/* modarith.hpp * * Copyright (C) 2003 Sawtooth Consulting Ltd. * * This file is part of yaSSL. * * yaSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * yaSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ /* based on Wei Dai's modarith.h from CryptoPP */ #ifndef TAO_CRYPT_MODARITH_HPP #define TAO_CRYPT_MODARITH_HPP #include "misc.hpp" #include "algebra.hpp" namespace TaoCrypt { // ModularArithmetic class ModularArithmetic : public AbstractRing { public: typedef int RandomizationParameter; typedef Integer Element; ModularArithmetic(const Integer &modulus = Integer::One()) : modulus(modulus), result((word)0, modulus.reg_.size()) {} ModularArithmetic(const ModularArithmetic &ma) : AbstractRing(), modulus(ma.modulus), result((word)0, modulus.reg_.size()) {} const Integer& GetModulus() const {return modulus;} void SetModulus(const Integer &newModulus) { modulus = newModulus; result.reg_.resize(modulus.reg_.size()); } virtual bool IsMontgomeryRepresentation() const {return false;} virtual Integer ConvertIn(const Integer &a) const {return a%modulus;} virtual Integer ConvertOut(const Integer &a) const {return a;} const Integer& Half(const Integer &a) const; bool Equal(const Integer &a, const Integer &b) const {return a==b;} const Integer& Identity() const {return Integer::Zero();} const Integer& Add(const Integer &a, const Integer &b) const; Integer& Accumulate(Integer &a, const Integer &b) const; const Integer& Inverse(const Integer &a) const; const Integer& Subtract(const Integer &a, const Integer &b) const; Integer& Reduce(Integer &a, const Integer &b) const; const Integer& Double(const Integer &a) const {return Add(a, a);} const Integer& MultiplicativeIdentity() const {return Integer::One();} const Integer& Multiply(const Integer &a, const Integer &b) const {return result1 = a*b%modulus;} const Integer& Square(const Integer &a) const {return result1 = a.Squared()%modulus;} bool IsUnit(const Integer &a) const {return Integer::Gcd(a, modulus).IsUnit();} const Integer& MultiplicativeInverse(const Integer &a) const {return result1 = a.InverseMod(modulus);} const Integer& Divide(const Integer &a, const Integer &b) const {return Multiply(a, MultiplicativeInverse(b));} Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const; void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; unsigned int MaxElementBitLength() const {return (modulus-1).BitCount();} unsigned int MaxElementByteLength() const {return (modulus-1).ByteCount();} static const RandomizationParameter DefaultRandomizationParameter; protected: Integer modulus; mutable Integer result, result1; }; //! do modular arithmetics in Montgomery representation for increased speed class MontgomeryRepresentation : public ModularArithmetic { public: MontgomeryRepresentation(const Integer &modulus); // modulus must be odd bool IsMontgomeryRepresentation() const {return true;} Integer ConvertIn(const Integer &a) const {return (a<<(WORD_BITS*modulus.reg_.size()))%modulus;} Integer ConvertOut(const Integer &a) const; const Integer& MultiplicativeIdentity() const {return result1 = Integer::Power2(WORD_BITS*modulus.reg_.size())%modulus;} const Integer& Multiply(const Integer &a, const Integer &b) const; const Integer& Square(const Integer &a) const; const Integer& MultiplicativeInverse(const Integer &a) const; Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const {return AbstractRing::CascadeExponentiate(x, e1, y, e2);} void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const {AbstractRing::SimultaneousExponentiate(results, base, exponents, exponentsCount);} private: Integer u; mutable AlignedWordBlock workspace; }; } // namespace #endif // TAO_CRYPT_MODARITH_HPP