lock on the frame because then the same thread which called for the read operation (and is running now at this point of code) can wait for the read to complete by waiting for the x-lock on the frame; if the x-lock were recursive, the same thread would illegally get the x-lock before the page read is completed. The x-lock is cleared by the io-handler thread. */ rw_lock_x_lock_gen(&(block->lock), BUF_IO_READ); rw_lock_x_lock_gen(&(block->read_lock), BUF_IO_READ); mutex_exit(&(buf_pool->mutex)); if (mode == BUF_READ_IBUF_PAGES_ONLY) { mtr_commit(&mtr); } return(block); } /************************************************************************ Initializes a page to the buffer buf_pool. The page is usually not read from a file even if it cannot be found in the buffer buf_pool. This is one of the functions which perform to a block a state transition NOT_USED => FILE_PAGE (the other is buf_page_init_for_read above). */ buf_frame_t* buf_page_create( /*============*/ /* out: pointer to the frame, page bufferfixed */ ulint space, /* in: space id */ ulint offset, /* in: offset of the page within space in units of a page */ mtr_t* mtr) /* in: mini-transaction handle */ { buf_frame_t* frame; buf_block_t* block; buf_block_t* free_block = NULL; ut_ad(mtr); free_block = buf_LRU_get_free_block(); /* Delete possible entries for the page from the insert buffer: such can exist if the page belonged to an index which was dropped */ ibuf_merge_or_delete_for_page(NULL, space, offset); mutex_enter(&(buf_pool->mutex)); block = buf_page_hash_get(space, offset); if (block != NULL) { #ifdef UNIV_IBUF_DEBUG ut_a(ibuf_count_get(block->space, block->offset) == 0); #endif /* Page can be found in buf_pool */ mutex_exit(&(buf_pool->mutex)); buf_block_free(free_block); frame = buf_page_get_with_no_latch(space, offset, mtr); return(frame); } /* If we get here, the page was not in buf_pool: init it there */ if (buf_debug_prints) { printf("Creating space %lu page %lu to buffer\n", space, offset); } block = free_block; buf_page_init(space, offset, block); /* The block must be put to the LRU list */ buf_LRU_add_block(block, FALSE); #ifdef UNIV_SYNC_DEBUG buf_block_buf_fix_inc_debug(block, __FILE__, __LINE__); #else buf_block_buf_fix_inc(block); #endif mtr_memo_push(mtr, block, MTR_MEMO_BUF_FIX); block->accessed = TRUE; buf_pool->n_pages_created++; mutex_exit(&(buf_pool->mutex)); /* Flush pages from the end of the LRU list if necessary */ buf_flush_free_margin(); frame = block->frame; #ifdef UNIV_DEBUG buf_dbg_counter++; if (buf_dbg_counter % 357 == 0) { ut_ad(buf_validate()); } #endif #ifdef UNIV_IBUF_DEBUG ut_a(ibuf_count_get(block->space, block->offset) == 0); #endif return(frame); } /************************************************************************ Completes an asynchronous read or write request of a file page to or from the buffer pool. */ void buf_page_io_complete( /*=================*/ buf_block_t* block) /* in: pointer to the block in question */ { dulint id; dict_index_t* index; ulint io_type; ut_ad(block); io_type = block->io_fix; if (io_type == BUF_IO_READ) { if (recv_recovery_is_on()) { recv_recover_page(TRUE, block->frame, block->space, block->offset); } if (!recv_no_ibuf_operations) { ibuf_merge_or_delete_for_page(block->frame, block->space, block->offset); } } #ifdef UNIV_IBUF_DEBUG ut_a(ibuf_count_get(block->space, block->offset) == 0); #endif mutex_enter(&(buf_pool->mutex)); /* Because this thread which does the unlocking is not the same that did the locking, we use a pass value != 0 in unlock, which simply removes the newest lock debug record, without checking the thread id. */ block->io_fix = 0; if (io_type == BUF_IO_READ) { /* NOTE that the call to ibuf may have moved the ownership of the x-latch to this OS thread: do not let this confuse you in debugging! */ ut_ad(buf_pool->n_pend_reads > 0); buf_pool->n_pend_reads--; buf_pool->n_pages_read++; /* if (0 != ut_dulint_cmp( mach_read_from_8(block->frame + FIL_PAGE_LSN), mach_read_from_8(block->frame + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN))) { printf("DB error: file page corrupted!\n"); ut_error; } */ rw_lock_x_unlock_gen(&(block->lock), BUF_IO_READ); rw_lock_x_unlock_gen(&(block->read_lock), BUF_IO_READ); if (buf_debug_prints) { printf("Has read "); } } else { ut_ad(io_type == BUF_IO_WRITE); /* Write means a flush operation: call the completion routine in the flush system */ buf_flush_write_complete(block); rw_lock_s_unlock_gen(&(block->lock), BUF_IO_WRITE); buf_pool->n_pages_written++; if (buf_debug_prints) { printf("Has written "); } } mutex_exit(&(buf_pool->mutex)); if (buf_debug_prints) { printf("page space %lu page no %lu", block->space, block->offset); id = btr_page_get_index_id(block->frame); index = NULL; /* The following can cause deadlocks if used: */ /* index = dict_index_get_if_in_cache(id); if (index) { printf(" index name %s table %s", index->name, index->table->name); } */ printf("\n"); } } /************************************************************************* Invalidates the file pages in the buffer pool when an archive recovery is completed. All the file pages buffered must be in a replaceable state when this function is called: not latched and not modified. */ void buf_pool_invalidate(void) /*=====================*/ { ibool freed; ut_ad(buf_all_freed()); freed = TRUE; while (freed) { freed = buf_LRU_search_and_free_block(0); } mutex_enter(&(buf_pool->mutex)); ut_ad(UT_LIST_GET_LEN(buf_pool->LRU) == 0); mutex_exit(&(buf_pool->mutex)); } /************************************************************************* Validates the buffer buf_pool data structure. */ ibool buf_validate(void) /*==============*/ { buf_block_t* block; ulint i; ulint n_single_flush = 0; ulint n_lru_flush = 0; ulint n_list_flush = 0; ulint n_lru = 0; ulint n_flush = 0; ulint n_free = 0; ulint n_page = 0; ut_ad(buf_pool); mutex_enter(&(buf_pool->mutex)); for (i = 0; i < buf_pool->curr_size; i++) { block = buf_pool_get_nth_block(buf_pool, i); if (block->state == BUF_BLOCK_FILE_PAGE) { ut_a(buf_page_hash_get(block->space, block->offset) == block); n_page++; #ifdef UNIV_IBUF_DEBUG ut_a((block->io_fix == BUF_IO_READ) || ibuf_count_get(block->space, block->offset) == 0); #endif if (block->io_fix == BUF_IO_WRITE) { if (block->flush_type == BUF_FLUSH_LRU) { n_lru_flush++; ut_a(rw_lock_is_locked(&(block->lock), RW_LOCK_SHARED)); } else if (block->flush_type == BUF_FLUSH_LIST) { n_list_flush++; } else if (block->flush_type == BUF_FLUSH_SINGLE_PAGE) { n_single_flush++; } else { ut_error; } } else if (block->io_fix == BUF_IO_READ) { ut_a(rw_lock_is_locked(&(block->lock), RW_LOCK_EX)); } n_lru++; if (ut_dulint_cmp(block->oldest_modification, ut_dulint_zero) > 0) { n_flush++; } } else if (block->state == BUF_BLOCK_NOT_USED) { n_free++; } } if (n_lru + n_free > buf_pool->curr_size) { printf("n LRU %lu, n free %lu\n", n_lru, n_free); ut_error; } ut_a(UT_LIST_GET_LEN(buf_pool->LRU) == n_lru); if (UT_LIST_GET_LEN(buf_pool->free) != n_free) { printf("Free list len %lu, free blocks %lu\n", UT_LIST_GET_LEN(buf_pool->free), n_free); ut_error; } ut_a(UT_LIST_GET_LEN(buf_pool->flush_list) == n_flush); ut_a(buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE] == n_single_flush); ut_a(buf_pool->n_flush[BUF_FLUSH_LIST] == n_list_flush); ut_a(buf_pool->n_flush[BUF_FLUSH_LRU] == n_lru_flush); mutex_exit(&(buf_pool->mutex)); ut_a(buf_LRU_validate()); ut_a(buf_flush_validate()); return(TRUE); } /************************************************************************* Prints info of the buffer buf_pool data structure. */ void buf_print(void) /*===========*/ { dulint* index_ids; ulint* counts; ulint size; ulint i; ulint j; dulint id; ulint n_found; buf_frame_t* frame; dict_index_t* index; ut_ad(buf_pool); size = buf_pool_get_curr_size() / UNIV_PAGE_SIZE; index_ids = mem_alloc(sizeof(dulint) * size); counts = mem_alloc(sizeof(ulint) * size); mutex_enter(&(buf_pool->mutex)); printf("LRU len %lu \n", UT_LIST_GET_LEN(buf_pool->LRU)); printf("free len %lu \n", UT_LIST_GET_LEN(buf_pool->free)); printf("flush len %lu \n", UT_LIST_GET_LEN(buf_pool->flush_list)); printf("buf_pool size %lu \n", size); printf("n pending reads %lu \n", buf_pool->n_pend_reads); printf("n pending flush LRU %lu list %lu single page %lu\n", buf_pool->n_flush[BUF_FLUSH_LRU], buf_pool->n_flush[BUF_FLUSH_LIST], buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE]); printf("pages read %lu, created %lu, written %lu\n", buf_pool->n_pages_read, buf_pool->n_pages_created, buf_pool->n_pages_written); /* Count the number of blocks belonging to each index in the buffer */ n_found = 0; for (i = 0 ; i < size; i++) { counts[i] = 0; } for (i = 0; i < size; i++) { frame = buf_pool_get_nth_block(buf_pool, i)->frame; if (fil_page_get_type(frame) == FIL_PAGE_INDEX) { id = btr_page_get_index_id(frame); /* Look for the id in the index_ids array */ j = 0; while (j < n_found) { if (ut_dulint_cmp(index_ids[j], id) == 0) { (counts[j])++; break; } j++; } if (j == n_found) { n_found++; index_ids[j] = id; counts[j] = 1; } } } mutex_exit(&(buf_pool->mutex)); for (i = 0; i < n_found; i++) { index = dict_index_get_if_in_cache(index_ids[i]); printf("Block count for index %lu in buffer is about %lu", ut_dulint_get_low(index_ids[i]), counts[i]); if (index) { printf(" index name %s table %s", index->name, index->table->name); } printf("\n"); } mem_free(index_ids); mem_free(counts); ut_a(buf_validate()); } /************************************************************************* Prints info of the buffer i/o. */ void buf_print_io(void) /*==============*/ { ut_ad(buf_pool); mutex_enter(&(buf_pool->mutex)); printf("pages read %lu, created %lu, written %lu\n", buf_pool->n_pages_read, buf_pool->n_pages_created, buf_pool->n_pages_written); mutex_exit(&(buf_pool->mutex)); } /************************************************************************* Checks that all file pages in the buffer are in a replaceable state. */ ibool buf_all_freed(void) /*===============*/ { buf_block_t* block; ulint i; ut_ad(buf_pool); mutex_enter(&(buf_pool->mutex)); for (i = 0; i < buf_pool->curr_size; i++) { block = buf_pool_get_nth_block(buf_pool, i); if (block->state == BUF_BLOCK_FILE_PAGE) { if (!buf_flush_ready_for_replace(block)) { /* printf("Page %lu %lu still fixed or dirty\n", block->space, block->offset); */ ut_error; } } } mutex_exit(&(buf_pool->mutex)); return(TRUE); } /************************************************************************* Checks that there currently are no pending i/o-operations for the buffer pool. */ ibool buf_pool_check_no_pending_io(void) /*==============================*/ /* out: TRUE if there is no pending i/o */ { ibool ret; mutex_enter(&(buf_pool->mutex)); if (buf_pool->n_pend_reads + buf_pool->n_flush[BUF_FLUSH_LRU] + buf_pool->n_flush[BUF_FLUSH_LIST] + buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE]) { ret = FALSE; } else { ret = TRUE; } mutex_exit(&(buf_pool->mutex)); return(ret); } /************************************************************************* Gets the current length of the free list of buffer blocks. */ ulint buf_get_free_list_len(void) /*=======================*/ { ulint len; mutex_enter(&(buf_pool->mutex)); len = UT_LIST_GET_LEN(buf_pool->free); mutex_exit(&(buf_pool->mutex)); return(len); }