/* Copyright (c) 2006, 2013, Oracle and/or its affiliates. Copyright (c) 2011, 2013, Monty Program Ab This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */ #include "mariadb.h" #include #include "rpl_utility.h" #include "log_event.h" #if defined(MYSQL_CLIENT) #error MYSQL_CLIENT must not be defined here #endif #if !defined(MYSQL_SERVER) #error MYSQL_SERVER must be defined here #endif #if defined(HAVE_REPLICATION) #include "rpl_rli.h" #include "sql_select.h" #endif /** Compute the maximum display length of a field. @param sql_type Type of the field @param metadata The metadata from the master for the field. @return Maximum length of the field in bytes. The precise values calculated by field->max_display_length() and calculated by max_display_length_for_field() can differ (by +1 or -1) for integer data types (TINYINT, SMALLINT, MEDIUMINT, INT, BIGINT). This slight difference is not important here, because we call this function only for two *different* integer data types. */ static uint32 max_display_length_for_field(const Conv_source &source) { DBUG_PRINT("debug", ("sql_type: %s, metadata: 0x%x", source.type_handler()->name().ptr(), source.metadata())); return source.type_handler()->max_display_length_for_field(source); } /* Compare the pack lengths of a source field (on the master) and a target field (on the slave). @param sh Source type handler @param source_length Source length @param th Target type hander @param target_length Target length @retval CONV_TYPE_SUBSET_TO_SUPERSET The length of the source field is smaller than the target field. @retval CONV_TYPE_PRECISE The length of the source and the target fields are equal. @retval CONV_TYPE_SUPERSET_TO_SUBSET The length of the source field is greater than the target field. */ static enum_conv_type compare_lengths(const Type_handler *sh, uint32 source_length, const Type_handler *th, uint32 target_length) { DBUG_ENTER("compare_lengths"); DBUG_PRINT("debug", ("source_length: %lu, source_type: %s," " target_length: %lu, target_type: %s", (unsigned long) source_length, sh->name().ptr(), (unsigned long) target_length, th->name().ptr())); enum_conv_type result= source_length < target_length ? CONV_TYPE_SUBSET_TO_SUPERSET : source_length > target_length ? CONV_TYPE_SUPERSET_TO_SUBSET : CONV_TYPE_PRECISE; DBUG_PRINT("result", ("%d", result)); DBUG_RETURN(result); } /** Calculate display length for MySQL56 temporal data types from their metadata. It contains fractional precision in the low 16-bit word. */ static uint32 max_display_length_for_temporal2_field(uint32 int_display_length, unsigned int metadata) { metadata&= 0x00ff; return int_display_length + metadata + (metadata ? 1 : 0); } uint32 Type_handler_newdecimal::max_display_length_for_field(const Conv_source &src) const { return src.metadata() >> 8; } uint32 Type_handler_typelib::max_display_length_for_field(const Conv_source &src) const { /* Field_enum::rpl_conv_type_from() does not use compare_lengths(). So we should not come here. */ DBUG_ASSERT(0); return src.metadata() & 0x00ff; } uint32 Type_handler_string::max_display_length_for_field(const Conv_source &src) const { /* ENUM and SET are transferred using as STRING, with the exact type code in metadata. Make sure that we previously detected ENUM/SET and translated them into a proper type handler. See table_def::field_type_handler() for details. */ DBUG_ASSERT((src.metadata() >> 8) != MYSQL_TYPE_SET); DBUG_ASSERT((src.metadata() >> 8) != MYSQL_TYPE_ENUM); /* This is taken from Field_string::unpack. */ return (((src.metadata() >> 4) & 0x300) ^ 0x300) + (src.metadata() & 0x00ff); } uint32 Type_handler_time2::max_display_length_for_field(const Conv_source &src) const { return max_display_length_for_temporal2_field(MIN_TIME_WIDTH, src.metadata()); } uint32 Type_handler_timestamp2::max_display_length_for_field(const Conv_source &src) const { return max_display_length_for_temporal2_field(MAX_DATETIME_WIDTH, src.metadata()); } uint32 Type_handler_datetime2::max_display_length_for_field(const Conv_source &src) const { return max_display_length_for_temporal2_field(MAX_DATETIME_WIDTH, src.metadata()); } uint32 Type_handler_bit::max_display_length_for_field(const Conv_source &src) const { /* Decode the size of the bit field from the master. */ DBUG_ASSERT((src.metadata() & 0xff) <= 7); return 8 * (src.metadata() >> 8U) + (src.metadata() & 0x00ff); } uint32 Type_handler_var_string::max_display_length_for_field(const Conv_source &src) const { return src.metadata(); } uint32 Type_handler_varchar::max_display_length_for_field(const Conv_source &src) const { return src.metadata(); } uint32 Type_handler_varchar_compressed:: max_display_length_for_field(const Conv_source &src) const { DBUG_ASSERT(src.metadata() > 0); return src.metadata() - 1; } /* The actual length for these types does not really matter since they are used to calc_pack_length, which ignores the given length for these types. Since we want this to be accurate for other uses, we return the maximum size in bytes of these BLOBs. */ uint32 Type_handler_tiny_blob::max_display_length_for_field(const Conv_source &src) const { return (uint32) my_set_bits(1 * 8); } uint32 Type_handler_medium_blob::max_display_length_for_field(const Conv_source &src) const { return (uint32) my_set_bits(3 * 8); } uint32 Type_handler_blob::max_display_length_for_field(const Conv_source &src) const { /* For the blob type, Field::real_type() lies and say that all blobs are of type MYSQL_TYPE_BLOB. In that case, we have to look at the length instead to decide what the max display size is. */ return (uint32) my_set_bits(src.metadata() * 8); } uint32 Type_handler_blob_compressed::max_display_length_for_field(const Conv_source &src) const { return (uint32) my_set_bits(src.metadata() * 8); } uint32 Type_handler_long_blob::max_display_length_for_field(const Conv_source &src) const { return (uint32) my_set_bits(4 * 8); } uint32 Type_handler_olddecimal::max_display_length_for_field(const Conv_source &src) const { return ~(uint32) 0; } void Type_handler::show_binlog_type(const Conv_source &src, String *str) const { str->set_ascii(name().ptr(), name().length()); } void Type_handler_var_string::show_binlog_type(const Conv_source &src, String *str) const { CHARSET_INFO *cs= str->charset(); size_t length= cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(), "varchar(%u)", src.metadata() / src.mbmaxlen()); str->length(length); } void Type_handler_varchar::show_binlog_type(const Conv_source &src, String *str) const { CHARSET_INFO *cs= str->charset(); size_t length= cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(), "varchar(%u)", src.metadata() / src.mbmaxlen()); str->length(length); } void Type_handler_varchar_compressed::show_binlog_type(const Conv_source &src, String *str) const { CHARSET_INFO *cs= str->charset(); size_t length= cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(), "varchar(%u) compressed", src.metadata() / src.mbmaxlen()); str->length(length); } void Type_handler_bit::show_binlog_type(const Conv_source &src, String *str) const { CHARSET_INFO *cs= str->charset(); int bit_length= 8 * (src.metadata() >> 8) + (src.metadata() & 0xFF); size_t length= cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(), "bit(%d)", bit_length); str->length(length); } void Type_handler_olddecimal::show_binlog_type(const Conv_source &src, String *str) const { CHARSET_INFO *cs= str->charset(); size_t length= cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(), "decimal(%d,?)/*old*/", src.metadata()); str->length(length); } void Type_handler_newdecimal::show_binlog_type(const Conv_source &src, String *str) const { CHARSET_INFO *cs= str->charset(); size_t length= cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(), "decimal(%d,%d)", src.metadata() >> 8, src.metadata() & 0xff); str->length(length); } void Type_handler_blob_compressed::show_binlog_type(const Conv_source &src, String *str) const { /* Field::real_type() lies regarding the actual type of a BLOB, so it is necessary to check the pack length to figure out what kind of blob it really is. */ switch (src.metadata()) { case 1: str->set_ascii(STRING_WITH_LEN("tinyblob compressed")); break; case 2: str->set_ascii(STRING_WITH_LEN("blob compressed")); break; case 3: str->set_ascii(STRING_WITH_LEN("mediumblob compressed")); break; default: DBUG_ASSERT(0); // Fall through case 4: str->set_ascii(STRING_WITH_LEN("longblob compressed")); } } void Type_handler_string::show_binlog_type(const Conv_source &src, String *str) const { /* This is taken from Field_string::unpack. */ CHARSET_INFO *cs= str->charset(); uint bytes= (((src.metadata() >> 4) & 0x300) ^ 0x300) + (src.metadata() & 0x00ff); size_t length= cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(), "char(%d)", bytes / src.mbmaxlen()); str->length(length); } enum_conv_type Field::rpl_conv_type_from_same_data_type(uint16 metadata, const Relay_log_info *rli, const Conv_param ¶m) const { if (metadata == 0) // Metadata can only be zero if no metadata was provided { /* If there is no metadata, we either have an old event where no metadata were supplied, or a type that does not require any metadata. In either case, conversion can be done but no conversion table is necessary. */ DBUG_PRINT("debug", ("Base types are identical, but there is no metadata")); return CONV_TYPE_PRECISE; } DBUG_PRINT("debug", ("Base types are identical, doing field size comparison")); int order= 0; if (!compatible_field_size(metadata, rli, param.table_def_flags(), &order)) return CONV_TYPE_IMPOSSIBLE; return order == 0 ? CONV_TYPE_PRECISE : order < 0 ? CONV_TYPE_SUBSET_TO_SUPERSET : CONV_TYPE_SUPERSET_TO_SUBSET; } enum_conv_type Field_new_decimal::rpl_conv_type_from(const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) const { if (binlog_type() == source.real_field_type()) return rpl_conv_type_from_same_data_type(source.metadata(), rli, param); if (source.type_handler() == &type_handler_olddecimal || source.type_handler() == &type_handler_newdecimal || source.type_handler() == &type_handler_float || source.type_handler() == &type_handler_double) { /* Then the other type is either FLOAT, DOUBLE, or old style DECIMAL, so we require lossy conversion. */ return CONV_TYPE_SUPERSET_TO_SUBSET; } return CONV_TYPE_IMPOSSIBLE; } /* This covers FLOAT, DOUBLE and old DECIMAL */ enum_conv_type Field_real::rpl_conv_type_from(const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) const { if (binlog_type() == source.real_field_type()) return rpl_conv_type_from_same_data_type(source.metadata(), rli, param); if (source.type_handler() == &type_handler_olddecimal || source.type_handler() == &type_handler_newdecimal) return CONV_TYPE_SUPERSET_TO_SUBSET; // Always require lossy conversions if (source.type_handler() == &type_handler_float || source.type_handler() == &type_handler_double) { enum_conv_type order= compare_lengths(source.type_handler(), max_display_length_for_field(source), type_handler(), max_display_length()); DBUG_ASSERT(order != CONV_TYPE_PRECISE); return order; } return CONV_TYPE_IMPOSSIBLE; } enum_conv_type Field_int::rpl_conv_type_from(const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) const { if (binlog_type() == source.real_field_type()) return rpl_conv_type_from_same_data_type(source.metadata(), rli, param); /* The length comparison check will do the correct job of comparing the field lengths (in bytes) of two integer types. */ if (source.type_handler() == &type_handler_tiny || source.type_handler() == &type_handler_short || source.type_handler() == &type_handler_int24 || source.type_handler() == &type_handler_long || source.type_handler() == &type_handler_longlong) { /* max_display_length_for_field() is not fully precise for the integer data types. So its result cannot be compared to the result of max_dispay_length() when the table field and the binlog field are of the same type. This code should eventually be rewritten not to use compare_lengths(), to detect subtype/supetype relations just using the type codes. */ DBUG_ASSERT(source.real_field_type() != real_type()); enum_conv_type order= compare_lengths(source.type_handler(), max_display_length_for_field(source), type_handler(), max_display_length()); DBUG_ASSERT(order != CONV_TYPE_PRECISE); return order; } return CONV_TYPE_IMPOSSIBLE; } enum_conv_type Field_enum::rpl_conv_type_from(const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) const { /* For some reasons Field_enum and Field_set store MYSQL_TYPE_STRING as a type code in the binary log and encode the real type in metadata. So we need to test real_type() here instread of binlog_type(). */ return real_type() == source.real_field_type() ? rpl_conv_type_from_same_data_type(source.metadata(), rli, param) : CONV_TYPE_IMPOSSIBLE; } enum_conv_type Field_longstr::rpl_conv_type_from(const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) const { /** @todo Implement Field_varstring_compressed::real_type() and Field_blob_compressed::real_type() properly. All occurencies of Field::real_type() have to be inspected and adjusted if needed. Until it is not ready we have to compare source_type against binlog_type() when replicating from or to compressed data types. @sa Comment for Field::binlog_type() */ bool same_type; if (source.real_field_type() == MYSQL_TYPE_VARCHAR_COMPRESSED || source.real_field_type() == MYSQL_TYPE_BLOB_COMPRESSED || binlog_type() == MYSQL_TYPE_VARCHAR_COMPRESSED || binlog_type() == MYSQL_TYPE_BLOB_COMPRESSED) same_type= binlog_type() == source.real_field_type(); else same_type= type_handler() == source.type_handler(); if (same_type) return rpl_conv_type_from_same_data_type(source.metadata(), rli, param); if (source.type_handler() == &type_handler_tiny_blob || source.type_handler() == &type_handler_medium_blob || source.type_handler() == &type_handler_long_blob || source.type_handler() == &type_handler_blob || source.type_handler() == &type_handler_blob_compressed || source.type_handler() == &type_handler_string || source.type_handler() == &type_handler_var_string || source.type_handler() == &type_handler_varchar || source.type_handler() == &type_handler_varchar_compressed) { enum_conv_type order= compare_lengths(source.type_handler(), max_display_length_for_field(source), type_handler(), max_display_length()); /* Here we know that the types are different, so if the order gives that they do not require any conversion, we still need to have non-lossy conversion enabled to allow conversion between different (string) types of the same length. Also, if all conversions are disabled, it is not allowed to convert between these types. Since the TEXT vs. BINARY is distinguished by the charset, and the charset is not replicated, we cannot currently distinguish between , e.g., TEXT and BLOB. */ if (order == CONV_TYPE_PRECISE) order= CONV_TYPE_SUBSET_TO_SUPERSET; return order; } return CONV_TYPE_IMPOSSIBLE; } enum_conv_type Field_newdate::rpl_conv_type_from(const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) const { if (real_type() == source.real_field_type()) return rpl_conv_type_from_same_data_type(source.metadata(), rli, param); if (source.type_handler() == &type_handler_datetime2) return CONV_TYPE_SUPERSET_TO_SUBSET; return CONV_TYPE_IMPOSSIBLE; } enum_conv_type Field_time::rpl_conv_type_from(const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) const { if (binlog_type() == source.real_field_type()) return rpl_conv_type_from_same_data_type(source.metadata(), rli, param); // 'MySQL56 TIME(N)' -> 'MariaDB-5.3 TIME(N)' is non-lossy if (decimals() == source.metadata() && source.type_handler() == &type_handler_time2) return CONV_TYPE_VARIANT; // TODO: conversion from FSP1>FSP2 return CONV_TYPE_IMPOSSIBLE; } enum_conv_type Field_timef::rpl_conv_type_from(const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) const { if (binlog_type() == source.real_field_type()) return rpl_conv_type_from_same_data_type(source.metadata(), rli, param); /* See comment in Field_datetimef::rpl_conv_type_from() 'MariaDB-5.3 TIME(0)' to 'MySQL56 TIME(0)' is non-lossy */ if (source.metadata() == 0 && source.type_handler() == &type_handler_time) return CONV_TYPE_VARIANT; return CONV_TYPE_IMPOSSIBLE; } enum_conv_type Field_timestamp::rpl_conv_type_from(const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) const { if (binlog_type() == source.real_field_type()) return rpl_conv_type_from_same_data_type(source.metadata(), rli, param); // 'MySQL56 TIMESTAMP(N)' -> MariaDB-5.3 TIMESTAMP(N)' is non-lossy if (source.metadata() == decimals() && source.type_handler() == &type_handler_timestamp2) return CONV_TYPE_VARIANT; // TODO: conversion from FSP1>FSP2 return CONV_TYPE_IMPOSSIBLE; } enum_conv_type Field_timestampf::rpl_conv_type_from(const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) const { if (binlog_type() == source.real_field_type()) return rpl_conv_type_from_same_data_type(source.metadata(), rli, param); /* See comment in Field_datetimef::rpl_conv_type_from() 'MariaDB-5.3 TIMESTAMP(0)' to 'MySQL56 TIMESTAMP(0)' is non-lossy */ if (source.metadata() == 0 && source.type_handler() == &type_handler_timestamp) return CONV_TYPE_VARIANT; return CONV_TYPE_IMPOSSIBLE; } enum_conv_type Field_datetime::rpl_conv_type_from(const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) const { if (binlog_type() == source.real_field_type()) return rpl_conv_type_from_same_data_type(source.metadata(), rli, param); // 'MySQL56 DATETIME(N)' -> MariaDB-5.3 DATETIME(N) is non-lossy if (source.metadata() == decimals() && source.type_handler() == &type_handler_datetime2) return CONV_TYPE_VARIANT; // TODO: conversion from FSP1>FSP2 if (source.type_handler() == &type_handler_newdate) return CONV_TYPE_SUBSET_TO_SUPERSET; return CONV_TYPE_IMPOSSIBLE; } enum_conv_type Field_datetimef::rpl_conv_type_from(const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) const { if (binlog_type() == source.real_field_type()) return rpl_conv_type_from_same_data_type(source.metadata(), rli, param); /* 'MariaDB-5.3 DATETIME(N)' does not provide information about fractional precision in metadata. So we assume the precision on the master is equal to the precision on the slave. TODO: See MDEV-17394 what happend in case precisions are in case different 'MariaDB-5.3 DATETIME(0)' to 'MySQL56 DATETIME(0)' is non-lossy */ if (source.metadata() == 0 && source.type_handler() == &type_handler_datetime) return CONV_TYPE_VARIANT; if (source.type_handler() == &type_handler_newdate) return CONV_TYPE_SUBSET_TO_SUPERSET; return CONV_TYPE_IMPOSSIBLE; } enum_conv_type Field_date::rpl_conv_type_from(const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) const { // old DATE return binlog_type() == source.real_field_type() ? rpl_conv_type_from_same_data_type(source.metadata(), rli, param) : CONV_TYPE_IMPOSSIBLE; } enum_conv_type Field_bit::rpl_conv_type_from(const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) const { return binlog_type() == source.real_field_type() ? rpl_conv_type_from_same_data_type(source.metadata(), rli, param) : CONV_TYPE_IMPOSSIBLE; } enum_conv_type Field_year::rpl_conv_type_from(const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) const { return binlog_type() == source.real_field_type() ? rpl_conv_type_from_same_data_type(source.metadata(), rli, param) : CONV_TYPE_IMPOSSIBLE; } enum_conv_type Field_null::rpl_conv_type_from(const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) const { DBUG_ASSERT(0); return CONV_TYPE_IMPOSSIBLE; } /**********************************************************************/ #if defined(HAVE_REPLICATION) /** */ void show_sql_type(const Conv_source &src, String *str) { DBUG_ENTER("show_sql_type"); DBUG_ASSERT(src.type_handler() != NULL); DBUG_PRINT("enter", ("type: %s, metadata: 0x%x", src.type_handler()->name().ptr(), src.metadata())); src.type_handler()->show_binlog_type(src, str); DBUG_VOID_RETURN; } /** Check the order variable and print errors if the order is not acceptable according to the current settings. @param order The computed order of the conversion needed. @param rli The relay log info data structure: for error reporting. */ static bool is_conversion_ok(enum_conv_type type, const Relay_log_info *rli, ulonglong type_conversion_options) { DBUG_ENTER("is_conversion_ok"); bool allow_non_lossy, allow_lossy; allow_non_lossy= type_conversion_options & (1ULL << SLAVE_TYPE_CONVERSIONS_ALL_NON_LOSSY); allow_lossy= type_conversion_options & (1ULL << SLAVE_TYPE_CONVERSIONS_ALL_LOSSY); DBUG_PRINT("enter", ("order: %d, flags:%s%s", (int) type, allow_non_lossy ? " ALL_NON_LOSSY" : "", allow_lossy ? " ALL_LOSSY" : "")); switch (type) { case CONV_TYPE_PRECISE: case CONV_TYPE_VARIANT: DBUG_RETURN(true); case CONV_TYPE_SUBSET_TO_SUPERSET: /* !!! Add error message saying that non-lossy conversions need to be allowed. */ DBUG_RETURN(allow_non_lossy); case CONV_TYPE_SUPERSET_TO_SUBSET: /* !!! Add error message saying that lossy conversions need to be allowed. */ DBUG_RETURN(allow_lossy); case CONV_TYPE_IMPOSSIBLE: DBUG_RETURN(false); } DBUG_RETURN(false); } /** Can a type potentially be converted to another type? This function check if the types are convertible and what conversion is required. If conversion is not possible, and error is printed. If conversion is possible: - *order will be set to -1 if source type is smaller than target type and a non-lossy conversion can be required. This includes the case where the field types are different but types could actually be converted in either direction. - *order will be set to 0 if no conversion is required. - *order will be set to 1 if the source type is strictly larger than the target type and that conversion is potentially lossy. @param[in] field Target field @param[in] type Source field type @param[in] metadata Source field metadata @param[in] rli Relay log info (for error reporting) @param[in] mflags Flags from the table map event @param[out] order Order between source field and target field @return @c true if conversion is possible according to the current settings, @c false if conversion is not possible according to the current setting. */ static enum_conv_type can_convert_field_to(Field *field, const Conv_source &source, const Relay_log_info *rli, const Conv_param ¶m) { DBUG_ENTER("can_convert_field_to"); #ifndef DBUG_OFF char field_type_buf[MAX_FIELD_WIDTH]; String field_type(field_type_buf, sizeof(field_type_buf), &my_charset_latin1); field->sql_type(field_type); DBUG_PRINT("enter", ("field_type: %s, target_type: %d, source_type: %d, source_metadata: 0x%x", field_type.c_ptr_safe(), field->real_type(), source.real_field_type(), source.metadata())); #endif DBUG_RETURN(field->rpl_conv_type_from(source, rli, param)); } const Type_handler *table_def::field_type_handler(uint col) const { enum_field_types typecode= binlog_type(col); uint16 metadata= field_metadata(col); DBUG_ASSERT(typecode != MYSQL_TYPE_ENUM); DBUG_ASSERT(typecode != MYSQL_TYPE_SET); if (typecode == MYSQL_TYPE_BLOB) { switch (metadata & 0xff) { case 1: return &type_handler_tiny_blob; case 2: return &type_handler_blob; case 3: return &type_handler_medium_blob; case 4: return &type_handler_long_blob; default: return NULL; } } if (typecode == MYSQL_TYPE_STRING) { uchar typecode2= metadata >> 8; if (typecode2 == MYSQL_TYPE_SET) return &type_handler_set; if (typecode2 == MYSQL_TYPE_ENUM) return &type_handler_enum; return &type_handler_string; } /* This type has not been used since before row-based replication, so we can safely assume that it really is MYSQL_TYPE_NEWDATE. */ if (typecode == MYSQL_TYPE_DATE) return &type_handler_newdate; return Type_handler::get_handler_by_real_type(typecode); } /** Is the definition compatible with a table? This function will compare the master table with an existing table on the slave and see if they are compatible with respect to the current settings of @c SLAVE_TYPE_CONVERSIONS. If the tables are compatible and conversions are required, @c *tmp_table_var will be set to a virtual temporary table with field pointers for the fields that require conversions. This allow simple checking of whether a conversion are to be applied or not. If tables are compatible, but no conversions are necessary, @c *tmp_table_var will be set to NULL. @param rli_arg[in] Relay log info, for error reporting. @param table[in] Table to compare with @param tmp_table_var[out] Virtual temporary table for performing conversions, if necessary. @retval true Master table is compatible with slave table. @retval false Master table is not compatible with slave table. */ bool table_def::compatible_with(THD *thd, rpl_group_info *rgi, TABLE *table, TABLE **conv_table_var) const { /* We only check the initial columns for the tables. */ uint const cols_to_check= MY_MIN(table->s->fields, size()); Relay_log_info *rli= rgi->rli; TABLE *tmp_table= NULL; for (uint col= 0 ; col < cols_to_check ; ++col) { Field *const field= table->field[col]; const Type_handler *h= field_type_handler(col); if (!h) { sql_print_error("In RBR mode, Slave received unknown field type field %d " " for column Name: %s.%s.%s.", binlog_type(col), field->table->s->db.str, field->table->s->table_name.str, field->field_name.str); return false; } if (!h) return false; // An unknown data type found in the binary log Conv_source source(h, field_metadata(col), field->charset()); enum_conv_type convtype= can_convert_field_to(field, source, rli, Conv_param(m_flags)); if (is_conversion_ok(convtype, rli, slave_type_conversions_options)) { DBUG_PRINT("debug", ("Checking column %d -" " field '%s' can be converted - order: %d", col, field->field_name.str, convtype)); /* If conversion type is not CONV_TYPE_RECISE, a conversion is required, so we need to set up the conversion table. */ if (convtype != CONV_TYPE_PRECISE && tmp_table == NULL) { /* This will create the full table with all fields. This is necessary to ge the correct field lengths for the record. */ tmp_table= create_conversion_table(thd, rgi, table); if (tmp_table == NULL) return false; /* Clear all fields up to, but not including, this column. */ for (unsigned int i= 0; i < col; ++i) tmp_table->field[i]= NULL; } if (convtype == CONV_TYPE_PRECISE && tmp_table != NULL) tmp_table->field[col]= NULL; } else { DBUG_PRINT("debug", ("Checking column %d -" " field '%s' can not be converted", col, field->field_name.str)); DBUG_ASSERT(col < size() && col < table->s->fields); DBUG_ASSERT(table->s->db.str && table->s->table_name.str); DBUG_ASSERT(table->in_use); const char *db_name= table->s->db.str; const char *tbl_name= table->s->table_name.str; StringBuffer source_type(&my_charset_latin1); StringBuffer target_type(&my_charset_latin1); THD *thd= table->in_use; show_sql_type(source, &source_type); field->sql_type(target_type); DBUG_ASSERT(source_type.length() > 0); DBUG_ASSERT(target_type.length() > 0); rli->report(ERROR_LEVEL, ER_SLAVE_CONVERSION_FAILED, rgi->gtid_info(), ER_THD(thd, ER_SLAVE_CONVERSION_FAILED), col, db_name, tbl_name, source_type.c_ptr_safe(), target_type.c_ptr_safe()); return false; } } #ifndef DBUG_OFF if (tmp_table) { for (unsigned int col= 0; col < tmp_table->s->fields; ++col) if (tmp_table->field[col]) { char source_buf[MAX_FIELD_WIDTH]; char target_buf[MAX_FIELD_WIDTH]; String source_type(source_buf, sizeof(source_buf), &my_charset_latin1); String target_type(target_buf, sizeof(target_buf), &my_charset_latin1); tmp_table->field[col]->sql_type(source_type); table->field[col]->sql_type(target_type); DBUG_PRINT("debug", ("Field %s - conversion required." " Source type: '%s', Target type: '%s'", tmp_table->field[col]->field_name.str, source_type.c_ptr_safe(), target_type.c_ptr_safe())); } } #endif *conv_table_var= tmp_table; return true; } /** A wrapper to Virtual_tmp_table, to get access to its constructor, which is protected for safety purposes (against illegal use on stack). */ class Virtual_conversion_table: public Virtual_tmp_table { public: Virtual_conversion_table(THD *thd) :Virtual_tmp_table(thd) { } /** Add a new field into the virtual table. @param handler - The type handler of the field. @param metadata - The RBR binary log metadata for this field. @param target_field - The field from the target table, to get extra attributes from (e.g. typelib in case of ENUM). */ bool add(const Type_handler *handler, uint16 metadata, const Field *target_field) { Field *tmp= handler->make_conversion_table_field(this, metadata, target_field); if (!tmp) return true; Virtual_tmp_table::add(tmp); DBUG_PRINT("debug", ("sql_type: %s, target_field: '%s', max_length: %d, decimals: %d," " maybe_null: %d, unsigned_flag: %d, pack_length: %u", handler->name().ptr(), target_field->field_name.str, tmp->field_length, tmp->decimals(), TRUE, tmp->flags, tmp->pack_length())); return false; } }; /** Create a conversion table. If the function is unable to create the conversion table, an error will be printed and NULL will be returned. @return Pointer to conversion table, or NULL if unable to create conversion table. */ TABLE *table_def::create_conversion_table(THD *thd, rpl_group_info *rgi, TABLE *target_table) const { DBUG_ENTER("table_def::create_conversion_table"); Virtual_conversion_table *conv_table; Relay_log_info *rli= rgi->rli; /* At slave, columns may differ. So we should create MY_MIN(columns@master, columns@slave) columns in the conversion table. */ uint const cols_to_create= MY_MIN(target_table->s->fields, size()); if (!(conv_table= new(thd) Virtual_conversion_table(thd)) || conv_table->init(cols_to_create)) goto err; for (uint col= 0 ; col < cols_to_create; ++col) { const Type_handler *ha= field_type_handler(col); DBUG_ASSERT(ha); // Checked at compatible_with() time if (conv_table->add(ha, field_metadata(col), target_table->field[col])) { DBUG_PRINT("debug", ("binlog_type: %d, metadata: %04X, target_field: '%s'" " make_conversion_table_field() failed", binlog_type(col), field_metadata(col), target_table->field[col]->field_name.str)); goto err; } } if (conv_table->open()) goto err; // Could not allocate record buffer? DBUG_RETURN(conv_table); err: if (conv_table) delete conv_table; rli->report(ERROR_LEVEL, ER_SLAVE_CANT_CREATE_CONVERSION, rgi->gtid_info(), ER_THD(thd, ER_SLAVE_CANT_CREATE_CONVERSION), target_table->s->db.str, target_table->s->table_name.str); DBUG_RETURN(NULL); } Deferred_log_events::Deferred_log_events(Relay_log_info *rli) : last_added(NULL) { my_init_dynamic_array(&array, sizeof(Log_event *), 32, 16, MYF(0)); } Deferred_log_events::~Deferred_log_events() { delete_dynamic(&array); } int Deferred_log_events::add(Log_event *ev) { last_added= ev; insert_dynamic(&array, (uchar*) &ev); return 0; } bool Deferred_log_events::is_empty() { return array.elements == 0; } bool Deferred_log_events::execute(rpl_group_info *rgi) { bool res= false; DBUG_ENTER("Deferred_log_events::execute"); DBUG_ASSERT(rgi->deferred_events_collecting); rgi->deferred_events_collecting= false; for (uint i= 0; !res && i < array.elements; i++) { Log_event *ev= (* (Log_event **) dynamic_array_ptr(&array, i)); res= ev->apply_event(rgi); } rgi->deferred_events_collecting= true; DBUG_RETURN(res); } void Deferred_log_events::rewind() { /* Reset preceding Query log event events which execution was deferred because of slave side filtering. */ if (!is_empty()) { for (uint i= 0; i < array.elements; i++) { Log_event *ev= *(Log_event **) dynamic_array_ptr(&array, i); delete ev; } last_added= NULL; if (array.elements > array.max_element) freeze_size(&array); reset_dynamic(&array); } last_added= NULL; } #endif // defined(HAVE_REPLICATION)