/***************************************************************************** Copyright (c) 1995, 2009, Innobase Oy. All Rights Reserved. Copyright (c) 2008, Google Inc. Portions of this file contain modifications contributed and copyrighted by Google, Inc. Those modifications are gratefully acknowledged and are described briefly in the InnoDB documentation. The contributions by Google are incorporated with their permission, and subject to the conditions contained in the file COPYING.Google. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *****************************************************************************/ /****************************************************** Mutex, the basic synchronization primitive Created 9/5/1995 Heikki Tuuri *******************************************************/ /********************************************************************** Sets the waiters field in a mutex. */ UNIV_INTERN void mutex_set_waiters( /*==============*/ mutex_t* mutex, /* in: mutex */ ulint n); /* in: value to set */ /********************************************************************** Reserves a mutex for the current thread. If the mutex is reserved, the function spins a preset time (controlled by SYNC_SPIN_ROUNDS) waiting for the mutex before suspending the thread. */ UNIV_INTERN void mutex_spin_wait( /*============*/ mutex_t* mutex, /* in: pointer to mutex */ const char* file_name, /* in: file name where mutex requested */ ulint line); /* in: line where requested */ #ifdef UNIV_SYNC_DEBUG /********************************************************************** Sets the debug information for a reserved mutex. */ UNIV_INTERN void mutex_set_debug_info( /*=================*/ mutex_t* mutex, /* in: mutex */ const char* file_name, /* in: file where requested */ ulint line); /* in: line where requested */ #endif /* UNIV_SYNC_DEBUG */ /********************************************************************** Releases the threads waiting in the primary wait array for this mutex. */ UNIV_INTERN void mutex_signal_object( /*================*/ mutex_t* mutex); /* in: mutex */ /********************************************************************** Performs an atomic test-and-set instruction to the lock_word field of a mutex. */ UNIV_INLINE byte mutex_test_and_set( /*===============*/ /* out: the previous value of lock_word: 0 or 1 */ mutex_t* mutex) /* in: mutex */ { #if defined(_WIN32) && defined(UNIV_CAN_USE_X86_ASSEMBLER) byte res; byte* lw; /* assembler code is used to ensure that lock_word is loaded from memory */ ut_ad(mutex); ut_ad(sizeof(byte) == 1); lw = &(mutex->lock_word); __asm MOV ECX, lw __asm MOV EDX, 1 __asm XCHG DL, BYTE PTR [ECX] __asm MOV res, DL /* The fence below would prevent this thread from reading the data structure protected by the mutex before the test-and-set operation is committed, but the fence is apparently not needed: In a posting to comp.arch newsgroup (August 10, 1997) Andy Glew said that in P6 a LOCKed instruction like XCHG establishes a fence with respect to memory reads and writes and thus an explicit fence is not needed. In P5 he seemed to agree with a previous newsgroup poster that LOCKed instructions serialize all instruction execution, and, consequently, also memory operations. This is confirmed in Intel Software Dev. Manual, Vol. 3. */ /* mutex_fence(); */ return(res); #elif defined(HAVE_GCC_ATOMIC_BUILTINS) return __sync_lock_test_and_set(&(mutex->lock_word), 1); #else ibool ret; ret = os_fast_mutex_trylock(&(mutex->os_fast_mutex)); if (ret == 0) { /* We check that os_fast_mutex_trylock does not leak and allow race conditions */ ut_a(mutex->lock_word == 0); mutex->lock_word = 1; } return((byte)ret); #endif } /********************************************************************** Performs a reset instruction to the lock_word field of a mutex. This instruction also serializes memory operations to the program order. */ UNIV_INLINE void mutex_reset_lock_word( /*==================*/ mutex_t* mutex) /* in: mutex */ { #if defined(_WIN32) && defined(UNIV_CAN_USE_X86_ASSEMBLER) byte* lw; /* assembler code is used to ensure that lock_word is loaded from memory */ ut_ad(mutex); lw = &(mutex->lock_word); __asm MOV EDX, 0 __asm MOV ECX, lw __asm XCHG DL, BYTE PTR [ECX] #elif defined(HAVE_GCC_ATOMIC_BUILTINS) /* In theory __sync_lock_release should be used to release the lock. Unfortunately, it does not work properly alone. The workaround is that more conservative __sync_lock_test_and_set is used instead. */ __sync_lock_test_and_set(&(mutex->lock_word), 0); #else mutex->lock_word = 0; os_fast_mutex_unlock(&(mutex->os_fast_mutex)); #endif } /********************************************************************** Gets the value of the lock word. */ UNIV_INLINE byte mutex_get_lock_word( /*================*/ const mutex_t* mutex) /* in: mutex */ { const volatile byte* ptr; /* declared volatile to ensure that lock_word is loaded from memory */ ut_ad(mutex); ptr = &(mutex->lock_word); return(*ptr); } /********************************************************************** Gets the waiters field in a mutex. */ UNIV_INLINE ulint mutex_get_waiters( /*==============*/ /* out: value to set */ const mutex_t* mutex) /* in: mutex */ { const volatile ulint* ptr; /* declared volatile to ensure that the value is read from memory */ ut_ad(mutex); ptr = &(mutex->waiters); return(*ptr); /* Here we assume that the read of a single word from memory is atomic */ } /********************************************************************** Unlocks a mutex owned by the current thread. */ UNIV_INLINE void mutex_exit( /*=======*/ mutex_t* mutex) /* in: pointer to mutex */ { ut_ad(mutex_own(mutex)); ut_d(mutex->thread_id = (os_thread_id_t) ULINT_UNDEFINED); #ifdef UNIV_SYNC_DEBUG sync_thread_reset_level(mutex); #endif mutex_reset_lock_word(mutex); /* A problem: we assume that mutex_reset_lock word is a memory barrier, that is when we read the waiters field next, the read must be serialized in memory after the reset. A speculative processor might perform the read first, which could leave a waiting thread hanging indefinitely. Our current solution call every second sync_arr_wake_threads_if_sema_free() to wake up possible hanging threads if they are missed in mutex_signal_object. */ if (mutex_get_waiters(mutex) != 0) { mutex_signal_object(mutex); } #ifdef UNIV_SYNC_PERF_STAT mutex_exit_count++; #endif } /********************************************************************** Locks a mutex for the current thread. If the mutex is reserved, the function spins a preset time (controlled by SYNC_SPIN_ROUNDS), waiting for the mutex before suspending the thread. */ UNIV_INLINE void mutex_enter_func( /*=============*/ mutex_t* mutex, /* in: pointer to mutex */ const char* file_name, /* in: file name where locked */ ulint line) /* in: line where locked */ { ut_ad(mutex_validate(mutex)); ut_ad(!mutex_own(mutex)); /* Note that we do not peek at the value of lock_word before trying the atomic test_and_set; we could peek, and possibly save time. */ #if defined UNIV_DEBUG && !defined UNIV_HOTBACKUP mutex->count_using++; #endif /* UNIV_DEBUG && !UNIV_HOTBACKUP */ if (!mutex_test_and_set(mutex)) { ut_d(mutex->thread_id = os_thread_get_curr_id()); #ifdef UNIV_SYNC_DEBUG mutex_set_debug_info(mutex, file_name, line); #endif return; /* Succeeded! */ } mutex_spin_wait(mutex, file_name, line); }