/****************************************************** Database object creation (c) 1996 Innobase Oy Created 1/8/1996 Heikki Tuuri *******************************************************/ #include "dict0crea.h" #ifdef UNIV_NONINL #include "dict0crea.ic" #endif #include "btr0pcur.h" #include "btr0btr.h" #include "page0page.h" #include "mach0data.h" #include "dict0boot.h" #include "dict0dict.h" #include "que0que.h" #include "row0ins.h" #include "row0mysql.h" #include "pars0pars.h" #include "trx0roll.h" #include "usr0sess.h" #include "ut0vec.h" /********************************************************************* Based on a table object, this function builds the entry to be inserted in the SYS_TABLES system table. */ static dtuple_t* dict_create_sys_tables_tuple( /*=========================*/ /* out: the tuple which should be inserted */ dict_table_t* table, /* in: table */ mem_heap_t* heap) /* in: memory heap from which the memory for the built tuple is allocated */ { dict_table_t* sys_tables; dtuple_t* entry; dfield_t* dfield; byte* ptr; ut_ad(table && heap); sys_tables = dict_sys->sys_tables; entry = dtuple_create(heap, 8 + DATA_N_SYS_COLS); /* 0: NAME -----------------------------*/ dfield = dtuple_get_nth_field(entry, 0); dfield_set_data(dfield, table->name, ut_strlen(table->name)); /* 3: ID -------------------------------*/ dfield = dtuple_get_nth_field(entry, 1); ptr = mem_heap_alloc(heap, 8); mach_write_to_8(ptr, table->id); dfield_set_data(dfield, ptr, 8); /* 4: N_COLS ---------------------------*/ dfield = dtuple_get_nth_field(entry, 2); #if DICT_TF_COMPACT != 1 #error #endif ptr = mem_heap_alloc(heap, 4); mach_write_to_4(ptr, table->n_def | ((table->flags & DICT_TF_COMPACT) << 31)); dfield_set_data(dfield, ptr, 4); /* 5: TYPE -----------------------------*/ dfield = dtuple_get_nth_field(entry, 3); ptr = mem_heap_alloc(heap, 4); mach_write_to_4(ptr, DICT_TABLE_ORDINARY); dfield_set_data(dfield, ptr, 4); /* 6: MIX_ID ---------------------------*/ dfield = dtuple_get_nth_field(entry, 4); ptr = mem_heap_alloc(heap, 8); memset(ptr, 0, 8); dfield_set_data(dfield, ptr, 8); /* 7: MIX_LEN --------------------------*/ dfield = dtuple_get_nth_field(entry, 5); ptr = mem_heap_alloc(heap, 4); memset(ptr, 0, 4); dfield_set_data(dfield, ptr, 4); /* 8: CLUSTER_NAME ---------------------*/ dfield = dtuple_get_nth_field(entry, 6); dfield_set_data(dfield, NULL, UNIV_SQL_NULL); /* not supported */ /* 9: SPACE ----------------------------*/ dfield = dtuple_get_nth_field(entry, 7); ptr = mem_heap_alloc(heap, 4); mach_write_to_4(ptr, table->space); dfield_set_data(dfield, ptr, 4); /*----------------------------------*/ dict_table_copy_types(entry, sys_tables); return(entry); } /********************************************************************* Based on a table object, this function builds the entry to be inserted in the SYS_COLUMNS system table. */ static dtuple_t* dict_create_sys_columns_tuple( /*==========================*/ /* out: the tuple which should be inserted */ dict_table_t* table, /* in: table */ ulint i, /* in: column number */ mem_heap_t* heap) /* in: memory heap from which the memory for the built tuple is allocated */ { dict_table_t* sys_columns; dtuple_t* entry; dict_col_t* column; dfield_t* dfield; byte* ptr; ut_ad(table && heap); column = dict_table_get_nth_col(table, i); sys_columns = dict_sys->sys_columns; entry = dtuple_create(heap, 7 + DATA_N_SYS_COLS); /* 0: TABLE_ID -----------------------*/ dfield = dtuple_get_nth_field(entry, 0); ptr = mem_heap_alloc(heap, 8); mach_write_to_8(ptr, table->id); dfield_set_data(dfield, ptr, 8); /* 1: POS ----------------------------*/ dfield = dtuple_get_nth_field(entry, 1); ptr = mem_heap_alloc(heap, 4); mach_write_to_4(ptr, i); dfield_set_data(dfield, ptr, 4); /* 4: NAME ---------------------------*/ dfield = dtuple_get_nth_field(entry, 2); dfield_set_data(dfield, column->name, ut_strlen(column->name)); /* 5: MTYPE --------------------------*/ dfield = dtuple_get_nth_field(entry, 3); ptr = mem_heap_alloc(heap, 4); mach_write_to_4(ptr, (column->type).mtype); dfield_set_data(dfield, ptr, 4); /* 6: PRTYPE -------------------------*/ dfield = dtuple_get_nth_field(entry, 4); ptr = mem_heap_alloc(heap, 4); mach_write_to_4(ptr, (column->type).prtype); dfield_set_data(dfield, ptr, 4); /* 7: LEN ----------------------------*/ dfield = dtuple_get_nth_field(entry, 5); ptr = mem_heap_alloc(heap, 4); mach_write_to_4(ptr, (column->type).len); dfield_set_data(dfield, ptr, 4); /* 8: PREC ---------------------------*/ dfield = dtuple_get_nth_field(entry, 6); ptr = mem_heap_alloc(heap, 4); mach_write_to_4(ptr, (column->type).prec); dfield_set_data(dfield, ptr, 4); /*---------------------------------*/ dict_table_copy_types(entry, sys_columns); return(entry); } /******************************************************************* Builds a table definition to insert. */ static ulint dict_build_table_def_step( /*======================*/ /* out: DB_SUCCESS or error code */ que_thr_t* thr, /* in: query thread */ tab_node_t* node) /* in: table create node */ { dict_table_t* table; dtuple_t* row; ulint error; const char* path_or_name; ibool is_path; mtr_t mtr; ulint i; ulint row_len; #ifdef UNIV_SYNC_DEBUG ut_ad(mutex_own(&(dict_sys->mutex))); #endif /* UNIV_SYNC_DEBUG */ table = node->table; table->id = dict_hdr_get_new_id(DICT_HDR_TABLE_ID); thr_get_trx(thr)->table_id = table->id; row_len = 0; for (i = 0; i < table->n_def; i++) { row_len += dtype_get_min_size(dict_col_get_type( &table->cols[i])); } if (row_len > BTR_PAGE_MAX_REC_SIZE) { return(DB_TOO_BIG_RECORD); } if (srv_file_per_table) { /* We create a new single-table tablespace for the table. We initially let it be 4 pages: - page 0 is the fsp header and an extent descriptor page, - page 1 is an ibuf bitmap page, - page 2 is the first inode page, - page 3 will contain the root of the clustered index of the table we create here. */ table->space = 0; /* reset to zero for the call below */ if (table->dir_path_of_temp_table) { /* We place tables created with CREATE TEMPORARY TABLE in the tmp dir of mysqld server */ path_or_name = table->dir_path_of_temp_table; is_path = TRUE; } else { path_or_name = table->name; is_path = FALSE; } error = fil_create_new_single_table_tablespace( &(table->space), path_or_name, is_path, FIL_IBD_FILE_INITIAL_SIZE); if (error != DB_SUCCESS) { return(error); } mtr_start(&mtr); fsp_header_init(table->space, FIL_IBD_FILE_INITIAL_SIZE, &mtr); mtr_commit(&mtr); } row = dict_create_sys_tables_tuple(table, node->heap); ins_node_set_new_row(node->tab_def, row); return(DB_SUCCESS); } /******************************************************************* Builds a column definition to insert. */ static ulint dict_build_col_def_step( /*====================*/ /* out: DB_SUCCESS */ tab_node_t* node) /* in: table create node */ { dtuple_t* row; row = dict_create_sys_columns_tuple(node->table, node->col_no, node->heap); ins_node_set_new_row(node->col_def, row); return(DB_SUCCESS); } /********************************************************************* Based on an index object, this function builds the entry to be inserted in the SYS_INDEXES system table. */ static dtuple_t* dict_create_sys_indexes_tuple( /*==========================*/ /* out: the tuple which should be inserted */ dict_index_t* index, /* in: index */ mem_heap_t* heap) /* in: memory heap from which the memory for the built tuple is allocated */ { dict_table_t* sys_indexes; dict_table_t* table; dtuple_t* entry; dfield_t* dfield; byte* ptr; #ifdef UNIV_SYNC_DEBUG ut_ad(mutex_own(&(dict_sys->mutex))); #endif /* UNIV_SYNC_DEBUG */ ut_ad(index && heap); sys_indexes = dict_sys->sys_indexes; table = dict_table_get_low(index->table_name); entry = dtuple_create(heap, 7 + DATA_N_SYS_COLS); /* 0: TABLE_ID -----------------------*/ dfield = dtuple_get_nth_field(entry, 0); ptr = mem_heap_alloc(heap, 8); mach_write_to_8(ptr, table->id); dfield_set_data(dfield, ptr, 8); /* 1: ID ----------------------------*/ dfield = dtuple_get_nth_field(entry, 1); ptr = mem_heap_alloc(heap, 8); mach_write_to_8(ptr, index->id); dfield_set_data(dfield, ptr, 8); /* 4: NAME --------------------------*/ dfield = dtuple_get_nth_field(entry, 2); dfield_set_data(dfield, index->name, ut_strlen(index->name)); /* 5: N_FIELDS ----------------------*/ dfield = dtuple_get_nth_field(entry, 3); ptr = mem_heap_alloc(heap, 4); mach_write_to_4(ptr, index->n_fields); dfield_set_data(dfield, ptr, 4); /* 6: TYPE --------------------------*/ dfield = dtuple_get_nth_field(entry, 4); ptr = mem_heap_alloc(heap, 4); mach_write_to_4(ptr, index->type); dfield_set_data(dfield, ptr, 4); /* 7: SPACE --------------------------*/ #if DICT_SYS_INDEXES_SPACE_NO_FIELD != 7 #error "DICT_SYS_INDEXES_SPACE_NO_FIELD != 7" #endif dfield = dtuple_get_nth_field(entry, 5); ptr = mem_heap_alloc(heap, 4); mach_write_to_4(ptr, index->space); dfield_set_data(dfield, ptr, 4); /* 8: PAGE_NO --------------------------*/ #if DICT_SYS_INDEXES_PAGE_NO_FIELD != 8 #error "DICT_SYS_INDEXES_PAGE_NO_FIELD != 8" #endif dfield = dtuple_get_nth_field(entry, 6); ptr = mem_heap_alloc(heap, 4); mach_write_to_4(ptr, FIL_NULL); dfield_set_data(dfield, ptr, 4); /*--------------------------------*/ dict_table_copy_types(entry, sys_indexes); return(entry); } /********************************************************************* Based on an index object, this function builds the entry to be inserted in the SYS_FIELDS system table. */ static dtuple_t* dict_create_sys_fields_tuple( /*=========================*/ /* out: the tuple which should be inserted */ dict_index_t* index, /* in: index */ ulint i, /* in: field number */ mem_heap_t* heap) /* in: memory heap from which the memory for the built tuple is allocated */ { dict_table_t* sys_fields; dtuple_t* entry; dict_field_t* field; dfield_t* dfield; byte* ptr; ibool index_contains_column_prefix_field = FALSE; ulint j; ut_ad(index && heap); for (j = 0; j < index->n_fields; j++) { if (dict_index_get_nth_field(index, j)->prefix_len > 0) { index_contains_column_prefix_field = TRUE; } } field = dict_index_get_nth_field(index, i); sys_fields = dict_sys->sys_fields; entry = dtuple_create(heap, 3 + DATA_N_SYS_COLS); /* 0: INDEX_ID -----------------------*/ dfield = dtuple_get_nth_field(entry, 0); ptr = mem_heap_alloc(heap, 8); mach_write_to_8(ptr, index->id); dfield_set_data(dfield, ptr, 8); /* 1: POS + PREFIX LENGTH ----------------------------*/ dfield = dtuple_get_nth_field(entry, 1); ptr = mem_heap_alloc(heap, 4); if (index_contains_column_prefix_field) { /* If there are column prefix fields in the index, then we store the number of the field to the 2 HIGH bytes and the prefix length to the 2 low bytes, */ mach_write_to_4(ptr, (i << 16) + field->prefix_len); } else { /* Else we store the number of the field to the 2 LOW bytes. This is to keep the storage format compatible with InnoDB versions < 4.0.14. */ mach_write_to_4(ptr, i); } dfield_set_data(dfield, ptr, 4); /* 4: COL_NAME -------------------------*/ dfield = dtuple_get_nth_field(entry, 2); dfield_set_data(dfield, field->name, ut_strlen(field->name)); /*---------------------------------*/ dict_table_copy_types(entry, sys_fields); return(entry); } /********************************************************************* Creates the tuple with which the index entry is searched for writing the index tree root page number, if such a tree is created. */ static dtuple_t* dict_create_search_tuple( /*=====================*/ /* out: the tuple for search */ dtuple_t* tuple, /* in: the tuple inserted in the SYS_INDEXES table */ mem_heap_t* heap) /* in: memory heap from which the memory for the built tuple is allocated */ { dtuple_t* search_tuple; dfield_t* field1; dfield_t* field2; ut_ad(tuple && heap); search_tuple = dtuple_create(heap, 2); field1 = dtuple_get_nth_field(tuple, 0); field2 = dtuple_get_nth_field(search_tuple, 0); dfield_copy(field2, field1); field1 = dtuple_get_nth_field(tuple, 1); field2 = dtuple_get_nth_field(search_tuple, 1); dfield_copy(field2, field1); ut_ad(dtuple_validate(search_tuple)); return(search_tuple); } /******************************************************************* Builds an index definition row to insert. */ static ulint dict_build_index_def_step( /*======================*/ /* out: DB_SUCCESS or error code */ que_thr_t* thr, /* in: query thread */ ind_node_t* node) /* in: index create node */ { dict_table_t* table; dict_index_t* index; dtuple_t* row; trx_t* trx; #ifdef UNIV_SYNC_DEBUG ut_ad(mutex_own(&(dict_sys->mutex))); #endif /* UNIV_SYNC_DEBUG */ trx = thr_get_trx(thr); index = node->index; table = dict_table_get_low(index->table_name); if (table == NULL) { return(DB_TABLE_NOT_FOUND); } trx->table_id = table->id; node->table = table; ut_ad((UT_LIST_GET_LEN(table->indexes) > 0) || (index->type & DICT_CLUSTERED)); index->id = dict_hdr_get_new_id(DICT_HDR_INDEX_ID); /* Inherit the space id from the table; we store all indexes of a table in the same tablespace */ index->space = table->space; node->page_no = FIL_NULL; row = dict_create_sys_indexes_tuple(index, node->heap); node->ind_row = row; ins_node_set_new_row(node->ind_def, row); return(DB_SUCCESS); } /******************************************************************* Builds a field definition row to insert. */ static ulint dict_build_field_def_step( /*======================*/ /* out: DB_SUCCESS */ ind_node_t* node) /* in: index create node */ { dict_index_t* index; dtuple_t* row; index = node->index; row = dict_create_sys_fields_tuple(index, node->field_no, node->heap); ins_node_set_new_row(node->field_def, row); return(DB_SUCCESS); } /******************************************************************* Creates an index tree for the index if it is not a member of a cluster. */ static ulint dict_create_index_tree_step( /*========================*/ /* out: DB_SUCCESS or DB_OUT_OF_FILE_SPACE */ ind_node_t* node) /* in: index create node */ { dict_index_t* index; dict_table_t* sys_indexes; dict_table_t* table; dtuple_t* search_tuple; btr_pcur_t pcur; mtr_t mtr; #ifdef UNIV_SYNC_DEBUG ut_ad(mutex_own(&(dict_sys->mutex))); #endif /* UNIV_SYNC_DEBUG */ index = node->index; table = node->table; sys_indexes = dict_sys->sys_indexes; /* Run a mini-transaction in which the index tree is allocated for the index and its root address is written to the index entry in sys_indexes */ mtr_start(&mtr); search_tuple = dict_create_search_tuple(node->ind_row, node->heap); btr_pcur_open(UT_LIST_GET_FIRST(sys_indexes->indexes), search_tuple, PAGE_CUR_L, BTR_MODIFY_LEAF, &pcur, &mtr); btr_pcur_move_to_next_user_rec(&pcur, &mtr); node->page_no = btr_create(index->type, index->space, index->id, dict_table_is_comp(table), &mtr); /* printf("Created a new index tree in space %lu root page %lu\n", index->space, index->page_no); */ page_rec_write_index_page_no(btr_pcur_get_rec(&pcur), DICT_SYS_INDEXES_PAGE_NO_FIELD, node->page_no, &mtr); btr_pcur_close(&pcur); mtr_commit(&mtr); if (node->page_no == FIL_NULL) { return(DB_OUT_OF_FILE_SPACE); } return(DB_SUCCESS); } /*********************************************************************** Drops the index tree associated with a row in SYS_INDEXES table. */ void dict_drop_index_tree( /*=================*/ rec_t* rec, /* in: record in the clustered index of SYS_INDEXES table */ mtr_t* mtr) /* in: mtr having the latch on the record page */ { ulint root_page_no; ulint space; byte* ptr; ulint len; #ifdef UNIV_SYNC_DEBUG ut_ad(mutex_own(&(dict_sys->mutex))); #endif /* UNIV_SYNC_DEBUG */ ut_a(!dict_table_is_comp(dict_sys->sys_indexes)); ptr = rec_get_nth_field_old(rec, DICT_SYS_INDEXES_PAGE_NO_FIELD, &len); ut_ad(len == 4); root_page_no = mtr_read_ulint(ptr, MLOG_4BYTES, mtr); if (root_page_no == FIL_NULL) { /* The tree has already been freed */ return; } ptr = rec_get_nth_field_old(rec, DICT_SYS_INDEXES_SPACE_NO_FIELD, &len); ut_ad(len == 4); space = mtr_read_ulint(ptr, MLOG_4BYTES, mtr); if (!fil_tablespace_exists_in_mem(space)) { /* It is a single table tablespace and the .ibd file is missing: do nothing */ return; } /* We free all the pages but the root page first; this operation may span several mini-transactions */ btr_free_but_not_root(space, root_page_no); /* Then we free the root page in the same mini-transaction where we write FIL_NULL to the appropriate field in the SYS_INDEXES record: this mini-transaction marks the B-tree totally freed */ /* printf("Dropping index tree in space %lu root page %lu\n", space, root_page_no); */ btr_free_root(space, root_page_no, mtr); page_rec_write_index_page_no(rec, DICT_SYS_INDEXES_PAGE_NO_FIELD, FIL_NULL, mtr); } /*********************************************************************** Truncates the index tree associated with a row in SYS_INDEXES table. */ ulint dict_truncate_index_tree( /*=====================*/ /* out: new root page number, or FIL_NULL on failure */ dict_table_t* table, /* in: the table the index belongs to */ rec_t* rec, /* in: record in the clustered index of SYS_INDEXES table */ mtr_t* mtr) /* in: mtr having the latch on the record page. The mtr may be committed and restarted in this call. */ { ulint root_page_no; ulint space; ulint type; dulint index_id; byte* ptr; ulint len; ulint comp; dict_index_t* index; #ifdef UNIV_SYNC_DEBUG ut_ad(mutex_own(&(dict_sys->mutex))); #endif /* UNIV_SYNC_DEBUG */ ut_a(!dict_table_is_comp(dict_sys->sys_indexes)); ptr = rec_get_nth_field_old(rec, DICT_SYS_INDEXES_PAGE_NO_FIELD, &len); ut_ad(len == 4); root_page_no = mtr_read_ulint(ptr, MLOG_4BYTES, mtr); if (root_page_no == FIL_NULL) { /* The tree has been freed. */ ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Trying to TRUNCATE" " a missing index of table %s!\n", table->name); return(FIL_NULL); } ptr = rec_get_nth_field_old(rec, DICT_SYS_INDEXES_SPACE_NO_FIELD, &len); ut_ad(len == 4); space = mtr_read_ulint(ptr, MLOG_4BYTES, mtr); if (!fil_tablespace_exists_in_mem(space)) { /* It is a single table tablespace and the .ibd file is missing: do nothing */ ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Trying to TRUNCATE" " a missing .ibd file of table %s!\n", table->name); return(FIL_NULL); } ptr = rec_get_nth_field_old(rec, DICT_SYS_INDEXES_TYPE_FIELD, &len); ut_ad(len == 4); type = mach_read_from_4(ptr); ptr = rec_get_nth_field_old(rec, 1, &len); ut_ad(len == 8); index_id = mach_read_from_8(ptr); /* We free all the pages but the root page first; this operation may span several mini-transactions */ btr_free_but_not_root(space, root_page_no); /* Then we free the root page in the same mini-transaction where we create the b-tree and write its new root page number to the appropriate field in the SYS_INDEXES record: this mini-transaction marks the B-tree totally truncated */ comp = page_is_comp(btr_page_get( space, root_page_no, RW_X_LATCH, mtr)); btr_free_root(space, root_page_no, mtr); /* We will temporarily write FIL_NULL to the PAGE_NO field in SYS_INDEXES, so that the database will not get into an inconsistent state in case it crashes between the mtr_commit() below and the following mtr_commit() call. */ page_rec_write_index_page_no(rec, DICT_SYS_INDEXES_PAGE_NO_FIELD, FIL_NULL, mtr); /* We will need to commit the mini-transaction in order to avoid deadlocks in the btr_create() call, because otherwise we would be freeing and allocating pages in the same mini-transaction. */ mtr_commit(mtr); /* mtr_commit() will invalidate rec. */ rec = NULL; mtr_start(mtr); /* Find the index corresponding to this SYS_INDEXES record. */ for (index = UT_LIST_GET_FIRST(table->indexes); index; index = UT_LIST_GET_NEXT(indexes, index)) { if (!ut_dulint_cmp(index->id, index_id)) { break; } } root_page_no = btr_create(type, space, index_id, comp, mtr); if (index) { index->tree->page = root_page_no; } else { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Index %lu %lu of table %s is missing\n" "InnoDB: from the data dictionary during TRUNCATE!\n", ut_dulint_get_high(index_id), ut_dulint_get_low(index_id), table->name); } return(root_page_no); } /************************************************************************* Creates a table create graph. */ tab_node_t* tab_create_graph_create( /*====================*/ /* out, own: table create node */ dict_table_t* table, /* in: table to create, built as a memory data structure */ mem_heap_t* heap) /* in: heap where created */ { tab_node_t* node; node = mem_heap_alloc(heap, sizeof(tab_node_t)); node->common.type = QUE_NODE_CREATE_TABLE; node->table = table; node->state = TABLE_BUILD_TABLE_DEF; node->heap = mem_heap_create(256); node->tab_def = ins_node_create(INS_DIRECT, dict_sys->sys_tables, heap); node->tab_def->common.parent = node; node->col_def = ins_node_create(INS_DIRECT, dict_sys->sys_columns, heap); node->col_def->common.parent = node; node->commit_node = commit_node_create(heap); node->commit_node->common.parent = node; return(node); } /************************************************************************* Creates an index create graph. */ ind_node_t* ind_create_graph_create( /*====================*/ /* out, own: index create node */ dict_index_t* index, /* in: index to create, built as a memory data structure */ mem_heap_t* heap) /* in: heap where created */ { ind_node_t* node; node = mem_heap_alloc(heap, sizeof(ind_node_t)); node->common.type = QUE_NODE_CREATE_INDEX; node->index = index; node->state = INDEX_BUILD_INDEX_DEF; node->page_no = FIL_NULL; node->heap = mem_heap_create(256); node->ind_def = ins_node_create(INS_DIRECT, dict_sys->sys_indexes, heap); node->ind_def->common.parent = node; node->field_def = ins_node_create(INS_DIRECT, dict_sys->sys_fields, heap); node->field_def->common.parent = node; node->commit_node = commit_node_create(heap); node->commit_node->common.parent = node; return(node); } /*************************************************************** Creates a table. This is a high-level function used in SQL execution graphs. */ que_thr_t* dict_create_table_step( /*===================*/ /* out: query thread to run next or NULL */ que_thr_t* thr) /* in: query thread */ { tab_node_t* node; ulint err = DB_ERROR; trx_t* trx; ut_ad(thr); #ifdef UNIV_SYNC_DEBUG ut_ad(mutex_own(&(dict_sys->mutex))); #endif /* UNIV_SYNC_DEBUG */ trx = thr_get_trx(thr); node = thr->run_node; ut_ad(que_node_get_type(node) == QUE_NODE_CREATE_TABLE); if (thr->prev_node == que_node_get_parent(node)) { node->state = TABLE_BUILD_TABLE_DEF; } if (node->state == TABLE_BUILD_TABLE_DEF) { /* DO THE CHECKS OF THE CONSISTENCY CONSTRAINTS HERE */ err = dict_build_table_def_step(thr, node); if (err != DB_SUCCESS) { goto function_exit; } node->state = TABLE_BUILD_COL_DEF; node->col_no = 0; thr->run_node = node->tab_def; return(thr); } if (node->state == TABLE_BUILD_COL_DEF) { if (node->col_no < (node->table)->n_def) { err = dict_build_col_def_step(node); if (err != DB_SUCCESS) { goto function_exit; } node->col_no++; thr->run_node = node->col_def; return(thr); } else { node->state = TABLE_COMMIT_WORK; } } if (node->state == TABLE_COMMIT_WORK) { /* Table was correctly defined: do NOT commit the transaction (CREATE TABLE does NOT do an implicit commit of the current transaction) */ node->state = TABLE_ADD_TO_CACHE; /* thr->run_node = node->commit_node; return(thr); */ } if (node->state == TABLE_ADD_TO_CACHE) { dict_table_add_to_cache(node->table); err = DB_SUCCESS; } function_exit: trx->error_state = err; if (err == DB_SUCCESS) { /* Ok: do nothing */ } else if (err == DB_LOCK_WAIT) { return(NULL); } else { /* SQL error detected */ return(NULL); } thr->run_node = que_node_get_parent(node); return(thr); } /*************************************************************** Creates an index. This is a high-level function used in SQL execution graphs. */ que_thr_t* dict_create_index_step( /*===================*/ /* out: query thread to run next or NULL */ que_thr_t* thr) /* in: query thread */ { ind_node_t* node; ibool success; ulint err = DB_ERROR; trx_t* trx; ut_ad(thr); #ifdef UNIV_SYNC_DEBUG ut_ad(mutex_own(&(dict_sys->mutex))); #endif /* UNIV_SYNC_DEBUG */ trx = thr_get_trx(thr); node = thr->run_node; ut_ad(que_node_get_type(node) == QUE_NODE_CREATE_INDEX); if (thr->prev_node == que_node_get_parent(node)) { node->state = INDEX_BUILD_INDEX_DEF; } if (node->state == INDEX_BUILD_INDEX_DEF) { /* DO THE CHECKS OF THE CONSISTENCY CONSTRAINTS HERE */ err = dict_build_index_def_step(thr, node); if (err != DB_SUCCESS) { goto function_exit; } node->state = INDEX_BUILD_FIELD_DEF; node->field_no = 0; thr->run_node = node->ind_def; return(thr); } if (node->state == INDEX_BUILD_FIELD_DEF) { if (node->field_no < (node->index)->n_fields) { err = dict_build_field_def_step(node); if (err != DB_SUCCESS) { goto function_exit; } node->field_no++; thr->run_node = node->field_def; return(thr); } else { node->state = INDEX_CREATE_INDEX_TREE; } } if (node->state == INDEX_CREATE_INDEX_TREE) { err = dict_create_index_tree_step(node); if (err != DB_SUCCESS) { goto function_exit; } node->state = INDEX_COMMIT_WORK; } if (node->state == INDEX_COMMIT_WORK) { /* Index was correctly defined: do NOT commit the transaction (CREATE INDEX does NOT currently do an implicit commit of the current transaction) */ node->state = INDEX_ADD_TO_CACHE; /* thr->run_node = node->commit_node; return(thr); */ } if (node->state == INDEX_ADD_TO_CACHE) { success = dict_index_add_to_cache(node->table, node->index, node->page_no); ut_a(success); err = DB_SUCCESS; } function_exit: trx->error_state = err; if (err == DB_SUCCESS) { /* Ok: do nothing */ } else if (err == DB_LOCK_WAIT) { return(NULL); } else { /* SQL error detected */ return(NULL); } thr->run_node = que_node_get_parent(node); return(thr); } /******************************************************************** Creates the foreign key constraints system tables inside InnoDB at database creation or database start if they are not found or are not of the right form. */ ulint dict_create_or_check_foreign_constraint_tables(void) /*================================================*/ /* out: DB_SUCCESS or error code */ { dict_table_t* table1; dict_table_t* table2; que_thr_t* thr; que_t* graph; ulint error; trx_t* trx; const char* str; mutex_enter(&(dict_sys->mutex)); table1 = dict_table_get_low("SYS_FOREIGN"); table2 = dict_table_get_low("SYS_FOREIGN_COLS"); if (table1 && table2 && UT_LIST_GET_LEN(table1->indexes) == 3 && UT_LIST_GET_LEN(table2->indexes) == 1) { /* Foreign constraint system tables have already been created, and they are ok */ mutex_exit(&(dict_sys->mutex)); return(DB_SUCCESS); } mutex_exit(&(dict_sys->mutex)); trx = trx_allocate_for_mysql(); trx->op_info = "creating foreign key sys tables"; row_mysql_lock_data_dictionary(trx); if (table1) { fprintf(stderr, "InnoDB: dropping incompletely created SYS_FOREIGN table\n"); row_drop_table_for_mysql("SYS_FOREIGN", trx, TRUE); } if (table2) { fprintf(stderr, "InnoDB: dropping incompletely created SYS_FOREIGN_COLS table\n"); row_drop_table_for_mysql("SYS_FOREIGN_COLS", trx, TRUE); } fprintf(stderr, "InnoDB: Creating foreign key constraint system tables\n"); /* NOTE: in dict_load_foreigns we use the fact that there are 2 secondary indexes on SYS_FOREIGN, and they are defined just like below */ /* NOTE: when designing InnoDB's foreign key support in 2001, we made an error and made the table names and the foreign key id of type 'CHAR' (internally, really a VARCHAR). We should have made the type VARBINARY, like in other InnoDB system tables, to get a clean design. */ str = "PROCEDURE CREATE_FOREIGN_SYS_TABLES_PROC () IS\n" "BEGIN\n" "CREATE TABLE\n" "SYS_FOREIGN(ID CHAR, FOR_NAME CHAR, REF_NAME CHAR, N_COLS INT);\n" "CREATE UNIQUE CLUSTERED INDEX ID_IND ON SYS_FOREIGN (ID);\n" "CREATE INDEX FOR_IND ON SYS_FOREIGN (FOR_NAME);\n" "CREATE INDEX REF_IND ON SYS_FOREIGN (REF_NAME);\n" "CREATE TABLE\n" "SYS_FOREIGN_COLS(ID CHAR, POS INT, FOR_COL_NAME CHAR, REF_COL_NAME CHAR);\n" "CREATE UNIQUE CLUSTERED INDEX ID_IND ON SYS_FOREIGN_COLS (ID, POS);\n" "COMMIT WORK;\n" "END;\n"; graph = pars_sql(NULL, str); ut_a(graph); graph->trx = trx; trx->graph = NULL; graph->fork_type = QUE_FORK_MYSQL_INTERFACE; ut_a(thr = que_fork_start_command(graph)); que_run_threads(thr); error = trx->error_state; if (error != DB_SUCCESS) { fprintf(stderr, "InnoDB: error %lu in creation\n", (ulong) error); ut_a(error == DB_OUT_OF_FILE_SPACE); fprintf(stderr, "InnoDB: creation failed\n"); fprintf(stderr, "InnoDB: tablespace is full\n"); fprintf(stderr, "InnoDB: dropping incompletely created SYS_FOREIGN tables\n"); row_drop_table_for_mysql("SYS_FOREIGN", trx, TRUE); row_drop_table_for_mysql("SYS_FOREIGN_COLS", trx, TRUE); error = DB_MUST_GET_MORE_FILE_SPACE; } que_graph_free(graph); trx->op_info = ""; row_mysql_unlock_data_dictionary(trx); trx_free_for_mysql(trx); if (error == DB_SUCCESS) { fprintf(stderr, "InnoDB: Foreign key constraint system tables created\n"); } return(error); } /******************************************************************** Evaluate the given foreign key SQL statement. */ ulint dict_foreign_eval_sql( /*==================*/ /* out: error code or DB_SUCCESS */ pars_info_t* info, /* in: info struct, or NULL */ const char* sql, /* in: SQL string to evaluate */ dict_table_t* table, /* in: table */ dict_foreign_t* foreign,/* in: foreign */ trx_t* trx) /* in: transaction */ { ulint error; FILE* ef = dict_foreign_err_file; error = que_eval_sql(info, sql, trx); if (error == DB_DUPLICATE_KEY) { mutex_enter(&dict_foreign_err_mutex); rewind(ef); ut_print_timestamp(ef); fputs(" Error in foreign key constraint creation for table ", ef); ut_print_name(ef, trx, table->name); fputs(".\nA foreign key constraint of name ", ef); ut_print_name(ef, trx, foreign->id); fputs("\nalready exists." " (Note that internally InnoDB adds 'databasename/'\n" "in front of the user-defined constraint name).\n", ef); fputs("Note that InnoDB's FOREIGN KEY system tables store\n" "constraint names as case-insensitive, with the\n" "MySQL standard latin1_swedish_ci collation. If you\n" "create tables or databases whose names differ only in\n" "the character case, then collisions in constraint\n" "names can occur. Workaround: name your constraints\n" "explicitly with unique names.\n", ef); mutex_exit(&dict_foreign_err_mutex); return(error); } if (error != DB_SUCCESS) { fprintf(stderr, "InnoDB: Foreign key constraint creation failed:\n" "InnoDB: internal error number %lu\n", (ulong) error); mutex_enter(&dict_foreign_err_mutex); ut_print_timestamp(ef); fputs(" Internal error in foreign key constraint creation" " for table ", ef); ut_print_name(ef, trx, table->name); fputs(".\n" "See the MySQL .err log in the datadir for more information.\n", ef); mutex_exit(&dict_foreign_err_mutex); return(error); } return(DB_SUCCESS); } /************************************************************************ Add a single foreign key field definition to the data dictionary tables in the database. */ static ulint dict_create_add_foreign_field_to_dictionary( /*========================================*/ /* out: error code or DB_SUCCESS */ ulint field_nr, /* in: foreign field number */ dict_table_t* table, /* in: table */ dict_foreign_t* foreign, /* in: foreign */ trx_t* trx) /* in: transaction */ { pars_info_t* info = pars_info_create(); pars_info_add_str_literal(info, "id", foreign->id); pars_info_add_int4_literal(info, "pos", field_nr); pars_info_add_str_literal(info, "for_col_name", foreign->foreign_col_names[field_nr]); pars_info_add_str_literal(info, "ref_col_name", foreign->referenced_col_names[field_nr]); return dict_foreign_eval_sql(info, "PROCEDURE P () IS\n" "BEGIN\n" "INSERT INTO SYS_FOREIGN_COLS VALUES" "(:id, :pos, :for_col_name, :ref_col_name);\n" "END;\n" , table, foreign, trx); } /************************************************************************ Add a single foreign key definition to the data dictionary tables in the database. We also generate names to constraints that were not named by the user. A generated constraint has a name of the format databasename/tablename_ibfk_, where the numbers start from 1, and are given locally for this table, that is, the number is not global, as in the old format constraints < 4.0.18 it used to be. */ static ulint dict_create_add_foreign_to_dictionary( /*==================================*/ /* out: error code or DB_SUCCESS */ ulint* id_nr, /* in/out: number to use in id generation; incremented if used */ dict_table_t* table, /* in: table */ dict_foreign_t* foreign,/* in: foreign */ trx_t* trx) /* in: transaction */ { ulint error; ulint i; pars_info_t* info = pars_info_create(); if (foreign->id == NULL) { /* Generate a new constraint id */ ulint namelen = strlen(table->name); char* id = mem_heap_alloc(foreign->heap, namelen + 20); /* no overflow if number < 1e13 */ sprintf(id, "%s_ibfk_%lu", table->name, (ulong) (*id_nr)++); foreign->id = id; } pars_info_add_str_literal(info, "id", foreign->id); pars_info_add_str_literal(info, "for_name", table->name); pars_info_add_str_literal(info, "ref_name", foreign->referenced_table_name); pars_info_add_int4_literal(info, "n_cols", foreign->n_fields + (foreign->type << 24)); error = dict_foreign_eval_sql(info, "PROCEDURE P () IS\n" "BEGIN\n" "INSERT INTO SYS_FOREIGN VALUES" "(:id, :for_name, :ref_name, :n_cols);\n" "END;\n" , table, foreign, trx); if (error != DB_SUCCESS) { return(error); } for (i = 0; i < foreign->n_fields; i++) { error = dict_create_add_foreign_field_to_dictionary(i, table, foreign, trx); if (error != DB_SUCCESS) { return(error); } } error = dict_foreign_eval_sql(NULL, "PROCEDURE P () IS\n" "BEGIN\n" "COMMIT WORK;\n" "END;\n" , table, foreign, trx); return(error); } /************************************************************************ Adds foreign key definitions to data dictionary tables in the database. */ ulint dict_create_add_foreigns_to_dictionary( /*===================================*/ /* out: error code or DB_SUCCESS */ ulint start_id,/* in: if we are actually doing ALTER TABLE ADD CONSTRAINT, we want to generate constraint numbers which are bigger than in the table so far; we number the constraints from start_id + 1 up; start_id should be set to 0 if we are creating a new table, or if the table so far has no constraints for which the name was generated here */ dict_table_t* table, /* in: table */ trx_t* trx) /* in: transaction */ { dict_foreign_t* foreign; ulint number = start_id + 1; ulint error; #ifdef UNIV_SYNC_DEBUG ut_ad(mutex_own(&(dict_sys->mutex))); #endif /* UNIV_SYNC_DEBUG */ if (NULL == dict_table_get_low("SYS_FOREIGN")) { fprintf(stderr, "InnoDB: table SYS_FOREIGN not found from internal data dictionary\n"); return(DB_ERROR); } for (foreign = UT_LIST_GET_FIRST(table->foreign_list); foreign; foreign = UT_LIST_GET_NEXT(foreign_list, foreign)) { error = dict_create_add_foreign_to_dictionary(&number, table, foreign, trx); if (error != DB_SUCCESS) { return(error); } } return(DB_SUCCESS); }