/* Copyright (C) 2007 Google Inc. Copyright (C) 2008 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "semisync_master.h" #define TIME_THOUSAND 1000 #define TIME_MILLION 1000000 #define TIME_BILLION 1000000000 /* This indicates whether semi-synchronous replication is enabled. */ char rpl_semi_sync_master_enabled; unsigned long rpl_semi_sync_master_timeout; unsigned long rpl_semi_sync_master_trace_level; char rpl_semi_sync_master_status = 0; unsigned long rpl_semi_sync_master_yes_transactions = 0; unsigned long rpl_semi_sync_master_no_transactions = 0; unsigned long rpl_semi_sync_master_off_times = 0; unsigned long rpl_semi_sync_master_timefunc_fails = 0; unsigned long rpl_semi_sync_master_wait_timeouts = 0; unsigned long rpl_semi_sync_master_wait_sessions = 0; unsigned long rpl_semi_sync_master_wait_pos_backtraverse = 0; unsigned long rpl_semi_sync_master_avg_trx_wait_time = 0; unsigned long long rpl_semi_sync_master_trx_wait_num = 0; unsigned long rpl_semi_sync_master_avg_net_wait_time = 0; unsigned long long rpl_semi_sync_master_net_wait_num = 0; unsigned long rpl_semi_sync_master_clients = 0; unsigned long long rpl_semi_sync_master_net_wait_time = 0; unsigned long long rpl_semi_sync_master_trx_wait_time = 0; char rpl_semi_sync_master_wait_no_slave = 1; static int getWaitTime(const struct timeval& start_tv); #ifdef __WIN__ static int gettimeofday(struct timeval *tv, void *tz) { unsigned int ticks; ticks= GetTickCount(); tv->tv_usec= ticks*1000; tv->tv_sec= ticks/1000; return 0; } #endif /* __WIN__ */ /******************************************************************************* * * class : manage all active transaction nodes * ******************************************************************************/ ActiveTranx::ActiveTranx(int max_connections, pthread_mutex_t *lock, unsigned long trace_level) : Trace(trace_level), num_transactions_(max_connections), num_entries_(max_connections << 1), lock_(lock) { /* Allocate the memory for the array */ node_array_ = new TranxNode[num_transactions_]; for (int idx = 0; idx < num_transactions_; ++idx) { node_array_[idx].log_pos_ = 0; node_array_[idx].hash_next_ = NULL; node_array_[idx].next_ = node_array_ + idx + 1; node_array_[idx].log_name_ = new char[FN_REFLEN]; node_array_[idx].log_name_[0] = '\x0'; } node_array_[num_transactions_-1].next_ = NULL; /* All nodes in the array go to the pool initially. */ free_pool_ = node_array_; /* No transactions are in the list initially. */ trx_front_ = NULL; trx_rear_ = NULL; /* Create the hash table to find a transaction's ending event. */ trx_htb_ = new TranxNode *[num_entries_]; for (int idx = 0; idx < num_entries_; ++idx) trx_htb_[idx] = NULL; sql_print_information("Semi-sync replication initialized for %d " "transactions.", num_transactions_); } ActiveTranx::~ActiveTranx() { for (int idx = 0; idx < num_transactions_; ++idx) { delete [] node_array_[idx].log_name_; node_array_[idx].log_name_ = NULL; } delete [] node_array_; delete [] trx_htb_; node_array_ = NULL; trx_htb_ = NULL; num_transactions_ = 0; num_entries_ = 0; } unsigned int ActiveTranx::calc_hash(const unsigned char *key, unsigned int length) { unsigned int nr = 1, nr2 = 4; /* The hash implementation comes from calc_hashnr() in mysys/hash.c. */ while (length--) { nr ^= (((nr & 63)+nr2)*((unsigned int) (unsigned char) *key++))+ (nr << 8); nr2 += 3; } return((unsigned int) nr); } unsigned int ActiveTranx::get_hash_value(const char *log_file_name, my_off_t log_file_pos) { unsigned int hash1 = calc_hash((const unsigned char *)log_file_name, strlen(log_file_name)); unsigned int hash2 = calc_hash((const unsigned char *)(&log_file_pos), sizeof(log_file_pos)); return (hash1 + hash2) % num_entries_; } ActiveTranx::TranxNode* ActiveTranx::alloc_tranx_node() { TranxNode *ptr = free_pool_; if (free_pool_) { free_pool_ = free_pool_->next_; ptr->next_ = NULL; ptr->hash_next_ = NULL; } else { /* free_pool should never be NULL here, because we have max_connections number of pre-allocated nodes. */ sql_print_error("You have encountered a semi-sync bug (free_pool == NULL), " "please report to http://bugs.mysql.com"); assert(free_pool_); } return ptr; } int ActiveTranx::compare(const char *log_file_name1, my_off_t log_file_pos1, const char *log_file_name2, my_off_t log_file_pos2) { int cmp = strcmp(log_file_name1, log_file_name2); if (cmp != 0) return cmp; if (log_file_pos1 > log_file_pos2) return 1; else if (log_file_pos1 < log_file_pos2) return -1; return 0; } int ActiveTranx::insert_tranx_node(const char *log_file_name, my_off_t log_file_pos) { const char *kWho = "ActiveTranx:insert_tranx_node"; TranxNode *ins_node; int result = 0; unsigned int hash_val; function_enter(kWho); ins_node = alloc_tranx_node(); if (!ins_node) { sql_print_error("%s: transaction node allocation failed for: (%s, %lu)", kWho, log_file_name, (unsigned long)log_file_pos); result = -1; goto l_end; } /* insert the binlog position in the active transaction list. */ strcpy(ins_node->log_name_, log_file_name); ins_node->log_pos_ = log_file_pos; if (!trx_front_) { /* The list is empty. */ trx_front_ = trx_rear_ = ins_node; } else { int cmp = compare(ins_node, trx_rear_); if (cmp > 0) { /* Compare with the tail first. If the transaction happens later in * binlog, then make it the new tail. */ trx_rear_->next_ = ins_node; trx_rear_ = ins_node; } else { /* Otherwise, it is an error because the transaction should hold the * mysql_bin_log.LOCK_log when appending events. */ sql_print_error("%s: binlog write out-of-order, tail (%s, %lu), " "new node (%s, %lu)", kWho, trx_rear_->log_name_, (unsigned long)trx_rear_->log_pos_, ins_node->log_name_, (unsigned long)ins_node->log_pos_); result = -1; goto l_end; } } hash_val = get_hash_value(ins_node->log_name_, ins_node->log_pos_); ins_node->hash_next_ = trx_htb_[hash_val]; trx_htb_[hash_val] = ins_node; if (trace_level_ & kTraceDetail) sql_print_information("%s: insert (%s, %lu) in entry(%u)", kWho, ins_node->log_name_, (unsigned long)ins_node->log_pos_, hash_val); l_end: return function_exit(kWho, result); } bool ActiveTranx::is_tranx_end_pos(const char *log_file_name, my_off_t log_file_pos) { const char *kWho = "ActiveTranx::is_tranx_end_pos"; function_enter(kWho); unsigned int hash_val = get_hash_value(log_file_name, log_file_pos); TranxNode *entry = trx_htb_[hash_val]; while (entry != NULL) { if (compare(entry, log_file_name, log_file_pos) == 0) break; entry = entry->hash_next_; } if (trace_level_ & kTraceDetail) sql_print_information("%s: probe (%s, %lu) in entry(%u)", kWho, log_file_name, (unsigned long)log_file_pos, hash_val); function_exit(kWho, (entry != NULL)); return (entry != NULL); } int ActiveTranx::clear_active_tranx_nodes(const char *log_file_name, my_off_t log_file_pos) { const char *kWho = "ActiveTranx::::clear_active_tranx_nodes"; TranxNode *new_front; function_enter(kWho); if (log_file_name != NULL) { new_front = trx_front_; while (new_front) { if (compare(new_front, log_file_name, log_file_pos) > 0) break; new_front = new_front->next_; } } else { /* If log_file_name is NULL, clear everything. */ new_front = NULL; } if (new_front == NULL) { /* No active transaction nodes after the call. */ /* Clear the hash table. */ memset(trx_htb_, 0, num_entries_ * sizeof(TranxNode *)); /* Clear the active transaction list. */ if (trx_front_ != NULL) { trx_rear_->next_ = free_pool_; free_pool_ = trx_front_; trx_front_ = NULL; trx_rear_ = NULL; } if (trace_level_ & kTraceDetail) sql_print_information("%s: free all nodes back to free list", kWho); } else if (new_front != trx_front_) { TranxNode *curr_node, *next_node; /* Delete all transaction nodes before the confirmation point. */ int n_frees = 0; curr_node = trx_front_; while (curr_node != new_front) { next_node = curr_node->next_; /* Put the node in the memory pool. */ curr_node->next_ = free_pool_; free_pool_ = curr_node; n_frees++; /* Remove the node from the hash table. */ unsigned int hash_val = get_hash_value(curr_node->log_name_, curr_node->log_pos_); TranxNode **hash_ptr = &(trx_htb_[hash_val]); while ((*hash_ptr) != NULL) { if ((*hash_ptr) == curr_node) { (*hash_ptr) = curr_node->hash_next_; break; } hash_ptr = &((*hash_ptr)->hash_next_); } curr_node = next_node; } trx_front_ = new_front; if (trace_level_ & kTraceDetail) sql_print_information("%s: free %d nodes back until pos (%s, %lu)", kWho, n_frees, trx_front_->log_name_, (unsigned long)trx_front_->log_pos_); } return function_exit(kWho, 0); } /******************************************************************************* * * class: the basic code layer for sync-replication master. * class: the basic code layer for sync-replication slave. * * The most important functions during semi-syn replication listed: * * Master: * . reportReplyBinlog(): called by the binlog dump thread when it receives * the slave's status information. * . updateSyncHeader(): based on transaction waiting information, decide * whether to request the slave to reply. * . writeTraxInBinlog(): called by the transaction thread when it finishes * writing all transaction events in binlog. * . commitTrx(): transaction thread wait for the slave reply. * * Slave: * . slaveReadSyncHeader(): read the semi-sync header from the master, get the * sync status and get the payload for events. * . slaveReply(): reply to the master about the replication progress. * ******************************************************************************/ ReplSemiSyncMaster::ReplSemiSyncMaster() : active_tranxs_(NULL), init_done_(false), reply_file_name_inited_(false), reply_file_pos_(0L), wait_file_name_inited_(false), wait_file_pos_(0), master_enabled_(false), wait_timeout_(0L), state_(0), max_transactions_(0L) { strcpy(reply_file_name_, ""); strcpy(wait_file_name_, ""); } int ReplSemiSyncMaster::initObject() { int result; const char *kWho = "ReplSemiSyncMaster::initObject"; if (init_done_) { fprintf(stderr, "%s called twice\n", kWho); return 1; } init_done_ = true; /* References to the parameter works after set_options(). */ setWaitTimeout(rpl_semi_sync_master_timeout); setTraceLevel(rpl_semi_sync_master_trace_level); max_transactions_ = (int)max_connections; /* Mutex initialization can only be done after MY_INIT(). */ pthread_mutex_init(&LOCK_binlog_, MY_MUTEX_INIT_FAST); pthread_cond_init(&COND_binlog_send_, NULL); if (rpl_semi_sync_master_enabled) result = enableMaster(); else result = disableMaster(); return result; } int ReplSemiSyncMaster::enableMaster() { int result = 0; /* Must have the lock when we do enable of disable. */ lock(); if (!getMasterEnabled()) { active_tranxs_ = new ActiveTranx(max_connections, &LOCK_binlog_, trace_level_); if (active_tranxs_ != NULL) { commit_file_name_inited_ = false; reply_file_name_inited_ = false; wait_file_name_inited_ = false; set_master_enabled(true); state_ = true; sql_print_information("Semi-sync replication enabled on the master."); } else { sql_print_error("Cannot allocate memory to enable semi-sync on the master."); result = -1; } } unlock(); return result; } int ReplSemiSyncMaster::disableMaster() { /* Must have the lock when we do enable of disable. */ lock(); if (getMasterEnabled()) { /* Switch off the semi-sync first so that waiting transaction will be * waken up. */ switch_off(); assert(active_tranxs_ != NULL); delete active_tranxs_; active_tranxs_ = NULL; reply_file_name_inited_ = false; wait_file_name_inited_ = false; commit_file_name_inited_ = false; set_master_enabled(false); sql_print_information("Semi-sync replication disabled on the master."); } unlock(); return 0; } ReplSemiSyncMaster::~ReplSemiSyncMaster() { if (init_done_) { pthread_mutex_destroy(&LOCK_binlog_); pthread_cond_destroy(&COND_binlog_send_); } delete active_tranxs_; } void ReplSemiSyncMaster::lock() { pthread_mutex_lock(&LOCK_binlog_); } void ReplSemiSyncMaster::unlock() { pthread_mutex_unlock(&LOCK_binlog_); } void ReplSemiSyncMaster::cond_broadcast() { pthread_cond_broadcast(&COND_binlog_send_); } int ReplSemiSyncMaster::cond_timewait(struct timespec *wait_time) { const char *kWho = "ReplSemiSyncMaster::cond_timewait()"; int wait_res; function_enter(kWho); wait_res = pthread_cond_timedwait(&COND_binlog_send_, &LOCK_binlog_, wait_time); return function_exit(kWho, wait_res); } void ReplSemiSyncMaster::add_slave() { lock(); rpl_semi_sync_master_clients++; unlock(); } void ReplSemiSyncMaster::remove_slave() { lock(); rpl_semi_sync_master_clients--; /* If user has chosen not to wait if no semi-sync slave available and the last semi-sync slave exits, turn off semi-sync on master immediately. */ if (!rpl_semi_sync_master_wait_no_slave && rpl_semi_sync_master_clients == 0) switch_off(); unlock(); } bool ReplSemiSyncMaster::is_semi_sync_slave() { int null_value; long long val= 0; get_user_var_int("rpl_semi_sync_slave", &val, &null_value); return val; } int ReplSemiSyncMaster::reportReplyBinlog(uint32 server_id, const char *log_file_name, my_off_t log_file_pos) { const char *kWho = "ReplSemiSyncMaster::reportReplyBinlog"; int cmp; bool can_release_threads = false; bool need_copy_send_pos = true; if (!(getMasterEnabled())) return 0; function_enter(kWho); lock(); /* This is the real check inside the mutex. */ if (!getMasterEnabled()) goto l_end; if (!is_on()) /* We check to see whether we can switch semi-sync ON. */ try_switch_on(server_id, log_file_name, log_file_pos); /* The position should increase monotonically, if there is only one * thread sending the binlog to the slave. * In reality, to improve the transaction availability, we allow multiple * sync replication slaves. So, if any one of them get the transaction, * the transaction session in the primary can move forward. */ if (reply_file_name_inited_) { cmp = ActiveTranx::compare(log_file_name, log_file_pos, reply_file_name_, reply_file_pos_); /* If the requested position is behind the sending binlog position, * would not adjust sending binlog position. * We based on the assumption that there are multiple semi-sync slave, * and at least one of them shou/ld be up to date. * If all semi-sync slaves are behind, at least initially, the primary * can find the situation after the waiting timeout. After that, some * slaves should catch up quickly. */ if (cmp < 0) { /* If the position is behind, do not copy it. */ need_copy_send_pos = false; } } if (need_copy_send_pos) { strcpy(reply_file_name_, log_file_name); reply_file_pos_ = log_file_pos; reply_file_name_inited_ = true; /* Remove all active transaction nodes before this point. */ assert(active_tranxs_ != NULL); active_tranxs_->clear_active_tranx_nodes(log_file_name, log_file_pos); if (trace_level_ & kTraceDetail) sql_print_information("%s: Got reply at (%s, %lu)", kWho, log_file_name, (unsigned long)log_file_pos); } if (rpl_semi_sync_master_wait_sessions > 0) { /* Let us check if some of the waiting threads doing a trx * commit can now proceed. */ cmp = ActiveTranx::compare(reply_file_name_, reply_file_pos_, wait_file_name_, wait_file_pos_); if (cmp >= 0) { /* Yes, at least one waiting thread can now proceed: * let us release all waiting threads with a broadcast */ can_release_threads = true; wait_file_name_inited_ = false; } } l_end: unlock(); if (can_release_threads) { if (trace_level_ & kTraceDetail) sql_print_information("%s: signal all waiting threads.", kWho); cond_broadcast(); } return function_exit(kWho, 0); } int ReplSemiSyncMaster::commitTrx(const char* trx_wait_binlog_name, my_off_t trx_wait_binlog_pos) { const char *kWho = "ReplSemiSyncMaster::commitTrx"; function_enter(kWho); if (getMasterEnabled() && trx_wait_binlog_name) { struct timeval start_tv; struct timespec abstime; int wait_result, start_time_err; const char *old_msg= 0; start_time_err = gettimeofday(&start_tv, 0); /* Acquire the mutex. */ lock(); /* This must be called after acquired the lock */ old_msg= thd_enter_cond(NULL, &COND_binlog_send_, &LOCK_binlog_, "Waiting for semi-sync ACK from slave"); /* This is the real check inside the mutex. */ if (!getMasterEnabled() || !is_on()) goto l_end; if (trace_level_ & kTraceDetail) { sql_print_information("%s: wait pos (%s, %lu), repl(%d)\n", kWho, trx_wait_binlog_name, (unsigned long)trx_wait_binlog_pos, (int)is_on()); } while (is_on()) { if (reply_file_name_inited_) { int cmp = ActiveTranx::compare(reply_file_name_, reply_file_pos_, trx_wait_binlog_name, trx_wait_binlog_pos); if (cmp >= 0) { /* We have already sent the relevant binlog to the slave: no need to * wait here. */ if (trace_level_ & kTraceDetail) sql_print_information("%s: Binlog reply is ahead (%s, %lu),", kWho, reply_file_name_, (unsigned long)reply_file_pos_); break; } } /* Let us update the info about the minimum binlog position of waiting * threads. */ if (wait_file_name_inited_) { int cmp = ActiveTranx::compare(trx_wait_binlog_name, trx_wait_binlog_pos, wait_file_name_, wait_file_pos_); if (cmp <= 0) { /* This thd has a lower position, let's update the minimum info. */ strcpy(wait_file_name_, trx_wait_binlog_name); wait_file_pos_ = trx_wait_binlog_pos; rpl_semi_sync_master_wait_pos_backtraverse++; if (trace_level_ & kTraceDetail) sql_print_information("%s: move back wait position (%s, %lu),", kWho, wait_file_name_, (unsigned long)wait_file_pos_); } } else { strcpy(wait_file_name_, trx_wait_binlog_name); wait_file_pos_ = trx_wait_binlog_pos; wait_file_name_inited_ = true; if (trace_level_ & kTraceDetail) sql_print_information("%s: init wait position (%s, %lu),", kWho, wait_file_name_, (unsigned long)wait_file_pos_); } if (start_time_err == 0) { int diff_usecs = start_tv.tv_usec + wait_timeout_ * TIME_THOUSAND; /* Calcuate the waiting period. */ #ifdef __WIN__ abstime.tv.i64 = (__int64)start_tv.tv_sec * TIME_MILLION * 10; abstime.tv.i64 += (__int64)diff_usecs * 10; abstime.max_timeout_msec= (long)wait_timeout_; #else abstime.tv_sec = start_tv.tv_sec; if (diff_usecs < TIME_MILLION) { abstime.tv_nsec = diff_usecs * TIME_THOUSAND; } else { while (diff_usecs >= TIME_MILLION) { abstime.tv_sec++; diff_usecs -= TIME_MILLION; } abstime.tv_nsec = diff_usecs * TIME_THOUSAND; } #endif /* __WIN__ */ /* In semi-synchronous replication, we wait until the binlog-dump * thread has received the reply on the relevant binlog segment from the * replication slave. * * Let us suspend this thread to wait on the condition; * when replication has progressed far enough, we will release * these waiting threads. */ rpl_semi_sync_master_wait_sessions++; if (trace_level_ & kTraceDetail) sql_print_information("%s: wait %lu ms for binlog sent (%s, %lu)", kWho, wait_timeout_, wait_file_name_, (unsigned long)wait_file_pos_); wait_result = cond_timewait(&abstime); rpl_semi_sync_master_wait_sessions--; if (wait_result != 0) { /* This is a real wait timeout. */ sql_print_warning("Timeout waiting for reply of binlog (file: %s, pos: %lu), " "semi-sync up to file %s, position %lu.", trx_wait_binlog_name, (unsigned long)trx_wait_binlog_pos, reply_file_name_, (unsigned long)reply_file_pos_); rpl_semi_sync_master_wait_timeouts++; /* switch semi-sync off */ switch_off(); } else { int wait_time; wait_time = getWaitTime(start_tv); if (wait_time < 0) { if (trace_level_ & kTraceGeneral) { /* This is a time/gettimeofday function call error. */ sql_print_error("Replication semi-sync gettimeofday fail1 at " "wait position (%s, %lu)", trx_wait_binlog_name, (unsigned long)trx_wait_binlog_pos); } rpl_semi_sync_master_timefunc_fails++; } else { rpl_semi_sync_master_trx_wait_num++; rpl_semi_sync_master_trx_wait_time += wait_time; } } } else { if (trace_level_ & kTraceGeneral) { /* This is a gettimeofday function call error. */ sql_print_error("Replication semi-sync gettimeofday fail2 at " "wait position (%s, %lu)", trx_wait_binlog_name, (unsigned long)trx_wait_binlog_pos); } rpl_semi_sync_master_timefunc_fails++; /* switch semi-sync off */ switch_off(); } } l_end: /* At this point, the binlog file and position of this transaction must have been removed from ActiveTranx. */ assert(!active_tranxs_->is_tranx_end_pos(trx_wait_binlog_name, trx_wait_binlog_pos)); /* Update the status counter. */ if (is_on()) rpl_semi_sync_master_yes_transactions++; else rpl_semi_sync_master_no_transactions++; /* The lock held will be released by thd_exit_cond, so no need to call unlock() here */ thd_exit_cond(NULL, old_msg); } return function_exit(kWho, 0); } /* Indicate that semi-sync replication is OFF now. * * What should we do when it is disabled? The problem is that we want * the semi-sync replication enabled again when the slave catches up * later. But, it is not that easy to detect that the slave has caught * up. This is caused by the fact that MySQL's replication protocol is * asynchronous, meaning that if the master does not use the semi-sync * protocol, the slave would not send anything to the master. * Still, if the master is sending (N+1)-th event, we assume that it is * an indicator that the slave has received N-th event and earlier ones. * * If semi-sync is disabled, all transactions still update the wait * position with the last position in binlog. But no transactions will * wait for confirmations and the active transaction list would not be * maintained. In binlog dump thread, updateSyncHeader() checks whether * the current sending event catches up with last wait position. If it * does match, semi-sync will be switched on again. */ int ReplSemiSyncMaster::switch_off() { const char *kWho = "ReplSemiSyncMaster::switch_off"; int result; function_enter(kWho); state_ = false; /* Clear the active transaction list. */ assert(active_tranxs_ != NULL); result = active_tranxs_->clear_active_tranx_nodes(NULL, 0); rpl_semi_sync_master_off_times++; wait_file_name_inited_ = false; reply_file_name_inited_ = false; sql_print_information("Semi-sync replication switched OFF."); cond_broadcast(); /* wake up all waiting threads */ return function_exit(kWho, result); } int ReplSemiSyncMaster::try_switch_on(int server_id, const char *log_file_name, my_off_t log_file_pos) { const char *kWho = "ReplSemiSyncMaster::try_switch_on"; bool semi_sync_on = false; function_enter(kWho); /* If the current sending event's position is larger than or equal to the * 'largest' commit transaction binlog position, the slave is already * catching up now and we can switch semi-sync on here. * If commit_file_name_inited_ indicates there are no recent transactions, * we can enable semi-sync immediately. */ if (commit_file_name_inited_) { int cmp = ActiveTranx::compare(log_file_name, log_file_pos, commit_file_name_, commit_file_pos_); semi_sync_on = (cmp >= 0); } else { semi_sync_on = true; } if (semi_sync_on) { /* Switch semi-sync replication on. */ state_ = true; sql_print_information("Semi-sync replication switched ON with slave (server_id: %d) " "at (%s, %lu)", server_id, log_file_name, (unsigned long)log_file_pos); } return function_exit(kWho, 0); } int ReplSemiSyncMaster::reserveSyncHeader(unsigned char *header, unsigned long size) { const char *kWho = "ReplSemiSyncMaster::reserveSyncHeader"; function_enter(kWho); int hlen=0; if (!is_semi_sync_slave()) { hlen= 0; } else { /* No enough space for the extra header, disable semi-sync master */ if (sizeof(kSyncHeader) > size) { sql_print_warning("No enough space in the packet " "for semi-sync extra header, " "semi-sync replication disabled"); disableMaster(); return 0; } /* Set the magic number and the sync status. By default, no sync * is required. */ memcpy(header, kSyncHeader, sizeof(kSyncHeader)); hlen= sizeof(kSyncHeader); } return function_exit(kWho, hlen); } int ReplSemiSyncMaster::updateSyncHeader(unsigned char *packet, const char *log_file_name, my_off_t log_file_pos, uint32 server_id) { const char *kWho = "ReplSemiSyncMaster::updateSyncHeader"; int cmp = 0; bool sync = false; /* If the semi-sync master is not enabled, or the slave is not a semi-sync * target, do not request replies from the slave. */ if (!getMasterEnabled() || !is_semi_sync_slave()) { sync = false; return 0; } function_enter(kWho); lock(); /* This is the real check inside the mutex. */ if (!getMasterEnabled()) { sync = false; goto l_end; } if (is_on()) { /* semi-sync is ON */ sync = false; /* No sync unless a transaction is involved. */ if (reply_file_name_inited_) { cmp = ActiveTranx::compare(log_file_name, log_file_pos, reply_file_name_, reply_file_pos_); if (cmp <= 0) { /* If we have already got the reply for the event, then we do * not need to sync the transaction again. */ goto l_end; } } if (wait_file_name_inited_) { cmp = ActiveTranx::compare(log_file_name, log_file_pos, wait_file_name_, wait_file_pos_); } else { cmp = 1; } /* If we are already waiting for some transaction replies which * are later in binlog, do not wait for this one event. */ if (cmp >= 0) { /* * We only wait if the event is a transaction's ending event. */ assert(active_tranxs_ != NULL); sync = active_tranxs_->is_tranx_end_pos(log_file_name, log_file_pos); } } else { if (commit_file_name_inited_) { int cmp = ActiveTranx::compare(log_file_name, log_file_pos, commit_file_name_, commit_file_pos_); sync = (cmp >= 0); } else { sync = true; } } if (trace_level_ & kTraceDetail) sql_print_information("%s: server(%d), (%s, %lu) sync(%d), repl(%d)", kWho, server_id, log_file_name, (unsigned long)log_file_pos, sync, (int)is_on()); l_end: unlock(); /* We do not need to clear sync flag because we set it to 0 when we * reserve the packet header. */ if (sync) { (packet)[2] = kPacketFlagSync; } return function_exit(kWho, 0); } int ReplSemiSyncMaster::writeTranxInBinlog(const char* log_file_name, my_off_t log_file_pos) { const char *kWho = "ReplSemiSyncMaster::writeTranxInBinlog"; int result = 0; function_enter(kWho); lock(); /* This is the real check inside the mutex. */ if (!getMasterEnabled()) goto l_end; /* Update the 'largest' transaction commit position seen so far even * though semi-sync is switched off. * It is much better that we update commit_file_* here, instead of * inside commitTrx(). This is mostly because updateSyncHeader() * will watch for commit_file_* to decide whether to switch semi-sync * on. The detailed reason is explained in function updateSyncHeader(). */ if (commit_file_name_inited_) { int cmp = ActiveTranx::compare(log_file_name, log_file_pos, commit_file_name_, commit_file_pos_); if (cmp > 0) { /* This is a larger position, let's update the maximum info. */ strcpy(commit_file_name_, log_file_name); commit_file_pos_ = log_file_pos; } } else { strcpy(commit_file_name_, log_file_name); commit_file_pos_ = log_file_pos; commit_file_name_inited_ = true; } if (is_on()) { assert(active_tranxs_ != NULL); if(active_tranxs_->insert_tranx_node(log_file_name, log_file_pos)) { /* if insert tranx_node failed, print a warning message and turn off semi-sync */ sql_print_warning("Semi-sync failed to insert tranx_node for binlog file: %s, position: %lu", log_file_name, (ulong)log_file_pos); switch_off(); } } l_end: unlock(); return function_exit(kWho, result); } int ReplSemiSyncMaster::readSlaveReply(NET *net, uint32 server_id, const char *event_buf) { const char *kWho = "ReplSemiSyncMaster::readSlaveReply"; const unsigned char *packet; char log_file_name[FN_REFLEN]; my_off_t log_file_pos; ulong packet_len; int result = -1; struct timeval start_tv; int start_time_err= 0; ulong trc_level = trace_level_; function_enter(kWho); assert((unsigned char)event_buf[1] == kPacketMagicNum); if ((unsigned char)event_buf[2] != kPacketFlagSync) { /* current event does not require reply */ result = 0; goto l_end; } if (trc_level & kTraceNetWait) start_time_err = gettimeofday(&start_tv, 0); /* We flush to make sure that the current event is sent to the network, * instead of being buffered in the TCP/IP stack. */ if (net_flush(net)) { sql_print_error("Semi-sync master failed on net_flush() " "before waiting for slave reply"); goto l_end; } net_clear(net, 0); if (trc_level & kTraceDetail) sql_print_information("%s: Wait for replica's reply", kWho); /* Wait for the network here. Though binlog dump thread can indefinitely wait * here, transactions would not wait indefintely. * Transactions wait on binlog replies detected by binlog dump threads. If * binlog dump threads wait too long, transactions will timeout and continue. */ packet_len = my_net_read(net); if (trc_level & kTraceNetWait) { if (start_time_err != 0) { sql_print_error("Semi-sync master wait for reply " "gettimeofday fail to get start time"); rpl_semi_sync_master_timefunc_fails++; } else { int wait_time; wait_time = getWaitTime(start_tv); if (wait_time < 0) { sql_print_error("Semi-sync master wait for reply " "gettimeofday fail to get wait time."); rpl_semi_sync_master_timefunc_fails++; } else { rpl_semi_sync_master_net_wait_num++; rpl_semi_sync_master_net_wait_time += wait_time; } } } if (packet_len == packet_error || packet_len < REPLY_BINLOG_NAME_OFFSET) { if (packet_len == packet_error) sql_print_error("Read semi-sync reply network error: %s (errno: %d)", net->last_error, net->last_errno); else sql_print_error("Read semi-sync reply length error: %s (errno: %d)", net->last_error, net->last_errno); goto l_end; } packet = net->read_pos; if (packet[REPLY_MAGIC_NUM_OFFSET] != ReplSemiSyncMaster::kPacketMagicNum) { sql_print_error("Read semi-sync reply magic number error"); goto l_end; } log_file_pos = uint8korr(packet + REPLY_BINLOG_POS_OFFSET); strcpy(log_file_name, (const char*)packet + REPLY_BINLOG_NAME_OFFSET); if (trc_level & kTraceDetail) sql_print_information("%s: Got reply (%s, %lu)", kWho, log_file_name, (ulong)log_file_pos); result = reportReplyBinlog(server_id, log_file_name, log_file_pos); l_end: return function_exit(kWho, result); } int ReplSemiSyncMaster::resetMaster() { const char *kWho = "ReplSemiSyncMaster::resetMaster"; int result = 0; function_enter(kWho); lock(); state_ = getMasterEnabled()? 1 : 0; wait_file_name_inited_ = false; reply_file_name_inited_ = false; commit_file_name_inited_ = false; rpl_semi_sync_master_yes_transactions = 0; rpl_semi_sync_master_no_transactions = 0; rpl_semi_sync_master_off_times = 0; rpl_semi_sync_master_timefunc_fails = 0; rpl_semi_sync_master_wait_sessions = 0; rpl_semi_sync_master_wait_pos_backtraverse = 0; rpl_semi_sync_master_trx_wait_num = 0; rpl_semi_sync_master_trx_wait_time = 0; rpl_semi_sync_master_net_wait_num = 0; rpl_semi_sync_master_net_wait_time = 0; unlock(); return function_exit(kWho, result); } void ReplSemiSyncMaster::setExportStats() { lock(); rpl_semi_sync_master_status = state_; rpl_semi_sync_master_avg_trx_wait_time= ((rpl_semi_sync_master_trx_wait_num) ? (unsigned long)((double)rpl_semi_sync_master_trx_wait_time / ((double)rpl_semi_sync_master_trx_wait_num)) : 0); rpl_semi_sync_master_avg_net_wait_time= ((rpl_semi_sync_master_net_wait_num) ? (unsigned long)((double)rpl_semi_sync_master_net_wait_time / ((double)rpl_semi_sync_master_net_wait_num)) : 0); unlock(); } /* Get the waiting time given the wait's staring time. * * Return: * >= 0: the waiting time in microsecons(us) * < 0: error in gettimeofday or time back traverse */ static int getWaitTime(const struct timeval& start_tv) { unsigned long long start_usecs, end_usecs; struct timeval end_tv; int end_time_err; /* Starting time in microseconds(us). */ start_usecs = start_tv.tv_sec * TIME_MILLION + start_tv.tv_usec; /* Get the wait time interval. */ end_time_err = gettimeofday(&end_tv, 0); /* Ending time in microseconds(us). */ end_usecs = end_tv.tv_sec * TIME_MILLION + end_tv.tv_usec; if (end_time_err != 0 || end_usecs < start_usecs) return -1; return (int)(end_usecs - start_usecs); }