/***************************************************************************** Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2016, 2017, MariaDB Corporation. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file include/trx0trx.h The transaction Created 3/26/1996 Heikki Tuuri *******************************************************/ #ifndef trx0trx_h #define trx0trx_h #include #include #include "ha_prototypes.h" #include "dict0types.h" #include "trx0types.h" #include "ut0new.h" #include "lock0types.h" #include "log0log.h" #include "usr0types.h" #include "que0types.h" #include "mem0mem.h" #include "trx0xa.h" #include "ut0vec.h" #include "fts0fts.h" #include "srv0srv.h" // Forward declaration struct mtr_t; // Forward declaration class ReadView; // Forward declaration class FlushObserver; /** Dummy session used currently in MySQL interface */ extern sess_t* trx_dummy_sess; /** Releases the search latch if trx has reserved it. @param[in,out] trx Transaction that may own the AHI latch */ UNIV_INLINE void trx_search_latch_release_if_reserved(trx_t* trx); /** Set flush observer for the transaction @param[in/out] trx transaction struct @param[in] observer flush observer */ void trx_set_flush_observer( trx_t* trx, FlushObserver* observer); /******************************************************************//** Set detailed error message for the transaction. */ void trx_set_detailed_error( /*===================*/ trx_t* trx, /*!< in: transaction struct */ const char* msg); /*!< in: detailed error message */ /*************************************************************//** Set detailed error message for the transaction from a file. Note that the file is rewinded before reading from it. */ void trx_set_detailed_error_from_file( /*=============================*/ trx_t* trx, /*!< in: transaction struct */ FILE* file); /*!< in: file to read message from */ /****************************************************************//** Retrieves the error_info field from a trx. @return the error info */ UNIV_INLINE const dict_index_t* trx_get_error_info( /*===============*/ const trx_t* trx); /*!< in: trx object */ /********************************************************************//** Creates a transaction object for MySQL. @return own: transaction object */ trx_t* trx_allocate_for_mysql(void); /*========================*/ /********************************************************************//** Creates a transaction object for background operations by the master thread. @return own: transaction object */ trx_t* trx_allocate_for_background(void); /*=============================*/ /** Frees and initialize a transaction object instantinated during recovery. @param trx trx object to free and initialize during recovery */ void trx_free_resurrected(trx_t* trx); /** Free a transaction that was allocated by background or user threads. @param trx trx object to free */ void trx_free_for_background(trx_t* trx); /********************************************************************//** At shutdown, frees a transaction object that is in the PREPARED state. */ void trx_free_prepared( /*==============*/ trx_t* trx); /*!< in, own: trx object */ /** Free a transaction object for MySQL. @param[in,out] trx transaction */ void trx_free_for_mysql(trx_t* trx); /** Disconnect a transaction from MySQL. @param[in,out] trx transaction */ void trx_disconnect_plain(trx_t* trx); /** Disconnect a prepared transaction from MySQL. @param[in,out] trx transaction */ void trx_disconnect_prepared(trx_t* trx); /****************************************************************//** Creates trx objects for transactions and initializes the trx list of trx_sys at database start. Rollback segment and undo log lists must already exist when this function is called, because the lists of transactions to be rolled back or cleaned up are built based on the undo log lists. */ void trx_lists_init_at_db_start(void); /*============================*/ /*************************************************************//** Starts the transaction if it is not yet started. */ void trx_start_if_not_started_xa_low( /*============================*/ trx_t* trx, /*!< in/out: transaction */ bool read_write); /*!< in: true if read write transaction */ /*************************************************************//** Starts the transaction if it is not yet started. */ void trx_start_if_not_started_low( /*=========================*/ trx_t* trx, /*!< in/out: transaction */ bool read_write); /*!< in: true if read write transaction */ /*************************************************************//** Starts a transaction for internal processing. */ void trx_start_internal_low( /*===================*/ trx_t* trx); /*!< in/out: transaction */ /** Starts a read-only transaction for internal processing. @param[in,out] trx transaction to be started */ void trx_start_internal_read_only_low( trx_t* trx); #ifdef UNIV_DEBUG #define trx_start_if_not_started_xa(t, rw) \ do { \ (t)->start_line = __LINE__; \ (t)->start_file = __FILE__; \ trx_start_if_not_started_xa_low((t), rw); \ } while (false) #define trx_start_if_not_started(t, rw) \ do { \ (t)->start_line = __LINE__; \ (t)->start_file = __FILE__; \ trx_start_if_not_started_low((t), rw); \ } while (false) #define trx_start_internal(t) \ do { \ (t)->start_line = __LINE__; \ (t)->start_file = __FILE__; \ trx_start_internal_low((t)); \ } while (false) #define trx_start_internal_read_only(t) \ do { \ (t)->start_line = __LINE__; \ (t)->start_file = __FILE__; \ trx_start_internal_read_only_low(t); \ } while (false) #else #define trx_start_if_not_started(t, rw) \ trx_start_if_not_started_low((t), rw) #define trx_start_internal(t) \ trx_start_internal_low((t)) #define trx_start_internal_read_only(t) \ trx_start_internal_read_only_low(t) #define trx_start_if_not_started_xa(t, rw) \ trx_start_if_not_started_xa_low((t), (rw)) #endif /* UNIV_DEBUG */ /*************************************************************//** Starts the transaction for a DDL operation. */ void trx_start_for_ddl_low( /*==================*/ trx_t* trx, /*!< in/out: transaction */ trx_dict_op_t op); /*!< in: dictionary operation type */ #ifdef UNIV_DEBUG #define trx_start_for_ddl(t, o) \ do { \ ut_ad((t)->start_file == 0); \ (t)->start_line = __LINE__; \ (t)->start_file = __FILE__; \ trx_start_for_ddl_low((t), (o)); \ } while (0) #else #define trx_start_for_ddl(t, o) \ trx_start_for_ddl_low((t), (o)) #endif /* UNIV_DEBUG */ /****************************************************************//** Commits a transaction. */ void trx_commit( /*=======*/ trx_t* trx); /*!< in/out: transaction */ /****************************************************************//** Commits a transaction and a mini-transaction. */ void trx_commit_low( /*===========*/ trx_t* trx, /*!< in/out: transaction */ mtr_t* mtr); /*!< in/out: mini-transaction (will be committed), or NULL if trx made no modifications */ /****************************************************************//** Cleans up a transaction at database startup. The cleanup is needed if the transaction already got to the middle of a commit when the database crashed, and we cannot roll it back. */ void trx_cleanup_at_db_startup( /*======================*/ trx_t* trx); /*!< in: transaction */ /**********************************************************************//** Does the transaction commit for MySQL. @return DB_SUCCESS or error number */ dberr_t trx_commit_for_mysql( /*=================*/ trx_t* trx); /*!< in/out: transaction */ /** Does the transaction prepare for MySQL. @param[in, out] trx Transaction instance to prepare */ dberr_t trx_prepare_for_mysql(trx_t* trx); /**********************************************************************//** This function is used to find number of prepared transactions and their transaction objects for a recovery. @return number of prepared transactions */ int trx_recover_for_mysql( /*==================*/ XID* xid_list, /*!< in/out: prepared transactions */ ulint len); /*!< in: number of slots in xid_list */ /*******************************************************************//** This function is used to find one X/Open XA distributed transaction which is in the prepared state @return trx or NULL; on match, the trx->xid will be invalidated; note that the trx may have been committed, unless the caller is holding lock_sys->mutex */ trx_t * trx_get_trx_by_xid( /*===============*/ XID* xid); /*!< in: X/Open XA transaction identifier */ /**********************************************************************//** If required, flushes the log to disk if we called trx_commit_for_mysql() with trx->flush_log_later == TRUE. */ void trx_commit_complete_for_mysql( /*==========================*/ trx_t* trx); /*!< in/out: transaction */ /**********************************************************************//** Marks the latest SQL statement ended. */ void trx_mark_sql_stat_end( /*==================*/ trx_t* trx); /*!< in: trx handle */ /********************************************************************//** Assigns a read view for a consistent read query. All the consistent reads within the same transaction will get the same read view, which is created when this function is first called for a new started transaction. */ ReadView* trx_assign_read_view( /*=================*/ trx_t* trx); /*!< in: active transaction */ /****************************************************************//** @return the transaction's read view or NULL if one not assigned. */ UNIV_INLINE ReadView* trx_get_read_view( /*==============*/ trx_t* trx); /****************************************************************//** @return the transaction's read view or NULL if one not assigned. */ UNIV_INLINE const ReadView* trx_get_read_view( /*==============*/ const trx_t* trx); /****************************************************************//** Prepares a transaction for commit/rollback. */ void trx_commit_or_rollback_prepare( /*===========================*/ trx_t* trx); /*!< in/out: transaction */ /*********************************************************************//** Creates a commit command node struct. @return own: commit node struct */ commit_node_t* trx_commit_node_create( /*===================*/ mem_heap_t* heap); /*!< in: mem heap where created */ /***********************************************************//** Performs an execution step for a commit type node in a query graph. @return query thread to run next, or NULL */ que_thr_t* trx_commit_step( /*============*/ que_thr_t* thr); /*!< in: query thread */ /**********************************************************************//** Prints info about a transaction. Caller must hold trx_sys->mutex. */ void trx_print_low( /*==========*/ FILE* f, /*!< in: output stream */ const trx_t* trx, /*!< in: transaction */ ulint max_query_len, /*!< in: max query length to print, or 0 to use the default max length */ ulint n_rec_locks, /*!< in: lock_number_of_rows_locked(&trx->lock) */ ulint n_trx_locks, /*!< in: length of trx->lock.trx_locks */ ulint heap_size); /*!< in: mem_heap_get_size(trx->lock.lock_heap) */ /**********************************************************************//** Prints info about a transaction. The caller must hold lock_sys->mutex and trx_sys->mutex. When possible, use trx_print() instead. */ void trx_print_latched( /*==============*/ FILE* f, /*!< in: output stream */ const trx_t* trx, /*!< in: transaction */ ulint max_query_len); /*!< in: max query length to print, or 0 to use the default max length */ /**********************************************************************//** Prints info about a transaction. Acquires and releases lock_sys->mutex and trx_sys->mutex. */ void trx_print( /*======*/ FILE* f, /*!< in: output stream */ const trx_t* trx, /*!< in: transaction */ ulint max_query_len); /*!< in: max query length to print, or 0 to use the default max length */ /**********************************************************************//** Determine if a transaction is a dictionary operation. @return dictionary operation mode */ UNIV_INLINE enum trx_dict_op_t trx_get_dict_operation( /*===================*/ const trx_t* trx) /*!< in: transaction */ MY_ATTRIBUTE((warn_unused_result)); /**********************************************************************//** Flag a transaction a dictionary operation. */ UNIV_INLINE void trx_set_dict_operation( /*===================*/ trx_t* trx, /*!< in/out: transaction */ enum trx_dict_op_t op); /*!< in: operation, not TRX_DICT_OP_NONE */ /**********************************************************************//** Determines if a transaction is in the given state. The caller must hold trx_sys->mutex, or it must be the thread that is serving a running transaction. A running RW transaction must be in trx_sys->rw_trx_list. @return TRUE if trx->state == state */ UNIV_INLINE bool trx_state_eq( /*=========*/ const trx_t* trx, /*!< in: transaction */ trx_state_t state, /*!< in: state; if state != TRX_STATE_NOT_STARTED asserts that trx->state != TRX_STATE_NOT_STARTED */ bool relaxed = false) /*!< in: whether to allow trx->state == TRX_STATE_NOT_STARTED after an error has been reported */ MY_ATTRIBUTE((nonnull, warn_unused_result)); # ifdef UNIV_DEBUG /**********************************************************************//** Asserts that a transaction has been started. The caller must hold trx_sys->mutex. @return TRUE if started */ ibool trx_assert_started( /*===============*/ const trx_t* trx) /*!< in: transaction */ MY_ATTRIBUTE((warn_unused_result)); # endif /* UNIV_DEBUG */ /**********************************************************************//** Determines if the currently running transaction has been interrupted. @return TRUE if interrupted */ ibool trx_is_interrupted( /*===============*/ const trx_t* trx); /*!< in: transaction */ /**********************************************************************//** Determines if the currently running transaction is in strict mode. @return TRUE if strict */ ibool trx_is_strict( /*==========*/ trx_t* trx); /*!< in: transaction */ /*******************************************************************//** Calculates the "weight" of a transaction. The weight of one transaction is estimated as the number of altered rows + the number of locked rows. @param t transaction @return transaction weight */ #define TRX_WEIGHT(t) ((t)->undo_no + UT_LIST_GET_LEN((t)->lock.trx_locks)) /*******************************************************************//** Compares the "weight" (or size) of two transactions. Transactions that have edited non-transactional tables are considered heavier than ones that have not. @return true if weight(a) >= weight(b) */ bool trx_weight_ge( /*==========*/ const trx_t* a, /*!< in: the transaction to be compared */ const trx_t* b); /*!< in: the transaction to be compared */ /* Maximum length of a string that can be returned by trx_get_que_state_str(). */ #define TRX_QUE_STATE_STR_MAX_LEN 12 /* "ROLLING BACK" */ /*******************************************************************//** Retrieves transaction's que state in a human readable string. The string should not be free()'d or modified. @return string in the data segment */ UNIV_INLINE const char* trx_get_que_state_str( /*==================*/ const trx_t* trx); /*!< in: transaction */ /** Retreieves the transaction ID. In a given point in time it is guaranteed that IDs of the running transactions are unique. The values returned by this function for readonly transactions may be reused, so a subsequent RO transaction may get the same ID as a RO transaction that existed in the past. The values returned by this function should be used for printing purposes only. @param[in] trx transaction whose id to retrieve @return transaction id */ UNIV_INLINE trx_id_t trx_get_id_for_print( const trx_t* trx); /****************************************************************//** Assign a transaction temp-tablespace bound rollback-segment. */ void trx_assign_rseg( /*============*/ trx_t* trx); /*!< transaction that involves write to temp-table. */ /** Create the trx_t pool */ void trx_pool_init(); /** Destroy the trx_t pool */ void trx_pool_close(); /** Set the transaction as a read-write transaction if it is not already tagged as such. @param[in,out] trx Transaction that needs to be "upgraded" to RW from RO */ void trx_set_rw_mode( trx_t* trx); /** Increase the reference count. If the transaction is in state TRX_STATE_COMMITTED_IN_MEMORY then the transaction is considered committed and the reference count is not incremented. @param trx Transaction that is being referenced @param do_ref_count Increment the reference iff this is true @return transaction instance if it is not committed */ UNIV_INLINE trx_t* trx_reference( trx_t* trx, bool do_ref_count); /** Release the transaction. Decrease the reference count. @param trx Transaction that is being released */ UNIV_INLINE void trx_release_reference( trx_t* trx); /** Check if the transaction is being referenced. */ #define trx_is_referenced(t) ((t)->n_ref > 0) /** @param[in] requestor Transaction requesting the lock @param[in] holder Transaction holding the lock @return the transaction that will be rolled back, null don't care */ UNIV_INLINE const trx_t* trx_arbitrate(const trx_t* requestor, const trx_t* holder); /** @param[in] trx Transaction to check @return true if the transaction is a high priority transaction.*/ UNIV_INLINE bool trx_is_high_priority(const trx_t* trx); /** Kill all transactions that are blocking this transaction from acquiring locks. @param[in,out] trx High priority transaction */ void trx_kill_blocking(trx_t* trx); /** Check if redo/noredo rseg is modified for insert/update. @param[in] trx Transaction to check */ UNIV_INLINE bool trx_is_rseg_updated(const trx_t* trx); /** Transactions that aren't started by the MySQL server don't set the trx_t::mysql_thd field. For such transactions we set the lock wait timeout to 0 instead of the user configured value that comes from innodb_lock_wait_timeout via trx_t::mysql_thd. @param trx transaction @return lock wait timeout in seconds */ #define trx_lock_wait_timeout_get(t) \ ((t)->mysql_thd != NULL \ ? thd_lock_wait_timeout((t)->mysql_thd) \ : 0) /** Determine if the transaction is a non-locking autocommit select (implied read-only). @param t transaction @return true if non-locking autocommit select transaction. */ #define trx_is_autocommit_non_locking(t) \ ((t)->auto_commit && (t)->will_lock == 0) /** Determine if the transaction is a non-locking autocommit select with an explicit check for the read-only status. @param t transaction @return true if non-locking autocommit read-only transaction. */ #define trx_is_ac_nl_ro(t) \ ((t)->read_only && trx_is_autocommit_non_locking((t))) /** Assert that the transaction is in the trx_sys_t::rw_trx_list */ #define assert_trx_in_rw_list(t) do { \ ut_ad(!(t)->read_only); \ ut_ad((t)->in_rw_trx_list \ == !((t)->read_only || !(t)->rsegs.m_redo.rseg)); \ check_trx_state(t); \ } while (0) /** Check transaction state */ #define check_trx_state(t) do { \ ut_ad(!trx_is_autocommit_non_locking((t))); \ switch ((t)->state) { \ case TRX_STATE_PREPARED: \ /* fall through */ \ case TRX_STATE_ACTIVE: \ case TRX_STATE_COMMITTED_IN_MEMORY: \ continue; \ case TRX_STATE_NOT_STARTED: \ case TRX_STATE_FORCED_ROLLBACK: \ break; \ } \ ut_error; \ } while (0) /** Check if transaction is free so that it can be re-initialized. @param t transaction handle */ #define assert_trx_is_free(t) do { \ ut_ad(trx_state_eq((t), TRX_STATE_NOT_STARTED) \ || trx_state_eq((t), TRX_STATE_FORCED_ROLLBACK)); \ ut_ad(!trx_is_rseg_updated(trx)); \ ut_ad(!MVCC::is_view_active((t)->read_view)); \ ut_ad((t)->lock.wait_thr == NULL); \ ut_ad(UT_LIST_GET_LEN((t)->lock.trx_locks) == 0); \ ut_ad((t)->dict_operation == TRX_DICT_OP_NONE); \ } while(0) /** Check if transaction is in-active so that it can be freed and put back to transaction pool. @param t transaction handle */ #define assert_trx_is_inactive(t) do { \ assert_trx_is_free((t)); \ ut_ad((t)->dict_operation_lock_mode == 0); \ } while(0) #ifdef UNIV_DEBUG /*******************************************************************//** Assert that an autocommit non-locking select cannot be in the rw_trx_list and that it is a read-only transaction. The tranasction must be in the mysql_trx_list. */ # define assert_trx_nonlocking_or_in_list(t) \ do { \ if (trx_is_autocommit_non_locking(t)) { \ trx_state_t t_state = (t)->state; \ ut_ad((t)->read_only); \ ut_ad(!(t)->is_recovered); \ ut_ad(!(t)->in_rw_trx_list); \ ut_ad((t)->in_mysql_trx_list); \ ut_ad(t_state == TRX_STATE_NOT_STARTED \ || t_state == TRX_STATE_FORCED_ROLLBACK \ || t_state == TRX_STATE_ACTIVE); \ } else { \ check_trx_state(t); \ } \ } while (0) #else /* UNIV_DEBUG */ /*******************************************************************//** Assert that an autocommit non-locking slect cannot be in the rw_trx_list and that it is a read-only transaction. The tranasction must be in the mysql_trx_list. */ # define assert_trx_nonlocking_or_in_list(trx) ((void)0) #endif /* UNIV_DEBUG */ typedef std::vector > lock_pool_t; /*******************************************************************//** Latching protocol for trx_lock_t::que_state. trx_lock_t::que_state captures the state of the query thread during the execution of a query. This is different from a transaction state. The query state of a transaction can be updated asynchronously by other threads. The other threads can be system threads, like the timeout monitor thread or user threads executing other queries. Another thing to be mindful of is that there is a delay between when a query thread is put into LOCK_WAIT state and before it actually starts waiting. Between these two events it is possible that the query thread is granted the lock it was waiting for, which implies that the state can be changed asynchronously. All these operations take place within the context of locking. Therefore state changes within the locking code must acquire both the lock mutex and the trx->mutex when changing trx->lock.que_state to TRX_QUE_LOCK_WAIT or trx->lock.wait_lock to non-NULL but when the lock wait ends it is sufficient to only acquire the trx->mutex. To query the state either of the mutexes is sufficient within the locking code and no mutex is required when the query thread is no longer waiting. */ /** The locks and state of an active transaction. Protected by lock_sys->mutex, trx->mutex or both. */ struct trx_lock_t { ulint n_active_thrs; /*!< number of active query threads */ trx_que_t que_state; /*!< valid when trx->state == TRX_STATE_ACTIVE: TRX_QUE_RUNNING, TRX_QUE_LOCK_WAIT, ... */ lock_t* wait_lock; /*!< if trx execution state is TRX_QUE_LOCK_WAIT, this points to the lock request, otherwise this is NULL; set to non-NULL when holding both trx->mutex and lock_sys->mutex; set to NULL when holding lock_sys->mutex; readers should hold lock_sys->mutex, except when they are holding trx->mutex and wait_lock==NULL */ ib_uint64_t deadlock_mark; /*!< A mark field that is initialized to and checked against lock_mark_counter by lock_deadlock_recursive(). */ bool was_chosen_as_deadlock_victim; /*!< when the transaction decides to wait for a lock, it sets this to false; if another transaction chooses this transaction as a victim in deadlock resolution, it sets this to true. Protected by trx->mutex. */ time_t wait_started; /*!< lock wait started at this time, protected only by lock_sys->mutex */ que_thr_t* wait_thr; /*!< query thread belonging to this trx that is in QUE_THR_LOCK_WAIT state. For threads suspended in a lock wait, this is protected by lock_sys->mutex. Otherwise, this may only be modified by the thread that is serving the running transaction. */ lock_pool_t rec_pool; /*!< Pre-allocated record locks */ lock_pool_t table_pool; /*!< Pre-allocated table locks */ ulint rec_cached; /*!< Next free rec lock in pool */ ulint table_cached; /*!< Next free table lock in pool */ mem_heap_t* lock_heap; /*!< memory heap for trx_locks; protected by lock_sys->mutex */ trx_lock_list_t trx_locks; /*!< locks requested by the transaction; insertions are protected by trx->mutex and lock_sys->mutex; removals are protected by lock_sys->mutex */ lock_pool_t table_locks; /*!< All table locks requested by this transaction, including AUTOINC locks */ bool cancel; /*!< true if the transaction is being rolled back either via deadlock detection or due to lock timeout. The caller has to acquire the trx_t::mutex in order to cancel the locks. In lock_trx_table_locks_remove() we check for this cancel of a transaction's locks and avoid reacquiring the trx mutex to prevent recursive deadlocks. Protected by both the lock sys mutex and the trx_t::mutex. */ ulint n_rec_locks; /*!< number of rec locks in this trx */ /** The transaction called ha_innobase::start_stmt() to lock a table. Most likely a temporary table. */ bool start_stmt; }; /** Type used to store the list of tables that are modified by a given transaction. We store pointers to the table objects in memory because we know that a table object will not be destroyed while a transaction that modified it is running. */ typedef std::set< dict_table_t*, std::less, ut_allocator > trx_mod_tables_t; /** The transaction handle Normally, there is a 1:1 relationship between a transaction handle (trx) and a session (client connection). One session is associated with exactly one user transaction. There are some exceptions to this: * For DDL operations, a subtransaction is allocated that modifies the data dictionary tables. Lock waits and deadlocks are prevented by acquiring the dict_operation_lock before starting the subtransaction and releasing it after committing the subtransaction. * The purge system uses a special transaction that is not associated with any session. * If the system crashed or it was quickly shut down while there were transactions in the ACTIVE or PREPARED state, these transactions would no longer be associated with a session when the server is restarted. A session may be served by at most one thread at a time. The serving thread of a session might change in some MySQL implementations. Therefore we do not have os_thread_get_curr_id() assertions in the code. Normally, only the thread that is currently associated with a running transaction may access (read and modify) the trx object, and it may do so without holding any mutex. The following are exceptions to this: * trx_rollback_resurrected() may access resurrected (connectionless) transactions while the system is already processing new user transactions. The trx_sys->mutex prevents a race condition between it and lock_trx_release_locks() [invoked by trx_commit()]. * trx_print_low() may access transactions not associated with the current thread. The caller must be holding trx_sys->mutex and lock_sys->mutex. * When a transaction handle is in the trx_sys->mysql_trx_list or trx_sys->trx_list, some of its fields must not be modified without holding trx_sys->mutex exclusively. * The locking code (in particular, lock_deadlock_recursive() and lock_rec_convert_impl_to_expl()) will access transactions associated to other connections. The locks of transactions are protected by lock_sys->mutex and sometimes by trx->mutex. */ typedef enum { TRX_SERVER_ABORT = 0, TRX_WSREP_ABORT = 1 } trx_abort_t; /** Represents an instance of rollback segment along with its state variables.*/ struct trx_undo_ptr_t { trx_rseg_t* rseg; /*!< rollback segment assigned to the transaction, or NULL if not assigned yet */ trx_undo_t* insert_undo; /*!< pointer to the insert undo log, or NULL if no inserts performed yet */ trx_undo_t* update_undo; /*!< pointer to the update undo log, or NULL if no update performed yet */ }; /** Rollback segments assigned to a transaction for undo logging. */ struct trx_rsegs_t { /** undo log ptr holding reference to a rollback segment that resides in system/undo tablespace used for undo logging of tables that needs to be recovered on crash. */ trx_undo_ptr_t m_redo; /** undo log ptr holding reference to a rollback segment that resides in temp tablespace used for undo logging of tables that doesn't need to be recovered on crash. */ trx_undo_ptr_t m_noredo; }; enum trx_rseg_type_t { TRX_RSEG_TYPE_NONE = 0, /*!< void rollback segment type. */ TRX_RSEG_TYPE_REDO, /*!< redo rollback segment. */ TRX_RSEG_TYPE_NOREDO /*!< non-redo rollback segment. */ }; struct TrxVersion { TrxVersion(trx_t* trx); /** @return true if the trx_t instance is the same */ bool operator==(const TrxVersion& rhs) const { return(rhs.m_trx == m_trx); } trx_t* m_trx; ulint m_version; }; typedef std::list > hit_list_t; struct trx_t { TrxMutex mutex; /*!< Mutex protecting the fields state and lock (except some fields of lock, which are protected by lock_sys->mutex) */ /* Note: in_depth was split from in_innodb for fixing a RO performance issue. Acquiring the trx_t::mutex for each row costs ~3% in performance. It is not required for correctness. Therefore we increment/decrement in_depth without holding any mutex. The assumption is that the Server will only ever call the handler from one thread. This is not true for kill_connection. Therefore in innobase_kill_connection. We don't increment this counter via TrxInInnoDB. */ ib_uint32_t in_depth; /*!< Track nested TrxInInnoDB count */ ib_uint32_t in_innodb; /*!< if the thread is executing in the InnoDB context count > 0. */ bool abort; /*!< if this flag is set then this transaction must abort when it can */ trx_id_t id; /*!< transaction id */ trx_id_t no; /*!< transaction serialization number: max trx id shortly before the transaction is moved to COMMITTED_IN_MEMORY state. Protected by trx_sys_t::mutex when trx->in_rw_trx_list. Initially set to TRX_ID_MAX. */ /** State of the trx from the point of view of concurrency control and the valid state transitions. Possible states: TRX_STATE_NOT_STARTED TRX_STATE_FORCED_ROLLBACK TRX_STATE_ACTIVE TRX_STATE_PREPARED TRX_STATE_COMMITTED_IN_MEMORY (alias below COMMITTED) Valid state transitions are: Regular transactions: * NOT_STARTED -> ACTIVE -> COMMITTED -> NOT_STARTED Auto-commit non-locking read-only: * NOT_STARTED -> ACTIVE -> NOT_STARTED XA (2PC): * NOT_STARTED -> ACTIVE -> PREPARED -> COMMITTED -> NOT_STARTED Recovered XA: * NOT_STARTED -> PREPARED -> COMMITTED -> (freed) XA (2PC) (shutdown or disconnect before ROLLBACK or COMMIT): * NOT_STARTED -> PREPARED -> (freed) Disconnected XA can become recovered: * ... -> ACTIVE -> PREPARED (connected) -> PREPARED (disconnected) Disconnected means from mysql e.g due to the mysql client disconnection. Latching and various transaction lists membership rules: XA (2PC) transactions are always treated as non-autocommit. Transitions to ACTIVE or NOT_STARTED occur when !in_rw_trx_list (no trx_sys->mutex needed). Autocommit non-locking read-only transactions move between states without holding any mutex. They are !in_rw_trx_list. All transactions, unless they are determined to be ac-nl-ro, explicitly tagged as read-only or read-write, will first be put on the read-only transaction list. Only when a !read-only transaction in the read-only list tries to acquire an X or IX lock on a table do we remove it from the read-only list and put it on the read-write list. During this switch we assign it a rollback segment. When a transaction is NOT_STARTED, it can be in_mysql_trx_list if it is a user transaction. It cannot be in rw_trx_list. ACTIVE->PREPARED->COMMITTED is only possible when trx->in_rw_trx_list. The transition ACTIVE->PREPARED is protected by trx_sys->mutex. ACTIVE->COMMITTED is possible when the transaction is in rw_trx_list. Transitions to COMMITTED are protected by both lock_sys->mutex and trx->mutex. NOTE: Some of these state change constraints are an overkill, currently only required for a consistent view for printing stats. This unnecessarily adds a huge cost for the general case. */ trx_state_t state; ReadView* read_view; /*!< consistent read view used in the transaction, or NULL if not yet set */ UT_LIST_NODE_T(trx_t) trx_list; /*!< list of transactions; protected by trx_sys->mutex. */ UT_LIST_NODE_T(trx_t) no_list; /*!< Required during view creation to check for the view limit for transactions that are committing */ trx_lock_t lock; /*!< Information about the transaction locks and state. Protected by trx->mutex or lock_sys->mutex or both */ bool is_recovered; /*!< 0=normal transaction, 1=recovered, must be rolled back, protected by trx_sys->mutex when trx->in_rw_trx_list holds */ hit_list_t hit_list; /*!< List of transactions to kill, when a high priority transaction is blocked on a lock wait. */ os_thread_id_t killed_by; /*!< The thread ID that wants to kill this transaction asynchronously. This is required because we recursively enter the handlerton methods and need to distinguish between the kill thread and the transaction thread. Note: We need to be careful w.r.t the Thread Pool. The thread doing the kill should not leave InnoDB between the mark and the actual async kill because the running thread can change. */ /* These fields are not protected by any mutex. */ const char* op_info; /*!< English text describing the current operation, or an empty string */ ulint isolation_level;/*!< TRX_ISO_REPEATABLE_READ, ... */ bool check_foreigns; /*!< normally TRUE, but if the user wants to suppress foreign key checks, (in table imports, for example) we set this FALSE */ /*------------------------------*/ /* MySQL has a transaction coordinator to coordinate two phase commit between multiple storage engines and the binary log. When an engine participates in a transaction, it's responsible for registering itself using the trans_register_ha() API. */ bool is_registered; /* This flag is set to true after the transaction has been registered with the coordinator using the XA API, and is set to false after commit or rollback. */ unsigned active_commit_ordered:1;/* 1 if owns prepare mutex */ /*------------------------------*/ bool check_unique_secondary; /*!< normally TRUE, but if the user wants to speed up inserts by suppressing unique key checks for secondary indexes when we decide if we can use the insert buffer for them, we set this FALSE */ bool support_xa; /*!< normally we do the XA two-phase */ bool flush_log_later;/* In 2PC, we hold the prepare_commit mutex across both phases. In that case, we defer flush of the logs to disk until after we release the mutex. */ bool must_flush_log_later;/*!< this flag is set to TRUE in trx_commit() if flush_log_later was TRUE, and there were modifications by the transaction; in that case we must flush the log in trx_commit_complete_for_mysql() */ ulint duplicates; /*!< TRX_DUP_IGNORE | TRX_DUP_REPLACE */ bool has_search_latch; /*!< TRUE if this trx has latched the search system latch in S-mode */ trx_dict_op_t dict_operation; /**< @see enum trx_dict_op_t */ /* Fields protected by the srv_conc_mutex. */ bool declared_to_be_inside_innodb; /*!< this is TRUE if we have declared this transaction in srv_conc_enter_innodb to be inside the InnoDB engine */ ib_uint32_t n_tickets_to_enter_innodb; /*!< this can be > 0 only when declared_to_... is TRUE; when we come to srv_conc_innodb_enter, if the value here is > 0, we decrement this by 1 */ ib_uint32_t dict_operation_lock_mode; /*!< 0, RW_S_LATCH, or RW_X_LATCH: the latch mode trx currently holds on dict_operation_lock. Protected by dict_operation_lock. */ time_t start_time; /*!< time the state last time became TRX_STATE_ACTIVE */ clock_t start_time_micro; /*!< start time of the transaction in microseconds. */ lsn_t commit_lsn; /*!< lsn at the time of the commit */ table_id_t table_id; /*!< Table to drop iff dict_operation == TRX_DICT_OP_TABLE, or 0. */ /*------------------------------*/ THD* mysql_thd; /*!< MySQL thread handle corresponding to this trx, or NULL */ trx_abort_t abort_type; /*!< Transaction abort type*/ const char* mysql_log_file_name; /*!< if MySQL binlog is used, this field contains a pointer to the latest file name; this is NULL if binlog is not used */ int64_t mysql_log_offset; /*!< if MySQL binlog is used, this field contains the end offset of the binlog entry */ /*------------------------------*/ ib_uint32_t n_mysql_tables_in_use; /*!< number of Innobase tables used in the processing of the current SQL statement in MySQL */ ib_uint32_t mysql_n_tables_locked; /*!< how many tables the current SQL statement uses, except those in consistent read */ /*------------------------------*/ #ifdef UNIV_DEBUG /** The following two fields are mutually exclusive. */ /* @{ */ bool in_rw_trx_list; /*!< true if in trx_sys->rw_trx_list */ /* @} */ #endif /* UNIV_DEBUG */ UT_LIST_NODE_T(trx_t) mysql_trx_list; /*!< list of transactions created for MySQL; protected by trx_sys->mutex */ #ifdef UNIV_DEBUG bool in_mysql_trx_list; /*!< true if in trx_sys->mysql_trx_list */ #endif /* UNIV_DEBUG */ /*------------------------------*/ dberr_t error_state; /*!< 0 if no error, otherwise error number; NOTE That ONLY the thread doing the transaction is allowed to set this field: this is NOT protected by any mutex */ const dict_index_t*error_info; /*!< if the error number indicates a duplicate key error, a pointer to the problematic index is stored here */ ulint error_key_num; /*!< if the index creation fails to a duplicate key error, a mysql key number of that index is stored here */ sess_t* sess; /*!< session of the trx, NULL if none */ que_t* graph; /*!< query currently run in the session, or NULL if none; NOTE that the query belongs to the session, and it can survive over a transaction commit, if it is a stored procedure with a COMMIT WORK statement, for instance */ /*------------------------------*/ UT_LIST_BASE_NODE_T(trx_named_savept_t) trx_savepoints; /*!< savepoints set with SAVEPOINT ..., oldest first */ /*------------------------------*/ UndoMutex undo_mutex; /*!< mutex protecting the fields in this section (down to undo_no_arr), EXCEPT last_sql_stat_start, which can be accessed only when we know that there cannot be any activity in the undo logs! */ undo_no_t undo_no; /*!< next undo log record number to assign; since the undo log is private for a transaction, this is a simple ascending sequence with no gaps; thus it represents the number of modified/inserted rows in a transaction */ ulint undo_rseg_space; /*!< space id where last undo record was written */ trx_savept_t last_sql_stat_start; /*!< undo_no when the last sql statement was started: in case of an error, trx is rolled back down to this undo number; see note at undo_mutex! */ trx_rsegs_t rsegs; /* rollback segments for undo logging */ undo_no_t roll_limit; /*!< least undo number to undo during a partial rollback; 0 otherwise */ #ifdef UNIV_DEBUG bool in_rollback; /*!< true when the transaction is executing a partial or full rollback */ #endif /* UNIV_DEBUG */ ulint pages_undone; /*!< number of undo log pages undone since the last undo log truncation */ /*------------------------------*/ ulint n_autoinc_rows; /*!< no. of AUTO-INC rows required for an SQL statement. This is useful for multi-row INSERTs */ ib_vector_t* autoinc_locks; /* AUTOINC locks held by this transaction. Note that these are also in the lock list trx_locks. This vector needs to be freed explicitly when the trx instance is destroyed. Protected by lock_sys->mutex. */ /*------------------------------*/ bool read_only; /*!< true if transaction is flagged as a READ-ONLY transaction. if auto_commit && will_lock == 0 then it will be handled as a AC-NL-RO-SELECT (Auto Commit Non-Locking Read Only Select). A read only transaction will not be assigned an UNDO log. */ bool auto_commit; /*!< true if it is an autocommit */ ib_uint32_t will_lock; /*!< Will acquire some locks. Increment each time we determine that a lock will be acquired by the MySQL layer. */ /*------------------------------*/ fts_trx_t* fts_trx; /*!< FTS information, or NULL if transaction hasn't modified tables with FTS indexes (yet). */ doc_id_t fts_next_doc_id;/* The document id used for updates */ /*------------------------------*/ ib_uint32_t flush_tables; /*!< if "covering" the FLUSH TABLES", count of tables being flushed. */ /*------------------------------*/ bool ddl; /*!< true if it is an internal transaction for DDL */ bool internal; /*!< true if it is a system/internal transaction background task. This includes DDL transactions too. Such transactions are always treated as read-write. */ /*------------------------------*/ #ifdef UNIV_DEBUG ulint start_line; /*!< Track where it was started from */ const char* start_file; /*!< Filename where it was started */ #endif /* UNIV_DEBUG */ lint n_ref; /*!< Count of references, protected by trx_t::mutex. We can't release the locks nor commit the transaction until this reference is 0. We can change the state to COMMITTED_IN_MEMORY to signify that it is no longer "active". */ /** Version of this instance. It is incremented each time the instance is re-used in trx_start_low(). It is used to track whether a transaction has been restarted since it was tagged for asynchronous rollback. */ ulint version; XID* xid; /*!< X/Open XA transaction identification to identify a transaction branch */ trx_mod_tables_t mod_tables; /*!< List of tables that were modified by this transaction */ /*------------------------------*/ bool read_write; /*!< if read and write operation */ /*------------------------------*/ char* detailed_error; /*!< detailed error message for last error, or empty. */ FlushObserver* flush_observer; /*!< flush observer */ #ifdef UNIV_DEBUG bool is_dd_trx; /*!< True if the transaction is used for doing Non-locking Read-only Read Committed on DD tables */ #endif /* UNIV_DEBUG */ /* Lock wait statistics */ ulint n_rec_lock_waits; /*!< Number of record lock waits, might not be exactly correct. */ ulint n_table_lock_waits; /*!< Number of table lock waits, might not be exactly correct. */ ulint total_rec_lock_wait_time; /*!< Total rec lock wait time up to this moment. */ ulint total_table_lock_wait_time; /*!< Total table lock wait time up to this moment. */ #ifdef WITH_WSREP os_event_t wsrep_event; /* event waited for in srv_conc_slot */ #endif /* WITH_WSREP */ ulint magic_n; }; /** Check if transaction is started. @param[in] trx Transaction whose state we need to check @reutrn true if transaction is in state started */ inline bool trx_is_started( const trx_t* trx) { return(trx->state != TRX_STATE_NOT_STARTED && trx->state != TRX_STATE_FORCED_ROLLBACK); } /* Transaction isolation levels (trx->isolation_level) */ #define TRX_ISO_READ_UNCOMMITTED 0 /* dirty read: non-locking SELECTs are performed so that we do not look at a possible earlier version of a record; thus they are not 'consistent' reads under this isolation level; otherwise like level 2 */ #define TRX_ISO_READ_COMMITTED 1 /* somewhat Oracle-like isolation, except that in range UPDATE and DELETE we must block phantom rows with next-key locks; SELECT ... FOR UPDATE and ... LOCK IN SHARE MODE only lock the index records, NOT the gaps before them, and thus allow free inserting; each consistent read reads its own snapshot */ #define TRX_ISO_REPEATABLE_READ 2 /* this is the default; all consistent reads in the same trx read the same snapshot; full next-key locking used in locking reads to block insertions into gaps */ #define TRX_ISO_SERIALIZABLE 3 /* all plain SELECTs are converted to LOCK IN SHARE MODE reads */ /* Treatment of duplicate values (trx->duplicates; for example, in inserts). Multiple flags can be combined with bitwise OR. */ #define TRX_DUP_IGNORE 1 /* duplicate rows are to be updated */ #define TRX_DUP_REPLACE 2 /* duplicate rows are to be replaced */ /** Commit node states */ enum commit_node_state { COMMIT_NODE_SEND = 1, /*!< about to send a commit signal to the transaction */ COMMIT_NODE_WAIT /*!< commit signal sent to the transaction, waiting for completion */ }; /** Commit command node in a query graph */ struct commit_node_t{ que_common_t common; /*!< node type: QUE_NODE_COMMIT */ enum commit_node_state state; /*!< node execution state */ }; /** Test if trx->mutex is owned. */ #define trx_mutex_own(t) mutex_own(&t->mutex) /** Acquire the trx->mutex. */ #define trx_mutex_enter(t) do { \ mutex_enter(&t->mutex); \ } while (0) /** Release the trx->mutex. */ #define trx_mutex_exit(t) do { \ mutex_exit(&t->mutex); \ } while (0) /** Track if a transaction is executing inside InnoDB code. It acts like a gate between the Server and InnoDB. */ class TrxInInnoDB { public: /** @param[in,out] trx Transaction entering InnoDB via the handler @param[in] disable true if called from COMMIT/ROLLBACK method */ TrxInInnoDB(trx_t* trx, bool disable = false) : m_trx(trx) { enter(trx, disable); } /** Destructor */ ~TrxInInnoDB() { exit(m_trx); } /** @return true if the transaction has been marked for asynchronous rollback */ bool is_aborted() const { return(is_aborted(m_trx)); } /** @return true if the transaction can't be rolled back asynchronously */ bool is_rollback_disabled() const { return((m_trx->in_innodb & TRX_FORCE_ROLLBACK_DISABLE) > 0); } /** @return true if the transaction has been marked for asynchronous rollback */ static bool is_aborted(const trx_t* trx) { if (trx->state == TRX_STATE_NOT_STARTED) { return(false); } ut_ad(srv_read_only_mode || trx->in_depth > 0); ut_ad(srv_read_only_mode || trx->in_innodb > 0); return(trx->abort || trx->state == TRX_STATE_FORCED_ROLLBACK); } /** Start statement requested for transaction. @param[in, out] trx Transaction at the start of a SQL statement */ static void begin_stmt(trx_t* trx) { enter(trx, false); } /** Note an end statement for transaction @param[in, out] trx Transaction at end of a SQL statement */ static void end_stmt(trx_t* trx) { exit(trx); } /** @return true if the rollback is being initiated by the thread that marked the transaction for asynchronous rollback */ static bool is_async_rollback(const trx_t* trx) { return(trx->killed_by == os_thread_get_curr_id()); } private: /** Note that we have crossed into InnoDB code. @param[in] disable true if called from COMMIT/ROLLBACK method */ static void enter(trx_t* trx, bool disable) { if (srv_read_only_mode) { return; } /* Avoid excessive mutex acquire/release */ ut_ad(!is_async_rollback(trx)); ++trx->in_depth; /* If trx->in_depth is greater than 1 then transaction is already in InnoDB. */ if (trx->in_depth > 1) { return; } /* Only the owning thread should release the latch. */ trx_search_latch_release_if_reserved(trx); trx_mutex_enter(trx); wait(trx); ut_ad((trx->in_innodb & TRX_FORCE_ROLLBACK_MASK) < (TRX_FORCE_ROLLBACK_MASK - 1)); /* If it hasn't already been marked for async rollback. and it will be committed/rolled back. */ if (!is_forced_rollback(trx) && disable && is_started(trx) && !trx_is_autocommit_non_locking(trx)) { ut_ad(trx->killed_by == 0); /* This transaction has crossed the point of no return and cannot be rolled back asynchronously now. It must commit or rollback synhronously. */ trx->in_innodb |= TRX_FORCE_ROLLBACK_DISABLE; } ++trx->in_innodb; trx_mutex_exit(trx); } /** Note that we are exiting InnoDB code */ static void exit(trx_t* trx) { if (srv_read_only_mode) { return; } /* Avoid excessive mutex acquire/release */ ut_ad(trx->in_depth > 0); --trx->in_depth; if (trx->in_depth > 0) { return; } /* Only the owning thread should release the latch. */ trx_search_latch_release_if_reserved(trx); trx_mutex_enter(trx); ut_ad((trx->in_innodb & TRX_FORCE_ROLLBACK_MASK) > 0); --trx->in_innodb; trx_mutex_exit(trx); } /* @return true if it is a forced rollback, asynchronously */ static bool is_forced_rollback(const trx_t* trx) { ut_ad(trx_mutex_own(trx)); return((trx->in_innodb & TRX_FORCE_ROLLBACK)) > 0; } /** Wait for the asynchronous rollback to complete, if it is in progress */ static void wait(trx_t* trx) { ut_ad(trx_mutex_own(trx)); ulint loop_count = 0; /* start with optimistic sleep time - 20 micro seconds. */ ulint sleep_time = 20; while (is_forced_rollback(trx)) { /* Wait for the async rollback to complete */ trx_mutex_exit(trx); loop_count++; /* If the wait is long, don't hog the cpu. */ if (loop_count < 100) { /* 20 microseconds */ sleep_time = 20; } else if (loop_count < 1000) { /* 1 millisecond */ sleep_time = 1000; } else { /* 100 milliseconds */ sleep_time = 100000; } os_thread_sleep(sleep_time); trx_mutex_enter(trx); } } /** @return true if transaction is started */ static bool is_started(const trx_t* trx) { ut_ad(trx_mutex_own(trx)); return(trx_is_started(trx)); } private: /** Transaction instance crossing the handler boundary from the Server. */ trx_t* m_trx; }; #ifndef UNIV_NONINL #include "trx0trx.ic" #endif #endif